Table of Contents

S. No.	Description	Page No.
a)	List of Figures	xiii
b)	List of Tables	xvi
c)	List of Abbreviations	xviii
d)	List of Symbols	XX
e)	Preface	xxii
1.0	Chapter 1: Introduction	1
1.1	Neurodegenerative disorders: Alzheimer's Disease	1
1.2	Pathophysiology of AD	2
1.3	Therapeutic drug targets in AD	6
1.4	Clinical drugs for the treatment of AD	8
2.0	Chapter 2: Literature Review	10
2.1	Multitarget-directed ligands (MTDLs)	10
2.2	Rational combination of targets for MTDLs	11
2.2.1	Target combination based on clinical observations	11
2.2.2	Target combination based on in silico technique	11
2.2.3	Target combination based on phenotypic screening	13
2.3	MTDLs lead generation	13
2.3.1	Knowledge based approach	13
2.3.2	Screening approach	14
2.4	MTDLs lead optimization	15
2.4.1	Design-In approach	15
2.4.2	Design-Out approach	15
2.5	Recent advancements of MTDLs in AD drug discovery	17
3.0	Chapter 3: Objectives, Rationale and Plan of Work	26
3.1	Objective and rationale	26
3.2	Plan of work	27
4.0	Chapter 4: Development of Pyrazole and Spiropyrazoline Analogs	28
4.1	Experimental work	28

4.1.1	Rationale of drug design & in-silico optimization	28
4.1.2	In-silico studies	30
4.1.2.1	Seed growing	30
4.1.2.2	Molecular docking	30
4.1.3	Synthesis and characterization	31
4.1.3.1	Scheme 1. Synthesis of 3,5-diaryl-1H-pyrazole derivatives	32
4.1.3.2	Scheme 2. Synthesis of spiropyrazolines derivatives	33
4.1.3.3	Synthesis of N-(3-acetylphenyl)benzamide (2)	33
4.1.3.4	General procedure for the synthesis of chalcone derivatives (23-42)	34
4.1.3.5	General procedure for the synthesis of 3,5-diaryl-1H-pyrazole derivatives (43-62)	46
4.1.3.6	General procedure for the synthesis of compounds 63,64 & 65	57
4.1.3.7	General procedure for the synthesis of spiropyrazolines derivatives (66-85)	58
4.1.4	Biological evaluation	72
4.1.4.1	<i>In-vitro</i> enzyme inhibition studies (inhibitory activity against cholinesterases)	72
4.1.4.2	In-vitro blood-brain barrier permeation assay	73
4.1.4.3	Propidium iodide displacement assay	74
4.1.4.4	Inhibition assay of Aβ ₁₋₄₂ aggregation	75
4.1.4.5	MC65 neuroprotection assay	76
4.1.4.6	Scopolamine induced amnesia model	76
4.1.4.6.1	Materials	76
4.1.4.6.2	Animals and housing	76
4.1.4.6.3	Experimental protocol and drug administration	77
4.1.4.6.4	LD ₅₀ determination	77
4.1.4.6.5	Y-Maze test	77
4.1.4.7	Neurochemical analysis	78
4.1.4.8	<i>In-vivo</i> pharmacokinetics and brain penetration studies	79
4.1.4.8.1	Pharmacokinetic and brain penetration analyses	80
4.2	Results and discussion	80
4.2.1	De novo design and in-silico molecular docking studies	80

