Table of contents

<u>Title</u>		Page No.
Thesis cert	ificate	ii
Acknowled	lgements	V
Table of co	ontents	viii
List of Figures		xiii
List of Tab	les	xviii
List of abb	reviation and symbols	XX
Preface		xxii
Chapter 1	Introduction	1
	1.1 CO ₂ EMISSION	1
	1.2 CONSEQUENCES OF CO ₂ EMISSIONS ON THE	3
	ENVIRONMENT	
	1.3 CO ₂ CAPTURE TECHNOLOGIES	4
	1.3.1 Post-combustion CO ₂ capture	4
	1.3.2 Pre-combustion CO ₂ capture	4
	1.3.3 Oxy-fuel combustion	5
	1.4 CO ₂ SEPARATION TECHNIQUES	5
	1.4.1 Absorption technique	5
	1.4.2 Adsorption technique	6
	1.4.3 Membrane separation technique	6
	1.4.4 Cryogenic distillation technique	7
	1.5 POST – COMBUSTION CO ₂ CAPTURE USING	7
	CHEMICAL ABSORPTION TECHNIQUE	
	1.6 CO ₂ ABSORPTION USING AMINE-BASED	9
	ABSORBENTS	
	1.6.1 Literature review related to CO ₂ absorption into 2-	10
	(methylamino)ethanol (MAE) and (2-(ethylamino)ethanol	
	(EAE)	
	1.6.2 Literature review related to CO ₂ absorption into	13

	aminoethylethanolamine (AEEA)	
	1.6.3 CO ₂ solubility models	
	1.6.4 Physicochemical properties of absorbents	17
	1.7 RESEARCH GAP	21
	1.8 OBJECTIVES FOR PRESENT RESEARCH WORK	22
Chapter 2	Equilibrium CO ₂ solubility in the aqueous mixture of MAE	23
	and AEEA: Experimental study and development of	
	modified thermodynamic model	
	ABSTRACT	23
	2.1 INTRODUCTION	24
	2.2 EXPERIMENTAL SECTION	27
	2.2.1 Materials	27
	2.2.2 Solution preparation method	28
	2.2.3 CO ₂ absorption experiment	28
	2.3 MODIFIED KENT-EISENBERG MODEL FOR	30
	MAE+AEEA+H ₂ O+CO ₂ SYSTEM	
	2.3.1 Reaction mechanism	30
	2.3.2 Equilibrium constants	32
	2.3.3 Mass balance, charge balance and CO_2 balance	35
	2.4 RESULTS AND DISCUSSIONS	36
	2.4.1 Experimental set up and procedure validation	36
	$2.4.2 \text{ CO}_2$ loading	37
	2.4.2.1 Effect of fraction of AEEA in the blend	37
	2.4.2.2 Effect of total concentration of amine	39
	blend	
	2.4.2.3 Effect of partial pressure of CO ₂	41
	2.4.2.4 Effect of temperature	42
	2.4.3 Modified Kent-Eisenberg model with newly	43
	introduced correction factor (F_k) for	
	MAE+AEEA+H ₂ O+CO ₂ system	
	2.4.4 Heat of absorption measurement	46
	2.5 CONCLUSIONS	47
Chapter 3	Thermodynamic modeling and new experimental CO ₂	48

