

**सिरामिक अभियांत्रिकी विभाग** Phone: +91-542-6701787 **DEPARTMENT OF CERAMIC ENGINEERING** Fax: +91-542-2368428 Email: head.cer@itbhu.ac.in

Date: 10/08/2022

### **CERTIFICATE**

This is to certify that the thesis entitled "Development of Two-dimensional Functional Nanostructures for Electrocatalysis and Photocatalysis" being submitted by Vivek Kumar Singh (Roll No- 18031006) to the Indian Institute of Technology (Banaras Hindu University) Varanasi, for the award of the Degree of Doctor of Philosophy in the Department of Ceramic Engineering is a record of bonafide research work carried out absolutely by him under our supervision and guidance. The thesis has reached the standard; fulfilling the requirements of the regulations relating to the nature of the degree. The results embodied in this thesis have not been submitted to any other university or institute for the award of any degree or diploma.

(Dr. Santanu Das)

Supervisor

Dr. SANTANU DAS/डा० शान्तनु दास Assistant Professor/असिस्टेंट प्रोफेसर Department of Ceramic Engg.(सेरेमिक, इन्जिनियरिंग, विभाग Indian Institute of Technology (BHU)/भारतीय प्रौद्योगिकीं. मंम्थान वी.एच.वृ. Varanasi-221005,U.P., India/याराणसी-२२१००५,उ०प्र०, भारत.

Head of the Department HEAD/ विभागाध्यक्ष Department of Ceramic Engineering सिरामिक अभियान्त्रिकी विभाग Indian Institute of Technology (B.H.U.) भारतीय प्रोधोगिकी संस्थान (काठहिठविठविठ) Varanasi-221005/ वाराणसी-221005



सिरामिक अभियांत्रिकी विभाग Phone: +91-542-6701787 **DEPARTMENT OF CERAMIC ENGINEERING** Fax: +91-542-2368428 Email: head.cer@itbhu.ac.in

Date: /0/08/2022

## **CANDIDATE'S DECLARATION**

I hereby declare that the work presented in the dissertation entitled "Development of Twodimensional Functional Nanostructures for Electrocatalysis and Photocatalysis" is an authentic record of my own work carried out at the Department of Ceramic Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi as the requirement for the award of the degree of doctor of philosophy in Ceramic Engineering, submitted in the Indian Institute of Technology (Banaras Hindu University), Varanasi for the session 2018-19 under the supervision of **Dr. Santanu Das**, Department of Ceramic Engineering Indian Institute of Technology (Banaras Hindu University), Varanasi.

It does not contain any part of the work, which has been submitted for the award of any degree either in this university or in the other university/Deemed University without proper citation.

Vinek Kuman Single 0/08/2022 Mr. Vivek Kumar Singh

Roll No. 18031006 Department of Ceramic Engineering, IIT(BHU), Varanasi

#### **COPYRIGHT TRANSFER CERTIFICATE**

Development of Two-dimensional Functional Nanostructures for Title of the Thesis: **Electrocatalysis and Photocatalysis** 

Name of the Student: **Vivek Kumar Singh** 

#### Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy.

Date: 10/08/2022

Virek Kuman Single Signature of the Student

Place: TIT-BHU Vagranasi

Vivek Kumar Singh

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

#### Acknowledgment

This dissertation is the culmination of my PhD experience, which was akin to ascending a treacherous mountain all the while encountering encouragement, struggle, bitterness, frustration, and faith and it gives me immense pleasure to take this opportunity to offer my heartfelt gratitude to everyone who contributed to this thesis and assisted me along this incredible journey of my PhD.

I would like to take this opportunity to convey my heartfelt gratitude to Dr. Santanu Das, my PhD supervisor for accepting me as his student and giving me an insight and an understanding of the research world. He has always been patient and encouraging me, while discussing new ideas and guiding me towards the right direction. This research would not have been possible without his invaluable guidance.

I am deeply indebted to the members of my research performance evaluation committee (RPEC), Dr. Bhola Nath Pal, School of Materials Science and Technology, and Dr. Imteyaz Ahmad, Department of Ceramic Engineering whose suggestions and critical comments during my semester progress presentations contributed immensely in refining and moulding my thesis.

*I would also like to thank Dr. Bratindranath Mukherjee, Department of Metallurgical Engineering, IIT (BHU), Varanasi, for helping me all the way throughout my PhD research.* 

I also express my heartfelt thanks to Dr. S. Assa Aravindh, University of Oulu, Finland for collaborating and analysing DFT Calculations and Simulations.

I also acknowledge the Department of Science and Technology, Government of India for providing financial support (Grant No: DST/INSPIRE Fellowship/2017/IF170977) throughout my PhD journey.

A thank from the bottom of my heart goes to the Head of the Department of Ceramic Engineering, IIT (BHU), Varanasi for providing me all the facilities to conduct my research

work. I would also like to thank all the faculty members, laboratory staff, librarians, and office staff for their kind cooperation and encouragement during this incredible journey.

Thanks to Central Instrument Facility (CIF), IIT (BHU) for the support for various state-ofthe-art characterizations and all the research collaborators in India and Worldwide for collaborating with us and extending their support throughout my PhD tenure.

I am grateful to my colleagues in the Nanomaterials for Electronics and energy Devices (NEED) Lab for their constant help and never-ending efforts to make the lab an enthusiastic place for research and learning. Specifically, my heartfelt thanks go to Mr. Sabyasachi Roy, Mr. Uttam Sharma, Ms. Ummiya Qamar, Mr. Sayak Roy, Mr. Sayan Chattopadhyay, Ms. Prachi Jain, for their constant helps and supports during my Ph.D. period.

My thanks and sincere appreciation also go to my friends, especially Mr. Kunal Verma, Mr. Siddharth Singh, Mr. Taranga Dehury, Mr. Manish Chourasia, Mr. Supriya Chanda, Mr. Rakesh Kumar, Mr. Aman Singh, Mr. Amit Sharma, Mr. Amit Kumar Singh, Mr. Manas Ranjan Samantaray, Mr. Abhay Kumar Mondal, Mr. Satyendra Kumar Singh, Mr. Vaibhav Singh, Mr. Vaibhav Panday, Mr. Ramakant Kumar for their constant support.

I would like to express my heartfelt gratitude to my beloved parents Shri. Vijay Bahadur Singh and Smt. Punam Singh for their constant support and love throughout my life.

*My* appreciation toward my brother Mr. Vishal Kumar Singh and my sister Pooja Singh for their continuous support and encouragement.

Above all, I thank Load Vishwanath for providing me with strength and courage in completing the work.