4.2.2	Synthetic methodology and characterization	84
4.2.3	<i>In-vitro</i> cholinesterase inhibitory activity and SAR studies	86
4.2.4	<i>In-vitro</i> blood-brain barrier permeation assay	89
4.2.5	Propidium iodide displacement assay	95
4.2.6	$A\beta_{1-42}$ aggregation assay (Thioflavin T assay) and confocal fluorescence imaging	96
4.2.7	Neuroprotection studies on MC65 cell lines	97
4.2.8	In-vivo behavioral studies	99
4.2.9	Neurochemical level estimation	102
4.2.10	<i>In-vivo</i> mice brain pharmacokinetic profiles of compounds 44 and 67	102
5.0	Chapter 5: Discovery of 2-Substituted Benzo[d]oxazol-5- amine Analogs	106
5.1	Experimental work	106
5.1.1	Rationale of drug design & in-silico optimization	106
5.1.2	In-silico studies	107
5.1.2.1	Molecular docking	107
5.1.2.2	Prediction of physicochemical properties	107
5.1.3	Synthesis and characterization	108
5.1.3.1	Scheme 1. Synthesis of compounds 29A-39A	109
5.1.3.2	Scheme 2. Synthesis of compounds 86A-107A	109
5.1.3.3	General procedure for the synthesis of compound 18A-28A and 40A	110
5.1.3.4	Synthesis of 5-nitro-2-(piperazin-1-yl)benzo[d]oxazole (41A)	116
5.1.3.5	General procedure for the synthesis of compounds 64A-78A	117
5.1.3.6	General procedure for the synthesis of compounds 79A-85A	125
5.1.3.7	General procedure for the synthesis of compounds 29A-39A; 86A-107A	130
5.1.4	Biological evaluation	148
5.1.4.1	Cholinesterase inhibition assay (AChE and BuChE)	148
5.1.4.2	PAMPA-BBB assay	149
5.1.4.3	Propidium iodide displacement assay	149
5.1.4.4	Aβ ₁₋₄₂ inhibition- thioflavin T assay	149
5.1.4.5	Neuroprotection studies of (4-(5-aminobenzo[d]oxazol-2-	150

	yl)piperazin-1-yl)(4-bromophenyl)methanone (92A) on SH-SY5Y cell lines	
5.1.4.6	In-vivo behavioral studies	151
5.1.4.6.1	Animals, housing and materials	151
5.1.4.6.2	LD ₅₀ determination	151
5.1.4.6.3	Scopolamine-induced amnesia model in rats	151
5.1.4.6.3.1	Y-Maze test	151
5.1.4.6.3.2	Ex-vivo biochemical analysis	152
5.1.4.6.4	Morris water maze test	153
5.2	Results and discussion	154
5.2.1	Molecular docking	154
5.2.2	Prediction of physicochemical properties	155
5.2.3	Synthetic methodology and characterization	15
5.2.4	In-vitro cholinesterase inhibition and SAR studies	156
5.2.5	<i>In-vitro</i> blood-brain barrier permeation assay	160
5.2.6	Propidium iodide displacement assay	163
5.2.7	Self-induced and AChE induced Aβ ₁₋₄₂ aggregation	164
5.2.8	Neuroprotection studies of (4-(5-aminobenzo[d]oxazol-2-yl)piperazin-1-yl)(4-bromophenyl)methanone (92A) on SH-SY5Y cell lines	164
5.2.9	<i>In-vivo</i> behavioral studies of (4-(5-aminobenzo[d]oxazol-2-yl)piperazin-1-yl)(4-bromophenyl)methanone (92A)	166
5.2.9.1	Scopolamine-induced amnesia models for testing cognition enhancement in rats	166
5.2.9.2	Ex- vivo biochemical analysis	167
5.2.9.3	Aβ ₁₋₄₂ induced ICV rat model: Morris water maze test	169
6.0	Chapter 6: Discovery of Triazole Bridged Aryl Adamantane Analogs	174
6.1	Experimental work	174
6.1.1	Rationale of drug design	174
6.1.2	Drug-likeness, BBB permeability and toxicity filtration	176
6.1.3	Synthesis and characterization	176
6.1.3.1	Scheme 1. Synthesis of compounds 22B-28B and 31B-37B	176
6.1.3.2	General procedure for the synthesis of compounds 14B and	177

	30B	
6.1.3.3	General procedure for the synthesis of compounds 15B-21B	178
6.1.3.4	General procedure for the synthesis of compounds 22B-28B; 31B-37B	178
6.1.4	Biological evaluation	185
6.1.4.1	Evaluation of cholinesterase inhibitory activities (eeAChE and eqBuChE)	185
6.1.4.2	Evaluation of blood-brain barrier permeability: PAMPA assay	185
6.1.4.3	Propidium iodide (PI) displacement assay	185
6.1.4.4	Evaluation of NMDA receptor activity	185
6.1.4.4.1	Cloning and RNA synthesis	185
6.1.4.4.2	Electrophysiological studies in Xenopus laevis oocytes	186
6.1.4.5	Evaluation of Aβ ₁₋₄₂ anti-aggregation properties	187
6.1.4.6	Neuroprotection studies on SH-SY5Y cell lines	187
6.2	Results and discussion	188
6.2.1	Drug-likeliness, ADME and toxicity Prediction	188
6.2.2	Synthesis of cycloaryl analogs and characterization	188
6.2.3	<i>In-vitro</i> cholinesterase inhibition (eeAChE and eqBuChE)	189
6.2.4	In-vitro blood-brain barrier permeation assay	190
6.2.5	Propidium iodide displacement assay	190
6.2.6	NMDARs antagonistic activity of the triazole bridged cycloaryl analogs	193
6.2.7	Self-induced and AChE induced Aβ ₁₋₄₂ aggregation	200
6.2.8	Neuroprotection studies on SH-SY5Y cell lines	200
7.0	Chapter 7: Discussion	204
8.0	Chapter 8: Conclusions	209
9.0	Chapter 9: References	210
10.0	Appendix	221
10.1	Supplementary data of Pyrazole and Spiropyrazoline Analogs	221
10.2	Supplementary data of 2-Substituted Benzo[d]oxazol-5-amine Analogs	230
10.3	Supplementary data of triazole bridged cycloaryl analogs	240
10.4	List of Publications	253