solubility into aqueous EAE and AEEA blend, heat of	
absorption, cyclic absorption capacity and desorption study	
for post-combustion CO ₂ capture	
ABSTRACT	48
3.1 INTRODUCTION	49
3.2 EXPERIMENTAL SECTION	52
3.2.1 Materials	52
3.2.2 CO ₂ absorption study	54
3.2.3 CO ₂ desorption study	55
3.2.4 Heat of absorption measurement	57
3.3 KENT-EISENBERG MODEL FOR EQUILIBRIUM CO ₂	57
SOLUBILITY INTO AQUEOUS AMINE BLEND	
3.3.1 Reaction mechanism	57
3.3.2 Equilibrium constants	59
3.3.3 Mass balance, charge balance and CO_2 balance	60
3.4 RESULTS AND DISCUSSIONS	61
3.4.1 Experimental set-up validation	61
3.4.2 Equilibrium CO ₂ solubility	61
3.4.3 Semi-empirical Kent-Eisenberg thermodynamic	67
model	
3.4.4 Empirical model for equilibrium CO ₂ solubility into	70
aqueous EAE + AEEA blend	
3.4.5 Heat of CO_2 absorption (ΔH_{abs})	72
3.4.6 CO_2 desorption study	74
3.4.7 Rate of change of initial CO ₂ solubility	75
3.5 CONCLUSIONS	77
Viscosity, density, and derived thermodynamic properties of	79
aqueous 2-(ethylamino)ethanol (EAE), aqueous	
aminoethylethanolamine (AEEA), and its mixture for post-	
combustion CO ₂ capture	
ABSTRACT	79
4.1 INTRODUCTION	80
4.2 EXPERIMENTAL SECTION	82
	for post-combustion CO ₂ capture ABSTRACT 3.1 INTRODUCTION 3.2 EXPERIMENTAL SECTION 3.2.1 Materials 3.2.2 CO ₂ absorption study 3.2.3 CO ₂ desorption study 3.2.4 Heat of absorption measurement 3.3 KENT-EISENBERG MODEL FOR EQUILIBRIUM CO ₂ SOLUBILITY INTO AQUEOUS AMINE BLEND 3.3.1 Reaction mechanism 3.3.2 Equilibrium constants 3.3.3 Mass balance, charge balance and CO ₂ balance 3.4 RESULTS AND DISCUSSIONS 3.4.1 Experimental set-up validation 3.4.2 Equilibrium CO ₂ solubility 3.4.3 Semi-empirical Kent-Eisenberg thermodynamic model 3.4.4 Empirical model for equilibrium CO ₂ solubility into aqueous EAE + AEEA blend 3.4.5 Heat of CO ₂ absorption (ΔH _{abs}) 3.4.6 CO ₂ desorption study 3.4.7 Rate of change of initial CO ₂ solubility 3.5 CONCLUSIONS Viscosity, density, and derived thermodynamic properties of aqueous 2-(ethylamino)ethanol (EAE), aqueous aminoethylethanolamine (AEEA), and its mixture for post- combustion CO ₂ capture ABSTRACT 4.1 INTRODUCTION

	4.2.1 Cher	nicals		82
	4.2.2 Solu	tion preparation meth	od	82
	4.2.3 Visc	osity measurement		83
	4.2.4 Dens	sity measurement		84
	4.3 RESULTS A	ND DISCUSSIONS		84
	4.3.1 Val	idation of used app	paratus and experimental	84
	procedure			
	4.3.2 Visc	osity		86
	4.3.2	2.1 Viscosity of aqu	ueous EAE and aqueous	86
	AEEA			
	4.3.2	2.2 Viscosity of EAE	+ AEEA + H ₂ O blend	93
	4.3.3 Dens	sity		97
	4.3.3	3.1 Density of aqu	eous EAE and aqueous	97
	AEEA			
	4.3.2	3.2 Density of EAE +	- AEEA + H_2O blend	101
	4.3.4 Isob	aric thermal expansion	on coefficient	104
	4.3.5 Deriv	ved thermodynamic p	properties for activation of	106
	viscous flow			
	4.4 CONCLUSIO	DNS		108
Chapter 5	Experimental da	ata and modeling for	r density and viscosity of	110
	carbon dioxide	(CO ₂)-loaded and -	unloaded aqueous blend	
	of 2-(eth	ylamino)ethanol	(EAE) and	
	aminoethylethar	nolamine (AEEA) f	for post-combustion CO ₂	
	capture			
	ABSTRACT			110
	5.1 INTRODUCT	ΓΙΟΝ		111
	5.2 EXPERIMEN	NTAL SECTION		113
	5.2.1 Che	emicals and -unloaded	d sample preparation	113
	5.2.2 CO	2-loaded sample prep	aration	114
	5.2.3 Der	nsity measurement		115
	5.2.4 Vis	cosity measurement		115
	5.3 RESULTS A	ND DISCUSSIONS		115
	5.3.1 Der	nsity		115