Sincerely,

#### Vivek Kumar Singh

# THIS THESIS IS DEDICATED TO MY PARENTS

|                | CONTENTS                                                | Page No.  |
|----------------|---------------------------------------------------------|-----------|
| List of Figure | S                                                       | XIII-XXII |
| List of Tables |                                                         | XXIII     |
| List of Abbrev | iations                                                 | XXIV-XXVI |
| Chapter 1: Ii  | ntroduction and Literature Survey                       | 2-58      |
| 1.1            | Introduction                                            | 2         |
|                | 1.1 An overview of future renewable energy demand       | 2-4       |
| 1.2            | Electrochemistry of the hydrogen evolution reaction     | 4-6       |
| 1.3            | Fundamentals of hydrogen evolution reaction             | 6-9       |
|                | 1.3.1 Reaction mechanism                                | 6-8       |
|                | 1.3.2. Volcano plots                                    | 8-9       |
| 1.4            | Experimental method for characterizing the              | 9-13      |
|                | electrochemical activity of HER catalysts               |           |
|                | 1.4.1. Overpotential                                    | 9-11      |
|                | 1.4.2. Tafel plot                                       | 11-12     |
|                | 1.4.3. Electrochemical impedance spectroscopy           | 12        |
|                | 1.4.4. Stability                                        | 12-13     |
| 1.5            | An overview of the elements used for constructing HER   | 13-14     |
|                | electrocatalysts                                        |           |
| 1.6            | Two-dimensional functional nanostructures               | 15-21     |
|                | 1.6.1 Graphene                                          | 16-18     |
|                | 1.6.2. Two-dimensional transition metal dichalcogenides | 18-21     |
|                | (TMDs)                                                  |           |
|                | 1.6.2.1 Molybdenum disulfide (MoS <sub>2</sub> )        | 19-21     |

| 1.7          | Strategies for improving the catalytic activity of 2H-                               | 21-36 |
|--------------|--------------------------------------------------------------------------------------|-------|
|              | MoS <sub>2</sub>                                                                     |       |
|              | 1.7.1 Increasing edge sites of 2H-MoS <sub>2</sub>                                   | 22-24 |
|              | 1.7.2 Engineering defects in $2H$ -MoS <sub>2</sub> and the effect of strain         | 24-26 |
|              | 1.7.3 Constructions of heterostructures                                              | 26-29 |
|              | 1.7.4 Heteroatom doping                                                              | 29-32 |
|              | 1.7.5 Phase transformation in $MoS_2$                                                | 33-36 |
| 1.8          | A novel hierarchical MoNi <sub>4</sub> /MoO <sub>2</sub> nanostructures              | 36-38 |
| 1.9          | Objectives of this work                                                              | 38-39 |
|              | References                                                                           | 39-58 |
| Chapter 2: N | Iaterials and Methods                                                                | 60-84 |
| 2.1          | Introduction                                                                         | 60    |
|              | 2.1.1 Hydrothermal synthesis (HTS)                                                   | 61    |
|              | 2.1.2 Synthesis of MoNi <sub>4</sub> /MoO <sub>2</sub> nanorods                      | 62    |
|              | 2.1.3 Graphene oxide (GO) synthesis via modified                                     | 63-64 |
|              | Hummers' method                                                                      |       |
|              | 2.1.4 Synthesis of reduced graphene oxide (rGO)                                      | 64    |
|              | 2.1.5 MoNi <sub>4</sub> /MoO <sub>2</sub> :rGO of nanocomposite synthesis            | 64-65 |
|              | 2.1.6 Synthesis of 2D-MoS <sub>2</sub> nanosheets via hydrothermal                   | 65-66 |
|              | method                                                                               |       |
|              | 2.1.7 Synthesis of MoS <sub>2</sub> :MoNi <sub>4</sub> /MoO <sub>2</sub> nanohybrids | 66-67 |
|              | 2.1.8 Synthesis of sulfonic acid (SO <sub>3</sub> H) functionalized                  | 67-68 |
|              | 2D-MoS <sub>2</sub> nanosheets                                                       |       |

|     | 2.1.9 Sulfonic acid/ Sulfur trioxide (SO <sub>3</sub> H/SO <sub>3</sub> ) | 68-69 |
|-----|---------------------------------------------------------------------------|-------|
|     | functionalization in 2D-MoS <sub>2</sub> nanosheets                       |       |
| 2.2 | Techniques of materials characterizations                                 | 69-78 |
|     | 2.2.1 X-ray powder diffraction (XRD)                                      | 69-70 |
|     | 2.2.2 Scanning electron microscopy (SEM)                                  | 70-71 |
|     | 2.2.3 Transmission electron microscopy (TEM)                              | 71-72 |
|     | 2.2.4. X-ray photoelectron spectroscopy (XPS)                             | 72-73 |
|     | 2.2.5 Raman spectroscopy                                                  | 74    |
|     | 2.2.6 Fourier transform infrared spectroscopy (FTIR)                      | 74-75 |
|     | 2.2.7 Differential scanning calorimetry and                               | 75    |
|     | thermogravimetric analysis                                                |       |
|     | 2.2.8 Ultraviolet-visible spectroscopy (UV-Vis)                           | 76    |
|     | 2.2.9 Brunauer-Emmett-Teller (BET)                                        | 77    |
|     | 2.2.10 Contact angle measurement                                          | 77    |
| 2.3 | Electrochemical measurements                                              | 78-83 |
|     | 2.3.1 Electrode fabrication                                               | 78    |
|     | 2.3.2 Electrochemical characterizations                                   | 79-83 |
|     | 2.3.2.1 Linear sweep voltammetry (LSV)                                    | 80    |
|     | 2.3.2.2 Electrochemical impedance spectroscopy (EIS)                      | 81-82 |
|     | 2.3.2.3 Stability                                                         | 82    |
|     |                                                                           | 82-83 |
|     | 2.3.2.4 Cyclic voltammetry (CV)                                           | 83    |
|     | 2.3.2.5 Mott-Schottky (M-S)                                               | 02.04 |
|     |                                                                           | 03-04 |