List of figures

Figure No.	Description	Page No.
1.1	Symptoms and risk factors of AD.	3
1.2	Summary of the main pathogenesis hypotheses for AD and treatment strategies.	5
1.3	Chemical compounds used for the treatment of AD.	7
2.1	An overview of computational methods for mult-itarget drug design. Methods used to discover MTDLs are classified as either "ligand-centric" or "target-centric".	12
2.2	Rational design of multi-target directed ligands (MTDLs).	14
2.3	Approved and clinical drugs for treatment of AD.	16
2.4	Multi-target design strategies involving in AD.	17
2.5	MTDLs strategy involved in AChE and amyloid-beta.	18
2.6	MTDLs strategy involved in AChE and amyloid-beta.	20
2.7	MTDLs strategy involved in AChE and GSK-3β.	21
2.8	MTDLs strategy involved in AChE and MAOs.	22
2.9	MTDLs strategy involved in AChE, amyloid-beta and metal chelation.	23
2.10	MTDLs strategy involved in AChE and NMDA.	25
3.1	Overview of the designed study.	26
4.1	Role of AChE in the formation of amyloid fibrils.	28
4.2	Overview of drug design process for pyrazole and spiropyrazoline analogs.	29
4.3	Docking poses of (A) fragment 1, (B) fragment 2, (C) fragment 3, (D) optimized fragment and (E) compound 43 in active site pocket of AChE (PDB: 4EY7).	82
4.4	Binding pattern of (A) compound 44 and (B) compound 67 in active site pocket of AChE (PDB: 4EY7).	83
4.5	Differential scanning calorimetry plot of compound 73.	85
4.6	ORTEP diagram of compound 73 (at 40% ellipsoid level).	86
4.7	Lineweaver-Burk plot on three different concentration of compound 67.	93
4.8	Dixon plot of compound 67 showing the Ki value as	93
	negative intercept on X-axis of the Dixon plot for AChE.	
4.9	The linear correlation between reported and observed Pe of the	94

	commercial drugs by PAMPA assay.	
4.10	Aβ ₁₋₄₂ aggregation Inhibition assay and confocal imaging	98
	analysis	
4.11	Neuroprotection assay on MC65 cell lines with A)	98
	Compound 44 B) Compound 67.	
4.12	Effect of compounds 44 and 67 on scopolamine-induced	103
	impairment of spontaneous alternation behavior.	
4.13	Analysis of AChE and Catalase levels (A) Estimation of	104
	AChE level. (B) Estimation of AChE CAT levels	
4.14	Overview of development of pyrazole and spiropyrazoline analogs.	105
5.1	Molecular framework of multitarget-directed ligand (MTDL)	107
	strategy for AD.	
5.2	Molecular Binding pattern of compound 92A (A) 3D and (B)	155
	2D in the AChE (PDB ID: 4EY7) active site. Key interacting residues are shown in line.	
5.3	Lineweaver-Burk plot for the kinetic study of (A) AChE and	159
	(B) BuChE inhibition by compound 92A.	
5.4	Dixon plot of compound 92A showing the Ki value as	163
	negative intercept on X-axis of the Dixon plot for (A) AChE	
	and (B) BUChE.	
5.5	Effect of compound 92A on Aβ ₁₋₄₂ aggregation. (A) Self-	165
	induced and (B) AChE-induced Aβ ₁₋₄₂ aggregation.	
5.6	Neuroprotection assay on SH-SY5Y cell lines with	166
	compound 92A.	
5.7	Effect of compound 92A and donepezil on scopolamine-	167
	induced cognition and memory impairment.	
5.8	Protective effect of compound 92A on Aβ ₁₋₄₂ induced	171
	memory deficits the Morris water maze test.	
5.9	Representative images of histomorphological appearance at	172
	hippocampal region of the control (A), Aβ ₁₋₄₂ group (B),	
	administration of DNZ (C) and compound 92A (D) treated	
	groups.	
ļ		