	5.3.1.1 Density of CO ₂ -unloaded aqueous EAE +	115
	AEEA	
	5.3.1.2 Density of CO_2 -loaded aqueous EAE +	121
	AEEA	
	5.3.2 Viscosity	125
	5.3.2.1 Viscosity of CO ₂ -unloaded aqueous EAE + AEEA	125
	5.3.2.2 Viscosity of CO ₂ -loaded aqueous EAE +	128
	AEEA	
	5.3.3 Diffusivity of CO_2 into aqueous EAE + AEEA	131
	blend	
	5.4 CONCLUSIONS	132
Chapter 6	Overall conclusions and recommendations	134
	6.1 OVERALL CONCLUSIONS	134
	6.2 RECOMMENDATIONS FOR FUTURE WORKS	137
	References	138
	Appendix - A	159
	Appendix- B	171
	Publications	172

List of Figures

<u>Figure No.</u>	<u>Caption</u>	Page No.
Figure 1.1	Contributions of different major source of energy in CO_2	2
	emission in 2018 (a) World, and (b) India (IEA, 2019)	
Figure 2.1	Schematic diagram of experimental set up for absorption	29
Figure 2.2	Effect of weight fraction of AEEA in the aqueous	37
	(MAE+AEEA) blend mixture at T = 303.15 K, $p_{CO2} = 15.2$	
	kPa, and $C_T = 10$ wt. %	
Figure 2.3	Effect of total concentration of blend on (a) CO_2 loading, and	40
	(b) CO ₂ absorption capacity, at T = 303.15 K, $p_{CO2} = 15.2$ kPa,	
	and $w_{AEEA} = 0.30$	
Figure 2.4	Effect of partial pressure of CO_2 on CO_2 loading for T:	41
	303.15 K; a 313.15 K, respectively, $C_T = 30$ wt.%, and w_{AEEA}	
	= 0.30	
Figure 2.5	Effect of temperature on CO_2 loading for p CO_2 : \blacktriangle 15.2 kPa;	43
	20.67kPa, respectively, and w_{AEEA} = 0.30 and (a) C_{T} = 10 wt.	
	%, and (b) $C_T = 30$ wt. %	
Figure 2.6	Experimental (denoted by symbols) and model predicted	45
	(denoted by lines) plot (p_{CO2} vs α) for aqueous MAE + AEEA	
	blend for, T: \blacktriangle 303.15 K; \blacksquare 313.15 K, respectively, C _T = 30	
	weight %, and $w_{AEEA} = 0.30$	
Figure 2.7	Model predicted CO_2 solubility vs. experimental CO_2	45
	solubility data	
Figure 3.1	Experimental set-up for CO ₂ desorption study	56
Figure 3.2	Effect of AEEA weight fraction (w_{AEEA}) on the CO ₂ solubility	64
	at constant 298.15 K temperature and constant 20.27 kPa	
	partial pressure of CO_2 gas for aqueous EAE and AEEA blend:	
	Experimental (Exp.) and model (Eq. 3.35) predicted data	
Figure 3.3	Effect of total concentration (C_T) of the aqueous EAE and	65
	AEEA blend with 0.30 $w_{\mbox{\scriptsize AEEA}}$ and at 15.20 kPa partial pressure	
	of CO_2 on the CO_2 (a) solubility, and (b) absorption capacity:	