| Chapter 3: R                                                                                                                                   | educed Graphene Oxide supported MoNi <sub>4</sub> /MoO <sub>2</sub> |         |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|
| Nanorods for                                                                                                                                   | 86-104                                                              |         |
| 3.1                                                                                                                                            | Introduction                                                        | 86-88   |
| 3.2                                                                                                                                            | Results and Discussions                                             | 88-99   |
| 3.3                                                                                                                                            | Chapter Summary                                                     | 99      |
|                                                                                                                                                | References                                                          | 100-104 |
| Chapter 4: Two-dimensional (2D) MoS <sub>2</sub> Nanosheets on<br>MoNi <sub>4</sub> /MoO <sub>2</sub> Nanorods for Hydrogen Evolution Reaction |                                                                     | 106-136 |
| 4.1                                                                                                                                            | Introduction                                                        | 106-108 |
| 4.2                                                                                                                                            | Results and discussions                                             | 108-129 |
| 4.3                                                                                                                                            | Chapter summary                                                     | 129-130 |
|                                                                                                                                                | References                                                          | 130-136 |
| Chapter 5: Functionalized 2D-MoS <sub>2</sub> Nanosheets for<br>Electrocatalytic Hydrogen Evolution Reaction via Water                         |                                                                     | 138-182 |
| 5.1                                                                                                                                            | Introduction                                                        | 138-141 |
| 5.2                                                                                                                                            | Results and discussions                                             | 141-166 |
| 5.3                                                                                                                                            | Computational methodology                                           | 166-171 |
| 5.4                                                                                                                                            | Chapter summary                                                     | 171-172 |
|                                                                                                                                                | References                                                          | 172-182 |
| Chapter 6: [SO <sub>3</sub> H/SO <sub>3</sub> ] Functionalized 2D-MoS <sub>2</sub> Nanosheets for Photocatalysis of Organic Pollutants         |                                                                     | 184-207 |
| 6.1                                                                                                                                            | Introduction                                                        | 184-186 |
| 6.2                                                                                                                                            | Results and discussions                                             | 186-199 |

| 6.3                                                 | Chapter summary      | 199-200 |
|-----------------------------------------------------|----------------------|---------|
|                                                     | References           | 200-207 |
| Chapter 7: Conclusions and Future Scope             |                      | 209-214 |
| 7.1                                                 | Conclusions          | 209-212 |
| 7.2                                                 | Future scope of work | 213-214 |
| Publications, Patents, and Conference Presentations |                      | 216-219 |

| LIST OF FIGURES |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1.1:     | Illustration of the hydrogen-based systems and assemblies for supplying energies in future.                                                                                                                                                                                                                                                                                                                                                                                      | 4  |
| Figure 1.2:     | Demonstrates a typical water electrolysis process; $H_2$ and $O_2$ are produced at the cathode and anode sides, respectively.                                                                                                                                                                                                                                                                                                                                                    | 5  |
| Figure 1.3:     | Schematic illustration of hydrogen evaluation pathways in acidic (left) and alkaline (right) conditions.                                                                                                                                                                                                                                                                                                                                                                         | 7  |
| Figure 1.4:     | (a) Relationship between $j_0$ and $\Delta G_{H^*}$ under the assumption of a Langmuir adsorption model; (b) Dependence of $j_0$ on $\Delta G_{H^*}$ for HER on the surface of various noble metals and non-noble metals in an acidic medium.                                                                                                                                                                                                                                    | 9  |
| Figure 1.5:     | <ul> <li>(a) Schematic showing HER polarization curves of electrocatalysts designated with "iR" drop compensation and overpotential values;</li> <li>(b) schematic demonstration of Tafel plots on other electrocatalysts with the Tafel slopes and exchanges current densities indicated.</li> </ul>                                                                                                                                                                            | 11 |
| Figure 1.6:     | Shows the periodic table with highlighted elements, which are used for constructing HER catalysts.                                                                                                                                                                                                                                                                                                                                                                               | 13 |
| Figure 1.7:     | Illustrates (a) two dimensional atomically thin single-layer graphene is the mother of all the carbon allotropes, such as, fullerene (b); carbon nanotube (c); and graphite (d).                                                                                                                                                                                                                                                                                                 | 17 |
| Figure 1.8:     | Schematic showing (a) key properties of graphene and graphene-<br>based materials for their applications in energy-related devices; (b)<br>the various energy-related applications of graphene.                                                                                                                                                                                                                                                                                  | 18 |
| Figure 1.9:     | Shows various phases of $MoS_2$ unit cells consist of metal<br>coordination and stacking sequences. The way metals are put<br>together can be octahedral or trigonal prismatic. The octahedral<br>coordination makes it possible to stack sequences, which leads to<br>tetragonal symmetry (1T). When trigonal prismatic single layers<br>are stacked in different ways, they can create two different<br>symmetries: hexagonal symmetry (2H) and rhombohedral<br>symmetry (3R). | 20 |
| Figure 1.10:    | (a) Calculated free energy diagram of HER for various electrocatalysts, including $MoS_2$ (0.08 eV) and different metal electrodes such as Au, Pt, Ni, and Mo at pH=0; (b) exchange current density with $MoS_2$ as the function of $MoS_2$ edge length.                                                                                                                                                                                                                         | 21 |
| Figure 1.11:    | (a) Scheme for the synthesis of mesoporous $MoS_2$ on double-<br>gyroid engineering to maximally expose edge sites of $MoS_2$ for<br>enhanced HER catalytic activity; (b) Edge terminated $MoS_2$ film                                                                                                                                                                                                                                                                           | 23 |

|              | with maximally exposing the edges of $MoS_2$ layers and corresponding HRTEM image; (c) Vertically aligned, step-edge terminated $MoS_2$ thin-film and corresponding TEM images.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1.12: | Shows (a) schematic representation of defect-free and defect-reach $MoS_2$ nanosheets, (b) atomic reconcentration of defect-reach $MoS_2$ nanosheets with additional active sites, (c) polarization curve of different $MoS_2$ structures where the defect-reach $MoS_2$ shows the higher current density; (d) schematic showing the strain-induced S-vacancies on the basal plane of 2D-MoS <sub>2</sub> , where sulfurvacancies act as the active sites for HER and applied strain further tunes the HER activity; (c) Free energy versus the reaction coordinate of HER for the sulfur-vacancy range from 0 to 25%; (f) $\Delta G_H$ vs. %x-strain for various S-vacancy % from 0 to 18.75%. and (g) polarization curve for the Pt electrode, Au substrate, pristine $MoS_2$ (S-vacancy:0% and strain: 0%) strained (S-MoS <sub>2</sub> ) $MoS_2$ without S-vacancies (S-vacancy:12.5% and strain: 0%) and S-vacancies with strained (SV-MoS <sub>2</sub> ) $MoS_2$ (S-vacancy 12.5% and strain: 0%) and strain: 1.35%) where SV-MoS <sub>2</sub> shows the low overpotential with enhanced HER performance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25 |
| Figure 1.13: | (a) Schematic representation of the solvothermal synthesis of $MoS_2/rGO$ hybrid; (b) polarization and Tafel curve obtained from rGO, $MoS_2$ NP, and $MoS_2/rGO$ catalysts, respectively; (c) HER scheme for $MoS_x/NCNT$ forest hybrid catalyst and corresponding polarization curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28 |
| Figure 1.14: | (a) The relation between current (log (i <sub>0</sub> )) vs. $\Delta G_{H}^{0}$ presents a Volcano curve, the inset graph point to a different configuration of the doped MoS <sub>2</sub> as coordinated with four and six S atoms. The adoption sites for H the atoms are represented by red dashed circles. The studied metal atoms are located in the periodic table, as shown by the inset at the bottom. Green, yellow, blue, and purple represents the Mo, S, and doped metal atoms. (b) The results of the DFT calculation and the corresponding electrocatalytic on the surface of different catalysts under the alkaline medium. $\Delta G$ (H <sub>2</sub> O) and $\Delta G$ (H) are related to the kinetics energy barriers for the Volume and Tafel steps on the catalysts, respectively, and $\Delta G$ (OH) is the Gibbs free energy of the adsorbed OH <sup>-</sup> on the surface of the catalysts. In the diagram E (eV) represent the free energies of the different reactive stages. S, Mo, and Ni, are represented in yellow, blue, and red spheres. (c) shows the structural modal of oxygen incorporated MoS <sub>2</sub> (top) and the pristine MoS <sub>2</sub> (bottom), the orange shading indicates the bandgap of pristine MoS <sub>2</sub> decreased after the oxygen incorporated MoS <sub>2</sub> to provide MoS <sub>2</sub> atom in the oxygen incorporated MoS <sub>2</sub> to provide the pristine MoS <sub>2</sub> decreased after the oxygen incorporated MoS <sub>2</sub> and conduction band near the oxygen atom in the oxygen incorporated MoS <sub>2</sub> | 31 |

