TABLE OF CONTENTS

Contents	Page No.
Certificate	ii-iv
Acknowledgment	v
Table of contents	vi-x
List of figures	xi-xiv
List of tables	xv-xvii
Nomenclature	xviii-xxi
Abstract	xxii-xxiv
1. Introduction	1-12
1.1 Overview	1
1.2 Motivation	1
1.3 Biomass and its Sources	3
1.4 Biomass Pretreatment	5
1.5 Pyrolysis	8
1.6 Contributions	9
1.7 Thesis Structure	11
2. Literature Review	13-30
2.1 Overview	13
2.2 Biomass Distribution and Selection	13

2.3 Torrefaction	18
2.3.1 Influence of operating parameters on torrefaction	19
2.3.2 Impact of torrefaction on product distribution and physicochemical properties	21
2.4 Pyrolysis	23
2.4.1 Influence of operating parameters on pyrolysis	24
2.5 Response Surface Methodology (RSM)	25
2.6 Energy and Exergy analysis	27
2.7 Research Gap	28
3. Torrefaction of pigeon pea stalk and eucalyptus along with their	
statistical analysis and process optimization using RSM 3.1 Overview	
3.2 Materials and Methods	
3.2.1 Material selection	31
3.2.2 Experimental setup and procedure	32
3.2.3 Experimental design	34
3.3 CCD and statistical analysis	35
3.4 ANOVA analysis	38
3.5 Optimization	43
3.6 3-D plots for individual and interactive influence of operating	45
parameters on responses 3.7 Experimental validation of optimum condition	51
3.8 Summary	51

Table of Contents

4. Effect of torrefaction on physicochemical properties of biomass and characterization of torrefaction by-products	53-96
4.1 Overview	53
4.2 Characterization methods	53
4.3 Calculation method opted for estimating kinetic parameters	57
4.4 Effect of operating parameters on the product distribution during the torrefaction of biomass	59
4.5 Effect of torrefaction on HHV and proximate analysis of biomass	62
4.6 Elemental analysis for raw and torrefied biomass	66
4.7 Effect of torrefaction on biomass composition, moisture reabsorption and bulk density	68
4.8 Effect of torrefaction on energy density, compaction, flowability and combustibility of biomass	72
4.9 Effect of torrefaction on FTIR analysis of pigeon pea stalk and eucalyptus	77
4.10 Effect of torrefaction on morphology of pigeon pea stalk and eucalyptus	80
4.11 Thermogravimetric analysis of raw and torrefied biomass	82
4.12 Effect of torrefaction on kinetic parameters for the pyrolysis of raw and torrefied biomass	86
4.13 Characteristics of liquid product (condensable gases) obtained during the torrefaction of biomass	92
4.14 Characteristics of the torgas (NCG) obtained during the torrefaction of biomass	95
4.15 Summary	96
5. Pyrolysis: Optimization and characterization	97-136
5.1 Overview	97
5.2 Materials and Methods	98
5.2.1 Material selection	98

5.2.2 Experimental design and statistical analysis	98
5.2.3 Experimental procedure	99
5.2.4 Characterization methods	99
5.3 CCD and statistical analysis	99
5.4 ANOVA analysis	102
5.5 Influence of operating parameters on bio-oil yield	106
5.6 Optimization and 3-D plots	109
5.7 Experimental validation for optimized process parameters	116
5.8 Product distribution and their characterization	116
5.8.1 Product distribution for the pyrolysis of raw and torrefied biomass	117
5.8.2 Effect of torrefaction on the physicochemical properties of bio-oil	119
5.8.3 Effect of torrefaction on the FTIR analysis of bio-oil	123
5.8.4 Effect of torrefaction on the GC-MS analysis of bio-oil	127
5.8.5 Effect of torrefaction on the properties of bio-char	130
5.8.6 Effect of torrefaction on NCG (pyrolytic gas)	134
5.9 Summary	136
6. Energy and exergy analysis for the torrefaction and pyrolysis of	137-168
6.1 Overview	137
6.2 Materials and methods	137
6.2.1 Material selection	137
6.2.2 Experimental procedure	138