Experimental (Exp.) and model (Eq. 3.35) predicted data

- Figure 3.4 Effect of CO₂ partial pressure on the CO₂ solubility for the 30 66 wt. % (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend: Experimental (Exp.) and model (Eq. 3.35) predicted data.
- Figure 3.5 Effect of temperature on the CO₂ solubility for the 30 wt. % 67 (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend of constant concentration: Experimental (Exp.) and model (Eq. 3.35) predicted data
- Figure 3.6Parity plot of experimental and calculated (by Eq. 3.40) CO272solubility for the aqueous EAE and AEEA blend
- Figure 3.7Plot of $\ln(p_{CO_2})$ vs. (1/T) for the 30 wt. % (21 wt. % + 9 wt.73%) aqueous EAE and AEEA blend
- Figure 3.8 Cyclic CO₂ solubility and cyclic absorption capacity of 30 75 wt.% MEA solution and aqueous EAE and AEEA blend with 0.30 w_{AEEA}
- Figure 3.9 CO₂ solubility vs. time plot of 30 wt. % MEA and 30 wt. % 76 (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend during (a) CO₂ absorption, and (b) CO₂ desorption
- Figure 4.1 Viscosity versus temperature of EAE + H₂O for different 91 concentration of EAE in terms of weight fraction (w₁) of EAE, w₁: ◆ 0.05; 0.10; ▲ 0.15; × 0.20; * 0.25; 0.30; − calculated values with Eq. 4.3
- Figure 4.2 Viscosity versus temperature of AEEA + H₂O for different 91 concentration of AEEA in terms of weight fraction (w₁) of AEEA, w₁: ◆ 0.05; 0.10; ▲ 0.15; × 0.20; * 0.25; 0.30; calculated values with Eq. 4.3
- **Figure 4.3** Viscosity versus temperature of EAE + AEEA + H₂O for 96 concentration in weight fraction $(w_1 + w_2)$ of EAE + AEEA , $(w_1 + w_2)$: • 0.10; • 0.20; • 0.30; - calculated values with Eq. 4.4 with different weight ratio of EAE/AEEA (w_1/w_2) for (a) $(w_1/w_2) = 9/1$, (b) $(w_1/w_2) = 8/2$, and (c) $(w_1/w_2) = 7/3$
- Figure 4.4Density versus temperature of $EAE + H_2O$ for different100concentration of EAE in terms of weight fraction (w_1) of EAE,

 w_1 : • 0.05; • 0.10; • 0.15; × 0.20; * 0.25; • 0.30; - calculated values with Eq. 4.9

- Figure 4.5 Density versus temperature of AEEA + H₂O for different 100 concentration of AEEA in terms of weight fraction (w₁) of AEEA, w₁: ◆ 0.05; 0.10; ▲ 0.15; × 0.20; * 0.25; 0.30; calculated values with Eq. 4.9
- **Figure 4.6** Density versus temperature of EAE + AEEA + H₂O for 102 concentration in weight fraction $(w_1 + w_2)$ of EAE + AEEA , $(w_1 + w_2)$: • 0.10; • 0.20; • 0.30; - calculated values with Eq. 4.11 with different weight ratio of EAE/AEEA (w_1/w_2) for (a) $(w_1/w_2) = 9/1$, (b) $(w_1/w_2) = 8/2$, and (c) $(w_1/w_2) = 7/3$
- Figure 5.1 Density of aqueous EAE+AEEA blend versus temperature for 116 different concentration (in weight fraction) of EAE+AEEA, w: for (◆) 0.10; (■) 0.20; (▲) 0.30; and lines (−) for calculated values with Eq. 5.5
- Figure 5.2 Relative deviations of experimental and calculated density data 120 of CO₂-unloaded aqueous EAE +AEEA blend from Eq. 5.6 as a function of (a) temperature and (b) concentration (EAE+AEEA weight fraction)
- Figure 5.3 Experimental and calculated density data of CO₂-loaded 124 aqueous EAE +AEEA blend as a function of temperature for different (EAE+AEEA) concentration and CO₂ loading (α); (a) w = 0.10 and α: for (♦) 0.27; (■) 0.52; (▲) 0.77; and (×) 0.981; (b) w = 0.20 and α: for (♦) 0.155; (■) 0.502; (▲) 0.657; and (×) 0.754; (c) w = 0.30 and α: for (♦) 0.129; (■) 0.464; (▲) 0.644; and (×) 0.76; and lines (−) for calculated values with Eq. 5.7
- Figure 5.4 Viscosity of aqueous EAE+AEEA blend versus temperature 125 for different concentration (in weight fraction) of EAE+AEEA, w: for (◆) 0.10; (■) 0.20; (▲) 0.30; and lines (−) for calculated values with Eq. 5.8
- **Figure 5.5** Relative deviations of experimental and calculated viscosity 127 data of CO₂-unloaded aqueous EAE +AEEA blend from Eq.

