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HRTEM of MoS2-2 with the interlayer d-spacing of 6.1 Å; (b1,b2, 

b3, and b4 ) TEM, SAED pattern, and HRTEM of MoS2-4 with the 

interlayer d-spacing of 6.3 Å; (c1,c2, c3, and c4) TEM, SAED 
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pattern and HRTEM  of MoS2-6 with the interlayer d-spacing of 

9.4 Å; (d1, d2, d3, and d4) TEM, SAED pattern and HRTEM of 

MoS2-8 with the interlayer d-spacing of 9.4 Å; and (e1,e2, e3, and 

e4) TEM, SAED pattern and HRTEM of MoS2-10 with the 

interlayer d-spacing of 9.4 Å. 

Figure 5.8: 
Shows (a) the TGA and DSC curves for MoS2 -8; (b) shows the 

XRD pattern of MoS2-8 before and after the annealing at 350 ᵒC 

for 2h in an inert gas atmosphere. 
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Figure 5.9: 
Shows (a) TEM, (b) SAED pattern; (c & d) HETRM of MoS2-8 

sample after annealing at 350 ᵒC for 2h in an inert gas atmosphere; 

(f) the IFFT line profile of MoS2-8 after annealing with the 

interlayer d-spacing 6.28 Å.  
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Figure 5.10:   
Demonstrates contact angle images of a water droplet on as-

synthesised (a) MoS2-2; (b) MoS2-4; (c) sulfonic acid (-SO3H) 

group functionalized MoS2 (MoS2-8); (d) a comparative contact 

angle data of MoS2-2 (69
o
) , MoS2-4 ( 106º),  and (MoS2-8 (38

o
); 

(e) represents the time dependent dynamic contact angle 

measurement data showing the lowering of contact angle for 

MoS2-8, depicting the improvement in hydrophilicity of the 

sample. 
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Figure 5.11:   
Comparative Mott-Schottky plot of all as-synthesized MoS2 

nanosheets with varying molar ratios of thiourea.  
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Figure 5.12: 
Shows (a) Polarization curve of as-synthesized MoS2 nanosheets; 

(b) the corresponding comparative Tafel plot; (c) Nyquist plots; 

and (d) the stability of the electrode prepared using MoS2-8 

sample. 
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Figure 5.13:  
(a-e) Show the cyclic voltammetry (CV) with different scan rates 

of 20-100 mV/s for MoS2 -2 to MoS2-10; (f) Comparative Cdl plot 

as a function of scan rate. 
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Figure 5.14: 
Shows comparative XPS spectra of before and after the 12h 

stability data of MoS2-8 samples depicting (a1-a2) Mo3d, (b1-b2) S 

2p, and (c1-c2) O1s. 
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Figure 5.15:   
Comparative Raman spectra of the same electrode taken before 

and after the stability test showing the characteristics of 

MoS2  peaks at the corresponding position ~ 369.7 cm
-1

 (E
1

2g) and 

398.5 cm
-1

 (A1g) before the stability test while the same position 

was found at ~ 372.2 cm
-1

 (E
1
2g) and 398.5 cm

-1
 (A1g) for the 

electrode after the stability test. In this regard, it should be 

mentioned that even after the stability test for12h in 1M KOH 

solution at 10 mA/cm current density, no significant changes in the 

bonding and structure were observed for the as-functionalized 2D-

MoS2 nanosheets (MoS2-8) catalyst. 
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Figure 5.16: 
Shows comparative XPS spectra of before and after the 12h 

stability data of MoS2-8 samples depicting (a1-a2) Mo3d, (b1-b2) S 

2p, and (c1-c2) O1s. 
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Figure 5.17: 
(a) & (b) Show the respective side view and top view of the 

optimized structure of the MoS2-SO3H surface. (c) & (d) shows the 

side view and top view of the differential charge density plots 

calculated for the MoS2-SO3H surface. The isosurface level is 0.06 

e/Å
3
(e) total density of states of the pristine and SO3H 

functionalized surface and (f) The orbital resolved partial density 

of states of the MoS2+SO3H surface. 
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Figure 5.18: 
(a) Band-structure of the MoS2 surface;  (b) Band-structure of the 

MoS2+SO3H surface; (c) Vacuum potential calculated for the 

MoS2 surface; (d) Vacuum potential of the MoS2+SO3H surface. 
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Figure 6.1: 
Shows (a) Fourier transform infrared (FTIR) spectrum of 

SO3H/SO3-MoS2; (b) Raman spectra of the SO3H/SO3
 

-MoS2 

nanosheets; (c) & (d) high-resolution S 2p XPS spectrum and O1s 

XPS spectrum, respectively. 
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Figure 6.2: 
Figure 6.2: XRD diffraction pattern of as-synthesized MoS2 

(Pristine MoS2) with the interlayer spacing (d) of 6.3 Å and 

SO3H/SO3-MoS2 with the interlayer spacing (d) of 9.4 Å. 
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Figure 6.3: 
Shows (a) SEM images demonstrating morphology of SO3H/SO3

 

functionalized MoS2 nanosheets; (b) the bright-field transmission 

electron micrograph of as-synthesized SO3H/SO3-MoS2; (c) 

electron diffraction pattern; (d) & (e) illustrate HRTEM depicting 

the interlayer d-spacing of functionalized 2D-MoS2; (f) line 

intensity profile of the line drawn in the inverse FFT image.   
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Figure 6.4: 
Shows (a) Transmission electron micrograph of pristine 2D-MoS2 

(i.e., P-MoS2); (b) SAED pattern of pristine 2D-MoS2 depicts 

characteristics crystal planes of (110), (013), and (010); (c) the 

HRTEM images of typical few-layered 2D-MoS2 with an 

interplanar distance of 6.3 Å; (d) line intensity profile of the line 

drawn in the inverse FFT image (GATAN Inc., USA).  
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Figure. 6.5: 
Shows (a) UV-Vis absorbance spectra of SO3H/SO3-MoS2 as a 

function of time in 10 ppm MB dye solution; (b) the representative 

photographic images were taken for studying the comparative 

photocatalytic activity of SO3H/SO3-MoS2 as a function of time 

for 10 ppm solution; (c) and (d) illustrates UV-Vis absorbance 

spectra of SO3H/SO3-MoS2 at 5 ppm & 15 ppm MB dye solutions.   
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Figure 6.6:   UV-Vis absorbance spectra as a function of time of (a) B-MoS2; 

and (b) P-MoS2 in 10 ppm MB dye. 
194 
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Figure 6.7: 
Shows (a) the comparative normalized intensity as a function of 

time illustrating the rate of MB dye degradation at 5, 10 & 15 ppm 

solution; (b) comparative normalized intensity plots for SO3H/SO3 

-MoS2, P-MoS2, B-MoS2 and as a function of time illustrating the 

MB dye degradation rate in 10 ppm dye solution; (c) the 

comparative rate kinetics plots of photocatalytic dye degradation 

reactions using the 10 ppm dye solution using SO3H/SO3-MoS2; 

(d) demonstrates the rate kinetics plot of photocatalytic MB 

degradation using SO3H/ SO3-MoS2, P-MoS2, and B-MoS2. 
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Figure 6.8: 
(a) Illustrates (a) the comparative N2 adsorption/desorption 

isotherms data of SO3H/SO3-MoS2 and P-MoS2 obtained during 

the BET measurement; (b) shows the comparative Tauc plot of P-

MoS2 and SO3H/SO3-MoS2. 
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Figure 6.9: 
Schematic illustrating the mechanism of dye degradation using 

functionalized-MoS2 samples. 
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