|              | nanosheets, respectively. Contour line of the charge density represented by black line. (c) (left) HER free energy diagram for P and S site in the basal plane of pristine $MoS_2$ and P-doped $MoS_2$ . Insets show that the P-doped $MoS_2$ with ' $H_{ad}$ ' atom on the most active sites of the P site, (right) shows that the calculated free energy diagram for HER on P-doped $MoS_2$ with different interlayer spacing values measured by the experimental process (0.65 nm and 0.91 nm).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1.15: | (a) Semiconducting 2H-MoS <sub>2</sub> to metallic 1T-MoS <sub>2</sub> phase conversion by lithium intercalation and exfoliation; (b) shows the corresponding polarization curve where 1T MoS <sub>2</sub> exhibits the high HER catalytic activity compared to the semiconducting 2H MoS <sub>2</sub> ; (c) (right) crystal structure of 2H MoS <sub>2</sub> ; (left) schematic of the battery testing system. The cathode is a MoS <sub>2</sub> nanofilm with molecular layers perpendicular to the substrate, where the yellow and green colours represent the terrace sites and edge sites, respectively. The Li foil was used as the anode. (d) The Galvanostatic discharge curve shows the lithiation process; Li intercalates into the van der Waals gaps of 2H MoS <sub>2</sub> to donate electrons to the slabs and expand the layer spacing of MoS <sub>2</sub> . The voltage monotonically drops to 1.2 V vs. Li <sup>+</sup> /Li to reach a Li content of 0.28 V, after which the system undergoes a semiconducting 2H MoS <sub>2</sub> to metallic 1T MoS <sub>2</sub> phase transition. The atomic structure is changed from trigonal prismatic to octahedral. | 34 |
| Figure 1.16: | Shows (a–c) SEM images depicting morphologies of $MoNi_4/MoO_2@Ni$ ; (d–f) HRTEM images of $MoNi_4/MoO_2@Ni$ and the inset of (d) shows the selected area electron diffraction (SAED) image; (g) TEM-EDS elemental mapping images of the MoNi <sub>4</sub> electrocatalyst and the MoO <sub>2</sub> cuboids. [scale bars, (a) 20 µm; (b) 1 µm; (c) 100 nm; (d–f) 2 nm; inset in d, 1 1/nm; (g) 20 nm].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37 |
| Figure 2.1:  | Shows (a) Autoclave used for hydrothermal synthesis; (b) laboratory vacuum oven, and (c) atmospheric controlled laboratory tube furnace, which were used for all the synthesis processes for this work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61 |
| Figure 2.2:  | Schematic of the MoNi <sub>4</sub> /MoO <sub>2</sub> nanorod synthesized by a one-pot hydrothermal process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62 |
| Figure 2.3:  | Step-by-Step Synthesis of Graphene oxide (GO); and reduced graphene oxide (rGO) by using the modified Hummers' method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63 |
| Figure 2.4:  | Shows the transmission electron micrographs of graphene oxide (GO), and reduced graphene oxide (rGO) by using the modified Hummers' method followed by microwave heat treatment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 64 |

| Figure 2.5:  | Schematic showing the step-by-step synthesis of MoNi <sub>4</sub> /MoO <sub>2</sub> :rGO nanocomposite.                                                                                      | 65 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.6:  | Schematic of the 2D-MoS $_2$ synthesized by a one-pot hydrothermal process.                                                                                                                  | 66 |
| Figure 2.7:  | Schematic of the step-by-step synthesis of MoS <sub>2</sub> :MoNi <sub>4</sub> /MoO <sub>2</sub> .                                                                                           | 67 |
| Figure 2.8:  | Schematic showing the step-by-step synthesis of $MoS_2$ and functionalized $MoS_2$ nanosheets.                                                                                               | 68 |
| Figure 2.9:  | Schematic showing the step-by-step synthesis of $SO_3H/SO_3$ functionalized $MoS_2$ nanosheets.                                                                                              | 69 |
| Figure 2.10: | Shows the pictographic image of Rigaku (miniflex 600) X-ray Diffractometer.                                                                                                                  | 70 |
| Figure 2.11: | The field emission scanning electron microscope (Nova Nano SEM 450, FEI) equipped with the energy-dispersive spectrometer (EDS) mostly used for this research work                           | 71 |
| Figure 2.12: | Shows a transmission electron microscope (TECNAI G2 20 TWIN, FEI-USA) equipped with the energy-dispersive X-ray spectroscopy (EDX) used for analyzing nanostructures for this research work. | 72 |
| Figure 2.13: | Shows the instrument for analysing X-ray photoelectron spectroscopy (XPS) (K-alpha, XPS dispersive spectrometer, Thermo Scientific).                                                         | 73 |
| Figure 2.14: | Confocal Raman microscopy system (UHTS $\alpha$ -300, WITec GmBH, Germany) in-built with a 532 nm laser source.                                                                              | 74 |
| Figure 2.15: | FTIR spectrophotometer (THERMO Electron Scientific,<br>Instruments LLC, Model No: Nicolet iS5 instrument) used for all<br>the FTIR measurements.                                             | 75 |
| Figure 2.16: | (a) Shows pictographic images of (a) Thermogravimetric analysis (TGA-50, M/s Shimadzu Pte Ltd.) and (b) Differential scanning calorimetry (DSC-60 Plus, M/s Shimadzu Pte Ltd.) instrument.   | 75 |
| Figure 2.17: | UV-Visible spectrophotometer (Model No: V-770, JASCO, Japan) used for all the UV-Vis measurements for this work.                                                                             | 76 |
| Figure 2.18: | Autosorb IQ2 BET instrument for the surface area measurement.                                                                                                                                | 77 |
| Figure 2.19: | Optical tensiometer instrument for contact angle measurements.                                                                                                                               | 77 |