5.9 as a function of (a) temperature and (b) concentration (EAE+AEEA weight fraction)

- **Figure 5.6** Experimental and calculated viscosity data of CO₂-loaded 129 aqueous EAE +AEEA blend as a function of CO₂ loading (α) at different temperature; T: for (•) 293.15 K; (•) 298.15 K; and (*) 303.15 K; (+) 308.15 K; (-) 313.15 K; (•) 318.15 K; (×) 323.15 K; and lines (--) for calculated values with Eq. 5.10. For different (EAE+AEEA) concentration in weight fraction with (w_1/w_2) = 7/3 (**a**) w = 0.10, (**b**) w = 0.20, and (**c**) w = 0.30
- Figure 5.7 Comparison of relative deviations of experimental and 130 calculated viscosity data of CO₂-loaded aqueous EAE +AEEA blend from Eq. 5.10 (▲) and Eq. 5.11 (♦) as a function of (a) temperature, (b) CO₂ loading, and (c) concentration (EAE+AEEA weight fraction)
- Figure 5.8 Diffusivity of CO₂ into the aqueous EAE + AEEA blend 132 versus temperature for different concentration (in weight fraction) of EAE+AEEA, w: for (◆) 0.10; (■) 0.20; and (▲) 0.30
- Figure A1 Comparision of experimental data and literature data of CO₂ 159 solubility (mol CO₂/mol amine) for 30 wt. % aqueous MEA at 313.15 K temperature and CO₂ partial pressure of 12.16, 15.20, and 20.27 kPa
- Figure A2 Effect of AEEA weight fraction (w_{AEEA}) on the CO₂ solubility 160 at 298.15 K temperature and 20.27 kPa partial pressure of CO₂ gas for the EAE and AEEA blend, lines () are for polynomial trend line
- Figure A3 Effect of total concentration (C_T) of the aqueous EAE and 161 AEEA blend with 0.30 w_{AEEA} and at 15.20 kPa partial pressure of CO₂ on the CO₂ solubility, lines (-) are for polynomial trend line
- Figure A4Effect of CO2 partial pressure on the CO2 solubility for the 30162wt. % (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend,

lines (-) are for polynomial trend line

- Figure A5 Effect of temperature on the CO₂ solubility for the 30 wt. % 163 (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend, lines () are for polynomial trend line
- Figure A6 CO₂ solubility vs. time plot of 30 wt. % MEA and 30 wt. % 164 (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend during CO₂ absorption, lines (-) are for linear trend line
- Figure A7 CO₂ solubility vs. time plot of 30 wt. % MEA and 30 wt. % 165 (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend during CO₂ desorption, lines (-) are for linear trend line
- Figure A8 Viscosity of EAE + H₂O versus weight fraction of EAE (w₁) at 166 different temperature (T), T: 293.15 K; ▲ 303.15 K; dashed lines are for corresponding available literature data (Gao et al., 2017 a)
- Figure A9 Density of AEEA + H₂O versus mole fraction of AEEA (x₁) at 167 different temperature (T), T: 298.15 K; ▲ 313.15 K; 328.15 K; dashed lines are for corresponding available literature data (Stec et al., 2014)
- Figure A10 Density of aqueous EAE+AEEA blend versus temperature for 168 different concentration (in weight fraction) of EAE+AEEA, w: for (◆) 0.10; (■) 0.20; (▲) 0.30; and lines (−) for calculated values with Eq. 5.6
- Figure A11 Relative deviations of experimental and calculated density data 169 of CO₂-loaded aqueous EAE +AEEA blend from Eq. 5.7 as a function of (a) temperature, (b) CO₂ loading, and (c) concentration (EAE+AEEA weight fraction)
- Figure A12 Viscosity of aqueous EAE+AEEA blend versus temperature 170 for different concentration (in weight fraction) of EAE+AEEA, w: for (♦) 0.10; (■) 0.20; (▲) 0.30; and lines (−) for calculated values with Eq. 5.9