	6.2.3 I	Energy analysis	138-142
	6.2.4 I	Exergy analysis	142-146
6.3 I	Energy a and euca	and exergy analysis for the torrefaction of pigeon pea stalk lyptus	146
6.3.1	l Influ of N	ence of torrefaction temperature on energy and exergy value CG (torgas) and liquid product	146
	6.3.2	Influence of torrefaction temperature on energy and exergy value of torrefied biomass	151
	6.3.3	Influence of torrefaction temperature on total exergy at inlet, at outlet and its irreversibility	153
	6.3.4	Influence of torrefaction temperature on exergy and irreversibility efficiency	154
	6.3.5	Energy recovery for torrefaction	155
6.4 Energy and exergy analysis for the pyrolysis of raw and torrefied biomass (pigeon pea stalk and eucalyptus)		157	
	6.4.1	Influence of pyrolysis temperature on the energy and exergy value of pyrolytic gas and bio-char	157
	6.4.2	Influence of pyrolysis temperature on energy and exergy value of bio-oil	162
	6.4.3	Influence of pyrolysis temperature on total exergy at inlet, at outlet and its irreversibility	164
6.4	Energy	recovery for pyrolysis	165
7. (Conclus	ions and scope for future work	169-174
7.1 (Conclusi	ions	169
7.2 I	Future so	cope of work	172
Refe	erences		175-198
List of Publications		199	

List of Figures

Fig. No.	Title	Page No.
Fig. 1.1	Different sources of biomass (Adopted from Bar-On et al., 2018)	4
Fig. 1.2	Effect of torrefaction on raw biomass	7
Fig. 2.1	Inefficient and efficient utilization of agricultural residue	14
Fig. 3.1	Pictorial view of the experimental setup	32
Fig. 3.2	Schematic of the experimental setup	32
Fig. 3.3	Experimental verses predicted values for the responses of a) HHV,	35
	and b) energy yield of torrefied pigeon pea stalk	
Fig. 3.4	Experimental verses predicted values for the responses of a) HHV,	36
	and b) energy yield of torrefied eucalyptus	
Fig. 3.5	Response surface 3D plots for the HHV of torrefied pigeon pea	47
	stalk showing the effect of (a) temperature and residence time, (b)	
	temperature and heating rate, (c) residence time and heating rate	
Fig. 3.6	Response surface 3D plots for the HHV of torrefied eucalyptus	48
	showing the effect of (a) temperature and residence time, (b)	
	temperature and heating rate, (c) residence time and heating rate	
Fig. 3.7	Response surface 3D plots for the energy yield of torrefied pigeon	49
	pea stalk showing the effect of (a) temperature and residence time,	
	(b) temperature and heating rate, (c) residence time and heating	
	rate	
Fig. 3.8	Response surface 3D plots for the energy yield of torrefied	50
	eucalyptus showing the effect of (a) temperature and residence	
	time, (b) temperature and heating rate, (c) residence time and	
	heating rate	
Fig. 4.1	Product distribution during the torrefaction of (a) pigeon pea stalk	60
	and (b) eucalyptus, at different operating parameters	

