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1MPZ 1-methylpiperazine  

3DMA1P 3-dimethyl amino-1-propanol  

ADD Absolute average deviation 

AEEA Aminoethylethanolamine  

AMP 2-amino-2-methyl-1-propanol  

ARD Absolute relative deviation  

BAE 2-(butylamino)ethanol  

BZA Benzylamine  

DEA Diethanolamine  

DEAE Diethylaminoethanol  

DETA Diethylenetriamine 

DIPA Diisopropanolamine 

DMAP 4-Dimethylaminopyridine  

EAE 2-(ethylamino)ethanol  
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IPAE 2-(isopropylamino)ethanol  

IPCC Intergovernmental panel on climate change 

MAE 2-(methylamino)ethanol  
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TSA Thermal swing adsorption 

Symbols   

  CO2 Solubility (                 ) 

   Isobaric thermal expansion coefficient 

CT total concentration  

    Activation molar Gibbs free energy  

    Activation molar enthalpy 

      Heat of absorption  

h Plank constant (6.626 *10 
-23 

J.s), 

Ki i
th
 Equilibrium constant 

µ Viscosity  

   Avogadro number 

    
 Partial pressure of CO2 gas 

ρ Density  
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    activation molar entropy  
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o
C) 
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   Molar volume 

w Concentration in weight fraction 

wt. % Weight % 

Subscripts  

calc Calculated data 
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Preface 

Greenhouse gases are the main cause of global warming. Carbon dioxide (CO2) 

contributes to a major fraction of greenhouse gases. CO2 emitted into the atmosphere 

by the combustion of fossil fuels during industrial activities. CO2 capture from the flue 

gases is important due to environmental concern. The post-combustion absorption 

technique is most matured and useful for CO2 capture containing low partial pressure 

CO2. The aqueous monoethanolamine (MEA)) has been shown good CO2 absorption 

capability with fast reaction kinetics and considered as an industrial benchmark 

solution for CO2 absorption.  But its high heat of CO2 absorption is a major drawback 

because of the high energy requirement for regeneration of CO2-loaded solution. In 

order to minimize demerits and utilize the advantages of individual single amines, 

amine blends are used. However, it is still a matter of research to find out a solvent that 

has high CO2 solubility, a faster CO2 absorption-desorption rate, and low heat of 

absorption as well. 

2-(methylamino)ethanol (MAE) and 2-(ethylamino)ethanol (EAE) produce less stable 

carbamate, with fast reaction kinetics towards CO2, have better favorable properties of 

CO2 absorption, and reported as a better alternative to MEA in the literature. 

Aminoethylethanolamine (AEEA) is a di-amine containing one primary and one 

secondary amine. Its absorption capacity and absorption rate are high. AEEA was used 

as an activator for secondary and tertiary amines in the literature. 

So, the research objectives were decided to study of aqueous MAE + AEEA and 

aqueous EAE + AEEA blend for post-combustion CO2 capture. The complete research 

work of this thesis can be summarized in different chapters as follows: 

Chapter 1 explains the CO2 emission scenario and its consequences on the 

environment based on fossil-fuel combustion. Various technologies and techniques for 
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CO2 capture are discussed. Post-combustion CO2 capture using chemical absorption 

technique based on the amine solvents are described. Literature reviews related to CO2 

absorption into MAE, EAE, and AEEA are given in detail. Literature reviews about 

CO2 solubility models and physicochemical properties of amine absorbents are also 

depicted briefly. The literature gaps have been identified and included in this chapter. 

The objectives of the present work also have been provided in this chapter. 

Chapter 2 describes CO2 solubility data of aqueous (MAE + AEEA) blend at different 

operating conditions. Modified Kent-Eisenberg (K-E) thermodynamic model has been 

given for CO2 solubility in aqueous (MAE + AEEA) blend. Determination of heat of 

CO2 absorption for aqueous (MAE + AEEA) blend using CO2 solubility data has also 

been provided. 

Chapter 3 explains experimental CO2 solubility measurement and modified K-E model 

for aqueous (EAE + AEEA) blend. The development of an empirical model for CO2 

solubility prediction has been also shown. The heat of CO2 absorption for the aqueous 

(EAE + AEEA) blend has been discussed based on Gibbs-Helmholtz equation. The 

initial rate of change of CO2 solubility with respect to time during absorption as well as 

desorption has been discussed. Cyclic capacity of aqueous (EAE + AEEA) blend and 

its comparison with cyclic capacity of aqueous monoethanolamine (MEA) are 

discussed. 

Chapter 4 describes the viscosity and density of EAE + H2O, AEEA + H2O, and EAE 

+ AEEA + H2O. Excess molar volume has been calculated for mixtures in the range of 

293.15 K to 333.15 K and correlated to the Redlich-Kister model. Experimental 

viscosity and density data have been correlated to the newly developed empirical 

models. In order to extend the knowledge of molecular interaction, derived 

thermodynamic properties have been studied. 
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Chapter 5 illustrates the density and viscosity of the CO2-loaded and –unloaded 

aqueous (EAE+AEEA) blend. Excess volume has been calculated in the temperature 

range of 293.15 to 323.15 K for –unloaded aqueous (EAE+AEEA) blend and fitted to 

the newly developed empirical model. Newly proposed empirical correlations have 

been given to predict the density and viscosity of the CO2-loaded and –unloaded 

aqueous (EAE+AEEA) blend. CO2 diffusivity into the aqueous EAE+AEEA blend has 

been discussed. 

Chapter 6 contains the overall conclusions of this research work and recommendations 

for future work. On the basis of this research work, it has been concluded that the 

aqueous (EAE+AEEA) blend has a good potential for post-combustion CO2 absorption. 