List of Tables

<u>Table No.</u>	<u>Captions</u>	<u>Page No.</u>
Table 1.1	CO ₂ emissions data (IEA, 2020)	2
Table 1.2	Literature related to CO ₂ solubility into aqueous MAE and aqueous EAE	11
Table 1.3	Literature related to CO_2 solubility into aqueous AEEA and its blends	14
Table 1.4	Literature related to physicochemical properties of MAE, EAE, and AEEA	19
Table 2.1	Chemical sample information	27
Table 2.2	Values of coefficients for temperature dependency of Henry's law constant and equilibrium constants	34
Table 2.3	CO ₂ solubility data in aqueous blend of MAE+AEEA with standard uncertainties ^a	38
Table 2.4	Values of coefficients of correction factor F_k for Equation 2.31	44
Table 3.1	Information of used chemicals	53
Table 3.2	Equilibrium CO_2 solubility data of aqueous EAE and	62
	AEEA blend at atmospheric pressure	
Table 3.3	Values of coefficients for temperature dependent equilibrium constants	68
Table 3.4	Regressed coefficients of Eq. (3.38) for estimated reaction equilibrium constants	69
Table 3.5	Values of coefficients of model (Eq. 3.40) to calculate equilibrium CO_2 solubility of the aqueous EAE and AEEA blend	71
Table 4.1	Details of used chemicals in this study	83
Table 4.2	Experimental data of density and viscosity of EAE and AEEA at $T = (293.15-323.15)$ K and 101.325 kPa pressure and comparison with data available in the literature [*]	85
Table 4.3	Viscosity (μ), density (ρ), and excess molar volume (V ^E), of aqueous EAE and aqueous AEEA at T = (293.15-	87

333.15) K and 101.325 kPa pressure ^a

- **Table 4.4**Fitting parameters of Eq. 4.2 in the range of T = (293.1; 89)333.15) K and for different weight fraction of amine (w_1)
- **Table 4.5**Standard deviation^a (s.d.) (mPa.s) for experimental data of92viscosity of binary mixture and model predicted viscositydata in the range of T = (293.15-333.15) K and fordifferent weight fraction of amine (w1)
- **Table 4.6**Viscosity (μ), density (ρ), and excess molar volume (V^E),94of EAE + AEEA + H2O blend at T = (293.15-333.15) Kand 101.325 kPa pressure ^a
- **Table 4.7**Coefficients of Redlich-Kister equation (Eq. 4.8) for99calculation of density of aqueous EAE and aqueous AEEA
- **Table 4.8** Regressed coefficients of Eq. 4.11 to calculate density of103 $EAE + AEEA + H_2O$
- **Table 4.9** The values of isobaric thermal expansion coefficient for105 $EAE+H_2O$, $AEEA+H_2O$, and $EAE + AEEA + H_2O$ at T =(293.15-333.15) K and 101.325 kPa pressure
- **Table 4.10**Activation molar enthalpy, entropy, and Gibbs free energy107at 298.15 K for activation of viscous flow of EAE $+H_2O$,AEEA $+H_2O$, and EAE + AEEA + H₂O blend
- **Table 5.1**Details of used chemicals in this work114
- **Table 5.2**Density, excess volume, viscosity, and diffusivity of117aqueous EAE + AEEA blend at T = (293.15-323.15) K and101.325 kPa pressure^a
- **Table 5.3** Regressed parameters $(c_0, c_1, \text{ and } c_2)$ of Eq. 5.5 and Eq. 5.8119at different temperature
- **Table 5.4**Density and viscosity of CO_2 -loaded aqueous EAE + 121AEEA blend at T = (293.15-323.15) K and 101.325 kPapressure^a
- **Table B1**Values of fitting parameters of Eq. 4.13171