5.10	Overview of discovery of 2-substituted benzo[d]oxazol-5-amine analogs.	173
6.1	Drug design paradigm of multitarget-directed ligand Strategy for AD.	175
6.2	Effect of compounds 32B (ADM-TRZ-02), 33B (ADM-	195
	TRZ-03) and memantine, respectively, on glutamate- and	
	glycine-evoked currents in GluN1-1b/GluN2A-containing	
	receptors.	
6.3	Effect of compounds 32B (ADM-TRZ-02), 33B (ADM-	196
	TRZ-03) and memantine, respectively, on glutamate- and	
	glycine-evoked currents in GluN1-1b/GluN2B-containing	
	receptors.	
6.4	Effect of compounds 32B (ADM-TRZ-02), 33B (ADM-	197
	TRZ-03) and memantine, respectively, on glutamate- and	
	glycine-evoked currents in GluN1-1b/GluN2C-containing	
	receptors.	
6.5	Effect of compounds 32B (ADM-TRZ-02), 33B (ADM-	198
	TRZ-03) and memantine, respectively, on glutamate- and	
	glycine-evoked currents in GluN1-1b/GluN2D-containing	
	receptors.	
6.6	Effect of compounds 32B (ADM-TRZ-02), 33B (ADM-	199
	TRZ-03) and memantine, respectively, on glutamate- and	
	glycine-evoked currents in GluN1-1a/GluN2A-D-containing receptors.	
6.7	Effect of compounds 32B and 33B on Aβ aggregation. (A)	201
	Self-induced and (B) AChE-induced Aβ aggregation.	
6.8	Neuroprotection assay on SH-SY5Y cell lines with	202
	Compounds 32B and 33B.	
6.9	Overview of discovery of triazole bridged aryl adamantane	203
	analogs.	

List of Tables

Table No.	Description	Page No.
4.1	Polarimetric data of compound 73.	85
4.2	Crystal data and structure refinement of compound 73.	87
4.3	Inhibitory potencies and structures of 3,5-diaryl-1H-	91
	pyrazole (43-62) and spiropyrazolines (66-85) derivatives.	
4.4	Permeability (Pe×10-6 cm/s) of 9 commercial drugs to validate the PAMPA-BBB model.	94
4.5	Permeability Pe (10 ⁻⁶ cm s ⁻¹) results from the PAMPA-BBB assay of synthesized compounds and their prediction of BBB Penetration.	95
4.6	Propidium iodide displacement assay.	97
4.7	Protocol for LD ₅₀ determination the compound 44.	100
4.8	Effect of compound 44 on the body wt. of the animals at the dose of 300 mg/kg.	100
4.9	The onset of toxicity with compound 44 in the period of 72	100
	h.	
4.10	Protocol for LD ₅₀ determination the compound 67.	101
411	Effect of compound 67 on the body wt. of the animals at the dose of 300 mg/kg.	101
4.12	Onset of toxicity with compound 67 in the period of 72 h.	101
4.13	Pharmacokinetic and brain penetration parameters of	104
	compound 44 and 67 following oral administration (30 mg/kg) to mice.	
5.1	Physicochemical Properties Prediction.	158
5.2	Structures, cholinesterase (eeAChE and eqBuChE) inhibitory potential and PAMPA-BBB assay of tested compounds.	161
5.3	Propidium iodide displacement assay.	162
5.4	Protocol for LD ₅₀ determination of compound 92A.	168
5.5	Effect of compound 92A on the body weight of the rat at the dose of 300 mg/kg.	168
5.6	The onset of toxicity with compound 92A in the period of 72h.	168

6.1	ADME and toxicity prediction of the compounds.	191
6.2	Structures, cholinesterase (eeAChE and eqBuChE)	192
	inhibition, PAMPA-BBB assay and NMDA antagonism.	
6.3	Propidium iodide displacement assay.	193
6.4	Inhibitory profile of 32B and 33B on different NMDAR	199
	subunit combinations.	