Fig. 4.2	Effect of torrefaction on proximate analysis of pigeon pea stalk	63
	and eucalyptus	
Fig. 4.3	Van Krevelen diagram for raw and torrefied biomass, and Indian coal	68
Fig. 4.4	Moisture reabsorption for raw and torrefied biomass over the	70
Fig. 4.5	Effect of torrefaction on HR value and its recommended range for	73
Fig. 4.6	Effect of torrefaction on FR value and its recommended range for	74
Fig. 4.7	Effect of torrefaction on CI value and its recommended range for	76
Fig 4.8	Infrared spectra of raw and torrefied pigeon pea stalk	77
Fig. 1.0	Infrared spectra of raw and torrefied eucalyntus	77
Fig. 4.10	SEM images of (a) RPS (2000X), (b) TPSO (2000X), (c) RPS	80
	(5000X) and (d) TPSO (5000X)	
Fig. 4.11	SEM images of (a) REC (2000X), (b) TECO (2000X), (c) REC (5000X) and TECO (5000X)	81
Fig. 4.12	Experimental curves of, (a) TGA, (b) DTG for raw and torrefied pigeon pea stalk	82-83
Fig. 4.13	Experimental curves of, (a) TGA, (b) DTG for raw and torrefied eucalyptus	83-84
Fig. 4.14	Plot obtained by Arrhenius method for hemicellulose present in pigeon pea stalk	88
Fig. 4.15	Plot obtained by Arrhenius method for cellulose present in pigeon pea stalk	88
Fig. 4.16	Plot obtained by Arrhenius method for lignin present in pigeon pea stalk	89
Fig. 4.17	Plot obtained by Arrhenius method for hemicellulose present in	89

eucalyptus

Fig. 4.18	Plot obtained by Arrhenius method for cellulose present in eucalyptus	90
Fig. 4.19	Plot obtained by Arrhenius method for lignin present in eucalyptus	90
Fig. 4.20	Relative yield (%) of compound groups present in the liquid product	94
Fig. 4.21	Composition variation of torgas (N_2 free basis) with severity of torrefaction	95
Fig. 5.1	Comparison of experimental and predicted values of the responses for bio-oil yield of (a) torrefied pigeon pea stalk and (b) torrefied eucalyptus	100
Fig. 5.2	3-D plots for the combined effect of (a) temperature and residence time, (b) temperature and heating rate, (c) temperature and nitrogen sweeping rate, (d) residence time and heating rate, (e) residence time and nitrogen sweeping rate, and (f) heating rate and nitrogen sweeping rate, on bio-oil yield of torrefied pigeon pea stalk	111-112
Fig. 5.3	3-D plots for the combined effect of (a) temperature and residence time, (b) temperature and heating rate, (c) temperature and nitrogen sweeping rate, (d) residence time and heating rate, (e) residence time and nitrogen sweeping rate, and (f) heating rate and nitrogen sweeping rate, on bio-oil yield of torrefied eucalyptus	112-113
Fig. 5.4	Product distribution for the pyrolysis of raw and torrefied biomass	118
Fig. 5.5	Effect of torrefaction on the FTIR spectra of the bio-oil from pigeon pea stalk	101
Fig. 5.6	Effect of torrefaction on the FTIR spectra of the bio-oil from eucalyptus	124
Fig. 5.7	Effect of torrefaction on the Relative yield (%) of various compound derivatives of present in the bio-oil	128
Fig. 5.8	FTIR spectra of bio-char from the pyrolysis of raw and torrefied pigeon pea stalk	133

Fig. 5.9	FTIR spectra of bio-char from the pyrolysis of raw and torrefied eucalyptus	133
Fig. 5.10	Comparison of pyrolytic gas (NCG) evolving from the pyrolysis of raw and torrefied biomass	134
Fig. 6.1	Energy and exergy flows for both torrefaction and pyrolysis system	139
Fig. 6.2	Variation in chemical energy of torgas (NCG) components with temperature	147
Fig. 6.3	Variation in chemical energy of torgas (NCG) components with temperature	148
Fig. 6.4	Total energy and exergy variation of torgas with temperature	149
Fig. 6.5	Influence of temperature on total exergy of torrefaction products	150
Fig. 6.6	Influence of temperature on total irreversibilities, total exergy in and	153
	out during torrefaction process	
Fig. 6.7	Effect of temperature on exergy efficiency and irreversibility of	154
	torrefaction products	
Fig. 6.8	Chemical energy of the components for the pyrolytic gas during the	159
	pyrolysis of raw and torrefied pigeon pea stalk	
Fig. 6.9	Chemical energy of the components for the pyrolytic gas during the	159
	pyrolysis of raw and torrefied eucalyptus	
Fig. 6.10	Physical energy of the components for the pyrolytic gas during the	160
	pyrolysis of raw and torrefied pigeon pea stalk	
Fig. 6.11	Physical energy of the components for the pyrolytic gas during the	160
	pyrolysis of raw and torrefied eucalyptus	
Fig. 6.12	Effect of pyrolysis temperature on the exergy of its products	163
Fig. 6.13	Impact of pyrolysis temperature on total exergy in and out along with	164
	total irreversibilities of the pyrolysis system	