| Figure 2.20: | (a) Shows the step-by-step process for working electrode fabrication; (b) working electrode (WE) after the drop casting on $1 \text{ cm}^2$ graphite paper.                                                                                                                                                                                                                                                                                                                                                                                          | 78 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.21: | Schematic representation of a three-electrode system for<br>electrochemical measurements. In this scheme, graphite and<br>Ag/AgCl is used as a counter and reference electrode, respectively;<br>and as-synthesized electrocatalytic electrodes on graphite paper/Ni<br>foam were used as the working electrode for all the experiments.                                                                                                                                                                                                             | 79 |
| Figure 2.22: | (a) Different electrolytes used during the electrochemical measurements; (b) Ar gas purging of any of the standard electrolyte solutions before using it for electrochemical measurements; (c) represents the photographic images of different electrodes (such as WE, CE, RE) used for all these electrochemical measurements; (d) three-electrode arrangements for different electrochemical measurements; (e) AMETEK (PARSTAT 1000/2000A MC) dual-channel electrochemical workstation, where all the electrochemical measurements were performed. | 80 |
| Figure 3.1:  | Shows (a) X-ray diffraction (XRD) pattern; (b) Raman spectra of rGO, MoNi <sub>4</sub> /MoO <sub>2</sub> , and MoNi <sub>4</sub> /MoO <sub>2</sub> :rGO nanocomposite.                                                                                                                                                                                                                                                                                                                                                                               | 89 |
| Figure 3.2:  | Shows the transmission electron micrographs (TEM) of (a and b) $MoNi_4/MoO_2$ nanorods where $MoNi_4$ nanocrystals are grown on $MoO_2$ nanorods (black dots); (c) high-resolution transmission electron micrographs (HRTEM) and (d) SAED pattern of $MoNi_4/MoO_2$ .                                                                                                                                                                                                                                                                                | 90 |
| Figure 3.3:  | Shows the transmission electron micrographs (TEM) of (a & b) $MoNi_4/MoO_2$ nanorods where $MoNi_4$ nanocrystals are grown on $MoO_2$ nanorods; (c) high-resolution transmission electron micrographs (HRTEM) and; (d) SAED pattern of $MoNi_4/MoO_2$ .                                                                                                                                                                                                                                                                                              | 91 |
| Figure 3.4:  | Illustrates (a) Transmission electron micrograph and (b) SAED pattern of graphene oxide (GO); (c) Transmission electron micrograph (TEM) and (d) SAED of reduced graphene oxide (rGO).                                                                                                                                                                                                                                                                                                                                                               | 92 |
| Figure 3.5:  | Shows the transmission electron micrographs (TEM) of (a, b and c) MoNi <sub>4</sub> /MoO <sub>2</sub> :rGO nanocomposite where MoNi <sub>4</sub> nanocrystals are grown on MoO <sub>2</sub> nanorods are supported by rGO sheets (d) SAED pattern of MoNi <sub>4</sub> /MoO <sub>2</sub> :rGO nanocomposite.                                                                                                                                                                                                                                         | 93 |
| Figure 3.6:  | (a) Polarization curve for HER on Ni foam $(1 \times 1 \text{ cm}^2)$ area; (b) corresponding overpotential $(\eta_{10})$ ; (c) Tafel plots for the various catalysts derived from the LSV; (d) EIS Nyquist plot; (e) corresponding charge transfer resistance ( $R_{ct}$ ), and (f)                                                                                                                                                                                                                                                                 | 97 |

|             | Chronoamperometric (j-t) response for MoNi <sub>4</sub> /MoO <sub>2</sub> :rGO nanocomposite at a constant overpotential of 200 mV.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4.1: | Shows (a) Comparative XRD patterns of 2D $MoS_2$ , $MoNi_4/MoO_2$ nanorod, and $MoS_2$ : $MoNi_4/MoO_2$ nanohybrids; (b) XRD patterns of $MoNi_4/MoO_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109 |
| Figure 4.2: | Shows the FESEM images of (a) $MoNi_4/MoO_2$ nanorods; (b) $MoNi_4$ nanocrystals grown on $MoO_2$ nanorods; (c) a few asgrown nanohybrids of $MoS_2:MoNi_4/MoO_2$ showing homogeneous coating of $MoS_2$ on $MoNi_4/MoO_2$ ; (d) & (e) illustrate the nanohybrids with homogeneous coating, large surface area, vertically oriented 2D flake-like of $MoS_2$ grown on $MoNi_4/MoO_2$ nanorods with flake size of ~ 300-500 nm; (f) vertical 2D $MoS_2$ flakes with a thickness of ~ 2-5 nm with sharp edges, which helps in faster electronic transfer, thus, improve the catalytic activity of the nanocomposite. | 110 |
| Figure 4.3: | Energy dispersive spectroscopy of MoNi <sub>4</sub> /MoO <sub>2</sub> nanorods recorded during SEM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112 |
| Figure 4.4: | (a, b) Bright field transmission electron micrographs of MoNi <sub>4</sub> /MoO <sub>2</sub> nanohybrid with different morphologies; (c) SAED pattern of characteristic MoNi <sub>4</sub> /MoO <sub>2</sub> planes; (d, e, g, h) As-grown 2D MoS <sub>2</sub> on MoNi <sub>4</sub> /MoO <sub>2</sub> nanorods with flaky entangled morphologies; (f) SAED pattern of characteristic MoS <sub>2</sub> :MoNi <sub>4</sub> /MoO <sub>2</sub> ; (i) High-resolution transmission electron micrograph of layered MoS <sub>2</sub> with the (002) plane.                                                                 | 113 |
| Figure 4.5: | Shows (a) a TEM image of a two-dimensional $MoS_2$ coated: $MoNi_4/MoO_2$ nanohybrid; (b) illustrates the scanning transmission electron microscopy images of a similar structure with clearly visible flaky 2D $MoS_2$ coated onto the transition-metal alloy nanorod.                                                                                                                                                                                                                                                                                                                                            | 115 |
| Figure 4.6: | (a) Shows the STEM image of a MoS <sub>2</sub> :MoNi <sub>4</sub> /MoO <sub>2</sub> nanohybrid;<br>(b) illustrates the EDS mapping of the nanohybrid showing<br>comprehensive elemental mapping; (c-f) shows the various<br>elemental distributions obtained in EDS mapping, such as, (c)<br>Molybdenum, (d) Sulfur, (e) Nickel, and (f) Oxygen.                                                                                                                                                                                                                                                                   | 116 |
| Figure 4.7: | Schematic demonstrating step-by-step mechanism of the growth of 2D $MoS_2$ on the $MoNi_4/MoO_2$ nanorod.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 117 |
| Figure 4.8: | Shows the comparative (a) Mo 3d peaks; (b) Ni 2p peaks obtained<br>from X-ray photoelectron spectroscopy of MoNi <sub>4</sub> /MoO <sub>2</sub> ; and<br>MoS <sub>2</sub> :MoNi <sub>4</sub> /MoO <sub>2</sub> hybrid; (c) and (d) illustrate O 1s peak from<br>MoNi <sub>4</sub> /MoO <sub>2</sub> sample and S 2p peak from the hybrid sample;<br>respectively.                                                                                                                                                                                                                                                  | 119 |
| Figure 4.9: | Illustrates (a) the comparative LSV plot of current density versus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121 |

