Chapter 6

Overall conclusions and recommendations

The important conclusions made out of this research work and recommendations for future study are summarized in this chapter.

6.1 OVERALL CONCLUSIONS

- Addition of AEEA into aqueous MAE + AEEA and EAE + AEEA blends resulted in increased equilibrium CO₂ solubility into these amine blends.
- Maximum equilibrium CO₂ solubility in aqueous MAE + AEEA and EAE + AEEA blends had occurred 0.944 and 1.033 mol CO₂/mol amine, respectively, at 298.15 K, 20.27 kPa of CO₂ partial pressure, 10 weight % total concentration with 0.30 weight fraction AEEA in the amine MAE + AEEA and EAE + AEEA blends.
- Equilibrium CO₂ solubility in aqueous MAE + AEEA and EAE + AEEA blends had occurred 0.632 and 0.748 mol CO₂/mol amine, respectively, at 313.15 K, 15.20 kPa of CO₂ partial pressure, 30 weight % total concentration with 0.30 weight fraction AEEA in the amine MAE + AEEA and EAE + AEEA blends.
- Modified Kent-Eisenberg model with newly introduced correction factor (*F_k*) for MAE+AEEA+H₂O+CO₂ system was useful for estimation of equilibrium CO₂ solubility with 4.17 % AAD.

- Semi-empirical modified Kent-Eisenberg model and empirical model predicted equilibrium CO_2 solubility data for aqueous EAE + AEEA blend were in good agreement with experimental solubility data with 2.56 % and 0.45 % AAD, respectively.
- Heat of CO₂ absorption using Gibbs-Helmholtz equation was determined as -73.4 kJ/mol for MAE+AEEA+H₂O+ CO₂ system.
- Heat of CO₂ absorption for aqueous EAE+AEEA blend was -72.2 kJ/mol that was 15.13 % less heat of CO₂ absorption than MEA solution resulting less energy requirement for CO₂ capture in compared to MEA.
- The aqueous blend of EAE and AEEA had 48.18 % more cyclic capacity than aqueous MEA.
- Initial change of CO₂ solubility during absorption in 30 wt. % (21wt. % + 9 wt. %) aqueous EAE + AEEA was 21.1 % more than in 30 wt. MEA solution.
- Rate of change of CO₂ solubility during desorption in 30 wt. % (21wt. % + 9 wt.
 %) aqueous EAE + AEEA was almost double of 30 wt. MEA solution.
- Density of aqueous EAE and aqueous EAE + AEEA blend (at fixed EAE/AEEA weight ratio) decreased by increasing amount of amine in the mixture but aqueous AEEA showed increased density by increasing concentration of AEEA.
- Density of aqueous EAE + AEEA blend was correlated to a new empirical model and AAD % for this model was 0.02.
- Density of CO₂-loaded solution increased by increasing CO₂ loading (α) and decreased by increasing temperature.

- Viscosity of all mixtures increased by increasing amine concentration and decreased by increasing temperature of samples.
- Experimental viscosity data were correlated to newly proposed models and average absolute deviation (AAD) % was 1.51, 2.02, and 2.88 for viscosity of EAE + H₂O,
 AEEA + H₂O, and EAE + AEEA + H₂O, respectively.
- Viscosity of CO₂ loaded solution was decreased by increasing temperature and slightly increased by increasing CO₂ loading (α).
- CO₂ loaded viscosity data was correlated with Wieland model and AAD % for this fitting was 2.85.
- A new empirical model was also proposed to calculate CO₂ loaded viscosity for aqueous EAE + AEEA and AAD % was 4.74.
- Diffusivity of CO₂ into the aqueous EAE + AEEA blend was increased by increasing temperature.

6.2 RECOMMENDATIONS FOR FUTURE WORKS

On the basis of the findings and conclusions of this study, some works for research in the future can be recommended as follows:

- Experimental reaction rate kinetics study should be performed for aqueous MAE + AEEA and EAE + AEEA blends.
- Desorption study for aqueous MAE + AEEA blend should be done.
- Heat of CO₂ absorption for aqueous MAE + AEEA and EAE + AEEA blends should be measured experimentally.
- Mass transfer coefficients should be measured.
- CO₂ removal efficiency measurement for aqueous MAE + AEEA and EAE + AEEA blends should be carried out in the continuous process.
- Effects of the presence of NO_x and SO_x in the flue gases on CO₂ removal efficiency should be studied.
- Study for degradation and corrosion should be performed.
- A pilot plant study should be carried out using these absorbents for CO₂ capture from flue gases
- Some new amine blends also should be studied for post-combustion CO₂ capture from flue gases.