List of Tables

Table No.	Title	Page No.
Table 1.1	Types of pyrolysis with operating parameters and favourable	9
	products (Basu, 2013; Bertero and Sedran, 2015)	
Table 2.1	Properties of feedstock from various agricultural residue and	17-18
	woody biomass	
Table 2.2	Process optimization for torrefaction and pyrolysis using RSM	26
Table 3.1	Experimental responses for the torrefaction process of pigeon pea	37
	stalk	
Table 3.2	Experimental responses for the torrefaction process of eucalyptus	38
Table 3.3	ANOVA for the responses of the reduced quadratic models for the	39
	torrefaction of pigeon pea stalk	
Table 3.4	ANOVA for the responses of the reduced quadratic models for the	40
	torrefaction of eucalyptus	
Table 3.5	Optimization condition (constraints)	44
Table 3.6	HHV and energy yield at optimized condition and corresponding	44
	experimental values	
Table 4.1	Variation of proximate analysis, HHV and bulk density of	62
	torrefied biomass with the severity of torrefaction	
Table 4.2	Elemental analysis for raw and torrefied biomass	63
Table 4.3	Effect of torrefaction on the fiber analysis of pigeon pea stalk and	69
	eucalyptus	
Table 4.4	Energy density, compactibility, flowability and combustion	72
	indices for raw and torrefied biomass (pigeon pea stalk and	
	eucalyptus)	

Table 4.5	Position vibration, in cm ⁻¹ , of the most representative peaks found	79
	in the infrared analysis of raw and torrefied biomass (pigeon pea	
	stalk and eucalyptus)	
Table 4.6	Kinetic parameters for the pseudo-components of raw and	91
	torrefied pigeon pea stalk	
Table 4.7	Kinetic parameters for the pseudo-components of raw and	92
	torrefied eucalyptus	
Table 4.8	HHV and water content of the liquid product obtained during	94
	torrefaction	
Table 5.1	Experimental matrix with responses for the pyrolysis of torrefied	101
	pigeon pea stalk	
Table 5.2	Experimental matrix with responses for the pyrolysis of torrefied	102
	eucalyptus	
Table 5.3	ANOVA of reduced quadratic model for pyrolysis of torrefied pigeon	103
Table 5.4	ANOVA of reduced quadratic model for pyrolysis of torrefied	103
	eucalyptus	
Table 5.5	Constraints provided during process optimization	109
Table 5.6	Optimum operating conditions with predicted and experimental	110
	values	
Table 5.7	Properties of bio-oil obtained from raw and torrefied biomass (pigeon	120
	pea stalk and eucalyptus)	
Table 5.8	Position vibration, in cm-1, of the most representative peaks found	125
	during infrared analysis for bio-oil	
Table 5.9	HHV, elemental and proximate analysis of bio-char from the	132
	pyrolysis of raw and torrefied biomass (pigeon pea stalk and	
	eucalyptus)	
Table 6.1	Standard specific enthalpy, entropy, HHV and standard chemical	140
	exergy of NCG (Liu et al., 2014; Wang et al., 2016)	
Table 6.2	Value of the coefficients for the constant pressure specific heat of	143
	NCG (Peters et al., 2014)	

Table 6.3	Total energy and exergy of raw biomass and torrefaction products	149
Table 6.4	The value of β associated with exergy calculation	151
Table 6.5	Energy recovery in products of biomass torrefaction	156
Table 6.6	Total energy and exergy of raw biomass, torrefied biomass and their pyrolysis products	161
Table 6.7	Energy recovery in the pyrolysis products form raw and torrefied biomass	166