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PREFACE 

 

Economic development, improvement in living standards and globalization lead to raise the 

demand for energy. Consequently, to meet the increasing demand, fossil based energy 

reserves are over exploited causing global warming. Buildings (commercial and residential) 

have played a major role in further deepening the crisis of global warming. More than one 

third of the final energy consumption comes from building sector. The shift in global fuel 

use in buildings is partially due to changing end‐use consumption, with space cooling and 

electrical appliance energy growth leading electricity demand growth in buildings. Space 

cooling and appliances and other plug loads are the fastest‐growing building end uses; 

however, only space cooling has grown in energy intensity per unit floor area. The demand 

for space cooling become more intensive in countries having hot and humid climate or/and 

the countries lying in equatorial/tropical environment like India. Enhancing building energy 

efficiency through latent heat storage of the Phase Change Material will play a vital role in 

improving indoor thermal behavior of the building envelope. Consequently, it will improve 

the indoor thermal comfort, reduces the energy use for space cooling, and promotes the use 

of renewable sources of energy. PCM can be incorporated in the building envelope in many 

ways. One of the simplest and effective method of integrating PCM directly in building 

material is Macroencapsulation. This method not only improves the indoor thermal 

behaviour of the buildings, but also reduces the cooling load without or little compromising 

with the mechanical strength of the building structure. 

Following research gaps were identified in studies conducted so far, for improving the 

indoor thermal behaviour of the building by integrating the PCM in the building element (a) 

the effects of integrating Macroencapsulated PCM in the building envelope of the tropical 
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environment like India have not been reported yet (b) Yearly/monthly or seasonal effect of 

embedding PCM in the building envelope on the indoor thermal behavior need to be 

addressed (c) It is required to identify the impact on cooling load in heavyweight 

constructed buildings due to incorporation of Macroencapsulated PCM in building 

envelope (d) It is needed to evaluate the thermal energy storage performance of a low cost 

commercially available PCM to be embedded in the building envelope.  

Based on these research gaps, the aim of this study was framed. The main aim of this 

study is to evaluate the indoor thermal behavior of the building envelope outfitted with 

Phase Change Material in the real outdoor tropical environment of India. Also, this study 

examines various thermal energy storage parameters of the PCM to assure the best possible 

performance when embedded in the building envelope.  

To achieve the above mentioned aim, an experimental setup of two similar building 

structures (called as cubicles), one is with macroencapsulated PCM and the other is without 

macroencapsulated PCM, was developed. Based on the short duration and long duration 

field testing a comparative study was prepared, to evaluate the effect of embedding PCM in 

the building envelope on the indoor thermal behavior of the building in the tropical climate 

of India. Additionally, the commercially available low cost PCM used in the experiment was 

thermally characterized to analyze the thermal energy storage parameters like thermal 

conductivity, latent heat storage parameters, thermal stability, thermal reliability, heating 

and cooling behavior, and leak proof performance. 

The thesis comprises of five chapters: Chapter 1- Introduction and background, 

Chapter-2 Literature review, Chapter 3- Method and materials, Chapter 4- Result and 
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discussion, and Chapter 5- Conclusion and recommendation for future work. Chapter 1 

focuses on the need and concepts of thermal energy storage in buildings. A detailed 

discussion on the thermo-physical properties of PCM, methods of integrating the PCM in 

the building envelope, and principal of operation of PCM, when integrated in the building 

envelope was also done. In chapter 2, a detailed and robust literature review on indirect 

methods of integration of the PCM in the building envelope was conducted. Based on this 

literature review, a suitable method of integrating the PCM in the building was identified for 

experimentation work. Chapter 3 presents the methodology opted to conduct the 

experiments. This chapter also elaborates about the material used and experimental set up in 

detail. Chapter 4 presents the results of all the experiments and discusses about the 

parameters which affects the indoor thermal comfort of the building. Chapter 5 presents the 

concluding remarks and recommendation for future work. 

The scope of this study is to develop energy efficient building envelope by 

integrating the PCM with the building element. This study will be beneficial in improving 

the indoor thermal behavior of the building by using thermal energy storage technique 

through Phase Change Material. The improvement in the indoor thermal comfort will reduce 

the usage of electrical appliances and consequently results in energy savings.  

  

 

 

 

 

 