|              | potential curve showing the onset potential for the hydrogen<br>generation for all samples; (b) the correlative Tafel slopes for all<br>samples; (c) the stability test of as-grown hybrid<br>$MoS_2:MoNi_4/MoO_2$ electrocatalysts at constant overpotential at 200<br>mV; (d) A comparable linear sweep voltammetry (LSV) plot<br>depicting the performance of the hybrid electrode before and after<br>the stability test.      |     |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 4.10: | (a-c) Shows the cyclic voltammetry (CV) with different scan rates of 20-100 mV/s for $MoNi_4/MoO_2$ nanorod, $MoS_2$ , and $MoS_2$ :MoNi_4/MoO_2 nanohybrids. (d) Comparative $C_{dl}$ plot as a function of scan rate                                                                                                                                                                                                             | 124 |
| Figure 4.11: | Comparative cyclic voltammetry curves of $MoNi_4/MoO_2$ , $MoS_2$ ,<br>and $MoS_2$ : $MoNi_4/MoO_2$ hybrid structure recorded between -0.6 V<br>to 0.6 V vs. RHE in 1M KOH at a scan rate of 20 mV/s.                                                                                                                                                                                                                              | 125 |
| Figure 4.12: | Comparable EIS data for pristine $MoS_2$ , $MoNi_4/MoO_2$ , and $MoS_2$ : $MoNi_4/MoO_2$ hybrid sample.                                                                                                                                                                                                                                                                                                                            | 127 |
| Figure 5.1:  | Comparative Raman Spectra of all as-synthesized $MoS_2$ samples with the different molar ratios of thiourea                                                                                                                                                                                                                                                                                                                        | 143 |
| Figure 5.2:  | Shows (a) comparative Fourier transform infrared (FTIR) spectra of all pristine and functionalized $MoS_2$ sample; (b) A comparative FTIR spectra of $MoS_2$ -8 and $MoS_2$ -10.                                                                                                                                                                                                                                                   | 144 |
| Figure 5.3:  | High-resolution Mo 3d XPS spectrum of all as-synthesized MoS <sub>2</sub> nanosheets with varying molar ratios of thiourea. The entire XPS spectrum was analyzed by the CasaXPS software. The two characteristic peaks Mo $3d_{5/2}$ and Mo $3d_{3/2}$ located at ~229.17±0.28 eV and ~232.32±0.28 eV correspond to the Mo <sup>4+</sup> oxidation states, while the peak located at ~226.40±0.25 eV to S 2s in MoS <sub>2</sub> . | 145 |
| Figure 5.4:  | $(a_1-e_1)$ Comparative S 2p; and $(a_2-e_2)$ O 1s peak obtained from X-ray photoelectron spectroscopy of as-synthesized MoS <sub>2</sub> nanosheets with varying molar ratios of thiourea.                                                                                                                                                                                                                                        | 147 |
| Figure 5.5:  | Shows a comparative XRD plots of all as-synthesized $MoS_2$ nanosheets with varying molar ratios of thiourea compared with $MoS_2$ (JCPDS # 98-001-8125).                                                                                                                                                                                                                                                                          | 150 |
| Figure 5.6:  | Shows the scanning electron micrographs with different magnifications with scale bars of ~500 nm and ~200 nm, ( $a_1$ and $a_2$ ) MoS <sub>2</sub> -2, ( $b_1$ and $b_2$ ) MoS <sub>2</sub> -4, ( $c_1$ and $c_2$ ) MoS <sub>2</sub> -6, ( $d_1$ and $d_2$ ) MoS <sub>2</sub> -8 and ( $e_1$ and $e_2$ ) MoS <sub>2</sub> -10.                                                                                                     | 151 |
| Figure 5.7:  | <b>Figure 5.7:</b> $(a_1, a_2, a_3, and a_4)$ Shows the TEM, SAED pattern, and HRTEM of MoS <sub>2</sub> -2 with the interlayer d-spacing of 6.1 Å; $(b_1, b_2, b_3, and b_4)$ TEM, SAED pattern, and HRTEM of MoS <sub>2</sub> -4 with the interlayer d-spacing of 6.3 Å; $(c_1, c_2, c_3, and c_4)$ TEM, SAED                                                                                                                    | 152 |

|              | pattern and HRTEM of $MoS_2$ -6 with the interlayer d-spacing of 9.4 Å; (d <sub>1</sub> , d <sub>2</sub> , d <sub>3</sub> , and d <sub>4</sub> ) TEM, SAED pattern and HRTEM of $MoS_2$ -8 with the interlayer d-spacing of 9.4 Å; and (e <sub>1</sub> ,e <sub>2</sub> , e <sub>3</sub> , and e <sub>4</sub> ) TEM, SAED pattern and HRTEM of $MoS_2$ -10 with the interlayer d-spacing of 9.4 Å.                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 5.8:  | Shows (a) the TGA and DSC curves for $MoS_2$ -8; (b) shows the XRD pattern of $MoS_2$ -8 before and after the annealing at 350 °C for 2h in an inert gas atmosphere.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 154 |
| Figure 5.9:  | Shows (a) TEM, (b) SAED pattern; (c & d) HETRM of $MoS_2$ -8 sample after annealing at 350 °C for 2h in an inert gas atmosphere; (f) the IFFT line profile of $MoS_2$ -8 after annealing with the interlayer d-spacing 6.28 Å.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 155 |
| Figure 5.10: | Demonstrates contact angle images of a water droplet on as-<br>synthesised (a) $MoS_2-2$ ; (b) $MoS_2-4$ ; (c) sulfonic acid (- $SO_3H$ )<br>group functionalized $MoS_2$ ( $MoS_2-8$ ); (d) a comparative contact<br>angle data of $MoS_2-2$ ( $69^\circ$ ), $MoS_2-4$ ( $106^\circ$ ), and ( $MoS_2-8$ ( $38^\circ$ );<br>(e) represents the time dependent dynamic contact angle<br>measurement data showing the lowering of contact angle for<br>$MoS_2-8$ , depicting the improvement in hydrophilicity of the<br>sample.                                                                                                                                                                                                                                                                                        | 156 |
| Figure 5.11: | Comparative Mott-Schottky plot of all as-synthesized $MoS_2$ nanosheets with varying molar ratios of thiourea.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 157 |
| Figure 5.12: | Shows (a) Polarization curve of as-synthesized $MoS_2$ nanosheets;<br>(b) the corresponding comparative Tafel plot; (c) Nyquist plots;<br>and (d) the stability of the electrode prepared using $MoS_2$ -8<br>sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 159 |
| Figure 5.13: | (a-e) Show the cyclic voltammetry (CV) with different scan rates of 20-100 mV/s for $MoS_2$ -2 to $MoS_2$ -10; (f) Comparative C <sub>dl</sub> plot as a function of scan rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 163 |
| Figure 5.14: | Shows comparative XPS spectra of before and after the 12h stability data of $MoS_2$ -8 samples depicting $(a_1-a_2) Mo3d$ , $(b_1-b_2) S$ 2p, and $(c_1-c_2) O1s$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 164 |
| Figure 5.15: | Comparative Raman spectra of the same electrode taken before<br>and after the stability test showing the characteristics of<br>$MoS_2$ peaks at the corresponding position ~ 369.7 cm <sup>-1</sup> (E <sup>1</sup> <sub>2g</sub> ) and<br>398.5 cm <sup>-1</sup> (A <sub>1g</sub> ) before the stability test while the same position<br>was found at ~ 372.2 cm <sup>-1</sup> (E <sup>1</sup> <sub>2g</sub> ) and 398.5 cm <sup>-1</sup> (A <sub>1g</sub> ) for the<br>electrode after the stability test. In this regard, it should be<br>mentioned that even after the stability test for12h in 1M KOH<br>solution at 10 mA/cm current density, no significant changes in the<br>bonding and structure were observed for the as-functionalized 2D-<br>MoS <sub>2</sub> nanosheets (MoS <sub>2</sub> -8) catalyst. | 164 |

| Figure 5.16:         | Shows comparative XPS spectra of before and after the 12h stability data of $MoS_2$ -8 samples depicting (a <sub>1</sub> -a <sub>2</sub> ) Mo3d, (b <sub>1</sub> -b <sub>2</sub> ) S 2p, and (c <sub>1</sub> -c <sub>2</sub> ) O1s.                                                                                                                                                                                                                                       | 165 |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 5.17:         | (a) & (b) Show the respective side view and top view of the optimized structure of the $MoS_2$ - $SO_3H$ surface. (c) & (d) shows the side view and top view of the differential charge density plots calculated for the $MoS_2$ - $SO_3H$ surface. The isosurface level is 0.06 e/Å <sup>3</sup> (e) total density of states of the pristine and $SO_3H$ functionalized surface and (f) The orbital resolved partial density of states of the $MoS_2$ + $SO_3H$ surface. | 168 |
| Figure 5.18:         | (a) Band-structure of the $MoS_2$ surface; (b) Band-structure of the $MoS_2+SO_3H$ surface; (c) Vacuum potential calculated for the $MoS_2$ surface; (d) Vacuum potential of the $MoS_2+SO_3H$ surface.                                                                                                                                                                                                                                                                   | 169 |
| Figure 6.1:          | Shows (a) Fourier transform infrared (FTIR) spectrum of $SO_3H/SO_3-MoS_2$ ; (b) Raman spectra of the $SO_3H/SO_3$ - $MoS_2$ nanosheets; (c) & (d) high-resolution S 2p XPS spectrum and O1s XPS spectrum, respectively.                                                                                                                                                                                                                                                  | 188 |
| Figure 6.2:          | <b>Figure 6.2:</b> XRD diffraction pattern of as-synthesized $MoS_2$ (Pristine $MoS_2$ ) with the interlayer spacing (d) of 6.3 Å and $SO_3H/SO_3$ -MoS <sub>2</sub> with the interlayer spacing (d) of 9.4 Å.                                                                                                                                                                                                                                                            | 189 |
| Figure 6.3:          | Shows (a) SEM images demonstrating morphology of $SO_3H/SO_3$<br>functionalized $MoS_2$ nanosheets; (b) the bright-field transmission<br>electron micrograph of as-synthesized $SO_3H/SO_3$ -MoS <sub>2</sub> ; (c)<br>electron diffraction pattern; (d) & (e) illustrate HRTEM depicting<br>the interlayer d-spacing of functionalized 2D-MoS <sub>2</sub> ; (f) line<br>intensity profile of the line drawn in the inverse FFT image.                                   | 190 |
| Figure 6.4:          | Shows (a) Transmission electron micrograph of pristine $2D-MoS_2$ (i.e., P-MoS <sub>2</sub> ); (b) SAED pattern of pristine $2D-MoS_2$ depicts characteristics crystal planes of (110), (013), and (010); (c) the HRTEM images of typical few-layered $2D-MoS_2$ with an interplanar distance of 6.3 Å; (d) line intensity profile of the line drawn in the inverse FFT image (GATAN Inc., USA).                                                                          | 191 |
| <b>Figure. 6.5</b> : | Shows (a) UV-Vis absorbance spectra of $SO_3H/SO_3-MoS_2$ as a function of time in 10 ppm MB dye solution; (b) the representative photographic images were taken for studying the comparative photocatalytic activity of $SO_3H/SO_3-MoS_2$ as a function of time for 10 ppm solution; (c) and (d) illustrates UV-Vis absorbance spectra of $SO_3H/SO_3-MoS_2$ at 5 ppm & 15 ppm MB dye solutions.                                                                        | 193 |
| Figure 6.6:          | UV-Vis absorbance spectra as a function of time of (a) $B-MoS_2$ ;<br>and (b) $P-MoS_2$ in 10 ppm MB dye.                                                                                                                                                                                                                                                                                                                                                                 | 194 |

| Figure 6.7: | Shows (a) the comparative normalized intensity as a function of time illustrating the rate of MB dye degradation at 5, 10 & 15 ppm solution; (b) comparative normalized intensity plots for SO <sub>3</sub> H/SO <sub>3</sub> -MoS <sub>2</sub> , P-MoS <sub>2</sub> , B-MoS <sub>2</sub> and as a function of time illustrating the MB dye degradation rate in 10 ppm dye solution; (c) the comparative rate kinetics plots of photocatalytic dye degradation reactions using the 10 ppm dye solution using SO <sub>3</sub> H/SO <sub>3</sub> -MoS <sub>2</sub> ; (d) demonstrates the rate kinetics plot of photocatalytic MB degradation using SO <sub>3</sub> H/SO <sub>3</sub> -MoS <sub>2</sub> , P-MoS <sub>2</sub> , and B-MoS <sub>2</sub> . | 195 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 6.8: | (a) Illustrates (a) the comparative $N_2$ adsorption/desorption isotherms data of $SO_3H/SO_3$ -MoS <sub>2</sub> and P-MoS <sub>2</sub> obtained during the BET measurement; (b) shows the comparative Tauc plot of P-MoS <sub>2</sub> and SO <sub>3</sub> H/SO <sub>3</sub> -MoS <sub>2</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 197 |
| Figure 6.9: | Schematic illustrating the mechanism of dye degradation using functionalized- $MoS_2$ samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 198 |

| LIST OF TABLES                                                                                                                                                                                                        |     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
| Table 3.1: Lists the electrochemical parameters of various electrocatalysts samples of MoNi <sub>4</sub> /MoO <sub>2</sub> , rGO, and MoNi <sub>4</sub> /MoO <sub>2</sub> :rGO nanocomposite.                         | 98  |  |
| <b>Table 4.1:</b> Lists the comparative electrochemical performances of MoS <sub>2</sub> , MoNi <sub>4</sub> /MoO <sub>2</sub> and MoS <sub>2</sub> :MoNi <sub>4</sub> /MoO <sub>2</sub> nanohybrids electrocatalysts | 122 |  |
| <b>Table 4.2:</b> Lists the fitting parameters from the EIS equivalent circuit model                                                                                                                                  | 128 |  |
| Table 4.3: The comparative HER performances of MoS <sub>2</sub> :MoNi <sub>4</sub> /MoO <sub>2</sub> nanohybrid with various other MoS <sub>2</sub> -based hybrid electrocatalysts reported to date.                  | 128 |  |
| Table 5.1: Lists the Raman peak positions of various MoS <sub>2</sub> samples                                                                                                                                         | 143 |  |
| Table 5.2: Demonstrates XPS peak parameters for all MoS <sub>2</sub> samples                                                                                                                                          | 148 |  |
| <b>Table 5.3:</b> Calculated flat band potential ( $E_{FB}$ ) of as-synthesised pristine and functionalized $MoS_2$                                                                                                   | 157 |  |
| Table 5.4: Lists HER performances of all MoS <sub>2</sub> electrocatalyst in 1M KOH solution                                                                                                                          | 160 |  |
| <b>Table 5.5:</b> EIS fitting parameters from the equivalent circuit model for all the samples                                                                                                                        | 162 |  |
| <b>Table 5.6:</b> The Bader charges calculated for the MoS <sub>2</sub> -SO <sub>3</sub> H surface, for the atoms directly below the -SO <sub>3</sub> H attachment                                                    | 167 |  |

г

| LIST OF ABBREVIATIONS |                                                  |  |
|-----------------------|--------------------------------------------------|--|
| Abbreviation          | Details                                          |  |
| XRD                   | X-ray powder diffraction                         |  |
| FESEM                 | Field-emission scanning electron microscopy      |  |
| TEM                   | Transmission electron microscopy                 |  |
| HRTEM                 | High-resolution transmission electron microscopy |  |
| XPS                   | X-ray photoemission spectroscopy                 |  |
| FTIR                  | Fourier transform infrared spectroscopy          |  |
| UV-Vis                | Ultraviolet-visible spectroscopy                 |  |
| TGA                   | Thermogravimetric analysis                       |  |
| DSC                   | Differential scanning calorimetry                |  |
| BET                   | Brunauer-Emmett-Teller                           |  |
| SAED                  | Selected area electron diffraction               |  |
| EDS                   | Energy dispersive spectroscopy                   |  |
| STEM                  | Scanning transmission electron microscopy        |  |
| LSV                   | Linear sweep voltammetry                         |  |
| EIS                   | Electrochemical impedance spectroscopy           |  |
| CV                    | Cyclic voltammetry                               |  |
| ECSA                  | Electrochemical surface area                     |  |
| M-S                   | Mott-Schottky                                    |  |
| EWS                   | Electrochemical water splitting                  |  |
| HER                   | Hydrogen evolution reaction                      |  |

| CE                             | Counter electrode             |
|--------------------------------|-------------------------------|
| WE                             | Working electrode             |
| RE                             | Reference electrode           |
| RHE                            | Reversible hydrogen electrode |
| КОН                            | Potassium hydroxide           |
| KCl                            | Potassium chloride            |
| GP                             | Graphite paper                |
| AgCl                           | Silver chloride               |
| CFP                            | Carbon fiber paper            |
| HTS                            | Hydrothermal synthesis        |
| CPE                            | Constant phase element        |
| MoO <sub>2</sub>               | Molybdenum dioxide            |
| GO                             | Graphene oxide                |
| rGO                            | Reduced graphene oxide        |
| H <sub>2</sub> SO <sub>4</sub> | Sulfuric acid                 |
| H <sub>3</sub> PO <sub>4</sub> | Phosphoric acid               |
| KMnO <sub>4</sub>              | Potassium permanganate        |
| DI water                       | Deionized water               |
| H <sub>2</sub> O <sub>2</sub>  | Hydrogen peroxide             |
| RT                             | Room temperature              |
| 2D                             | Two dimensional               |
| 1D                             | One dimensional               |
| 3D                             | Three dimensional             |
| NP                             | Nanoplates                    |

| $MoS_3$            | Molybdenum trisulfide               |
|--------------------|-------------------------------------|
| MoS <sub>2</sub>   | Molybdenum disulfide                |
| SO <sub>3</sub> H  | Sulfonic acid                       |
| SO <sub>3</sub>    | Sulfur trioxide                     |
| TMDs               | Transition metal dichalcogenides    |
| CNT                | Carbon nanotube                     |
| DFT                | Density Functional Theory           |
| IFFT               | Inverse Fast Fourier Transition     |
| DOS                | Density of states                   |
| VBM                | Valence band maximum                |
| СВМ                | Conduction band minimum             |
| WF                 | Work function                       |
| VASP               | Vienna Ab initio Simulation Package |
| GGA                | Generalized gradient approximation  |
| PBE                | Perdew-Burke-Ernzerhof              |
| MB                 | Methylene blue                      |
| LED                | Light-emitting diode                |
| B-MoS <sub>2</sub> | Bulk molybdenum disulfide           |
| P-MoS <sub>2</sub> | Pristine molybdenum disulfide       |