Dedicated to all of my family members,

My supervisor,

My all teachers and my all friends

It is certified that the work contained in the thesis titled "Study of aqueous blends of (2-(methylamino)ethanol + aminoethylethanolamine) and (2-(ethylamino)ethanol + aminoehtylethanolamine) for post-combustion CO_2 capture" by "Diwakar Pandey" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Prof. M. K. Mondal

(Supervisor)

Professor, Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi221005 India

DECLARATION BY THE CANDIDATE

I, *Diwakar Pandey*, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of *Prof. M. K. Mondal* from July-2016 to July-2021, at the *Department of Chemical Engineering & Technology*, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not wilfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place: Varanasi

(Diwakar Pandey)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my knowledge.

Prof. M.K. Mondal

(Supervisor)

Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 India Prof. (Mrs.) V. L. Yadav

(Head of Department)

Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 India Title of the Thesis: Study of aqueous blends of (2-(methylamino)ethanol + aminoethylethanolamine) and (2-(ethylamino)ethanol + aminoehtylethanolamine) for post-combustion CO₂ capture

Name of the Student: Diwakar Pandey

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "*Doctor of Philosophy*".

Date:

Place: Varanasi

(Diwakar Pandey)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENTS

I would like to express my deep sense of gratitude and indebtedness to my respected supervisor, **Prof. M. K. Mondal**, Department of Chemical Engineering and Technology, IIT (BHU) Varanasi for his unique guidance, expertise, encouragement and wisdom to improve my research, academic writing and presentation skills throughout the whole long dissertation work. He has given me the freedom to execute the set of experiments the way I wanted and provided instruments and materials for experiments. His thoughtful and valuable reviews, constructive criticism and tireless review of all the manuscripts have immensely helped me to improve the work. Also, he has always supported and strengthened me in many direct and indirect ways. I gratify him a lot of gratitude for showing confidence in my work.

I would also like to thank **Prof. P. K. Mishra**, Department of Chemical Engineering and Technology, IIT (BHU) Varanasi, and **Prof. K. D. Mandal**, Department of Chemistry, IIT (BHU) Varanasi for the giving valuable suggestions during my research progress evaluation committee meetings.

I am also grateful to **Prof. V. L. Yadav**, Head, Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), for providing necessary facilities and encouragement during the research work.

I express my sincere thanks to all DPGC and RPEC members for their direct and indirect motivation and support from different point of views during my research work at IIT (BHU) Varanasi.

I would like to express my gratitude and regards to Emeritus Prof. S. N. Upadhyay, Prof. A. S. K. Sinha, Prof. Pradeep Ahuja, Prof. B. N. Rai, Prof. R. S. Singh, Prof. Hiralal Pramanik, Dr. A. C. Mohan, Dr. Bhawna Verma, Dr. Ankur Verma, Dr. Manoj Kumar, Dr. Ravi. P. Jaiswal, Dr. Debdip Bhandary, and Dr. Abir Ghosh for their cooperations and suggestions. Also, I express my sincere thanks to all other faculty members of the Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University) for their help and co-operation for completion of this research work.

Further, I would like to thank to Mr. Rajesh Kumar, Senior Technician and Mr. Dayaram Singh Yadav, Ex. Senior Technician (Retired), Chemical and Instrumental analysis Laboratory. I also thank Mr. Arvind Kumar, Sr. Technical Superintendent and Mr. Varun Kumar from Computer Lab for providing me help. Mr. Ramadhar Singh and Mr. Anand Kumar Dwivedi, Department of Chemical Engineering provided me valuable support and encouragement during this course. I am very thankful to all technical and office staff of Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU) Varanasi.

I would like to thanks to my friends, colleagues, seniors and juniors. Dr. Devendra Kumar Singh, Dr. Shailesh Kumar, Dr. Mahendra Ram, Dr. Renu Bala, Dr. Goutam Kishore Gupta, Mr. Anuj Kumar Prajapati, Mr. Manish Kannojia, Mr. Vivek Kumar Patel, Dr. Bineeta Singh, Dr. Satyansh Singh, Mr. Deoashish Panjiara, Dr. Ravi Sonwani, Dr. Mohit Kumar, Mr. Kedar Sahoo, Mr. Shivesh Sabbarwal, Mr. Rishi Ram, Ms. Neha, Dr. Vasu Chaudhary, Ms. Priti Yadav, Mr. Shubham Mishra, Mr. Abhay Pratap Singh, Ms. Swati Suman, Ms. Nidhi Agnihotri, Mr. Asheesh Gautam, Ms. Shweta Singh, Mr. Praksham Chaudhary, Mr. Manish Mani Tripathi, Mr. Akshay Raj, Mr. Santosh Yadav, Mr. Suarabh Raatan Singh, Mr. Ashish Kumar Mishra, Mr. Vivek Singh, Mr. Devendra Kumar Mishra and Mr. Abhishek Singh, and to all of those, who also have always helped me in all condition and stood by my side at my ups and downs time.

The whole credit of my achievements goes to my family. I would like to thanks to my all family members for keeping faith in my talent and hard-work, and for providing help and motivation me to do higher studies.

I am grateful to the Ministry of Education, formerly the Ministry of Human Resource Development, Government of India, and Indian Institute of Technology (Banaras Hindu University) Varanasi for financial and necessary supports to the research work.

I want to thank to all of those who helped me directly and indirectly.

Date:

Varanasi

(Diwakar Pandey)

Table of contents

<u>Title</u>		Page No.
Thesis cert	ificate	ii
Acknowled	lgements	V
Table of co	ontents	viii
List of Figu	ures	xiii
List of Tab	les	xviii
List of abb	reviation and symbols	XX
Preface		xxii
Chapter 1	Introduction	1
	1.1 CO ₂ EMISSION	1
	1.2 CONSEQUENCES OF CO ₂ EMISSIONS ON THE	3
	ENVIRONMENT	
	1.3 CO ₂ CAPTURE TECHNOLOGIES	4
	1.3.1 Post-combustion CO ₂ capture	4
	1.3.2 Pre-combustion CO ₂ capture	4
	1.3.3 Oxy-fuel combustion	5
	1.4 CO ₂ SEPARATION TECHNIQUES	5
	1.4.1 Absorption technique	5
	1.4.2 Adsorption technique	6
	1.4.3 Membrane separation technique	6
	1.4.4 Cryogenic distillation technique	7
	1.5 POST – COMBUSTION CO ₂ CAPTURE USING	7
	CHEMICAL ABSORPTION TECHNIQUE	
	1.6 CO ₂ ABSORPTION USING AMINE-BASED	9
	ABSORBENTS	
	1.6.1 Literature review related to CO ₂ absorption into 2-	10
	(methylamino)ethanol (MAE) and (2-(ethylamino)ethanol	
	(EAE)	
	1.6.2 Literature review related to CO ₂ absorption into	13

	aminoethylethanolamine (AEEA)		
	1.6.3 CO ₂ solubility models	16	
	1.6.4 Physicochemical properties of absorbents	17	
	1.7 RESEARCH GAP	21	
	1.8 OBJECTIVES FOR PRESENT RESEARCH WORK	22	
Chapter 2	Equilibrium CO ₂ solubility in the aqueous mixture of MAE	23	
	and AEEA: Experimental study and development of		
	modified thermodynamic model		
	ABSTRACT	23	
	2.1 INTRODUCTION	24	
	2.2 EXPERIMENTAL SECTION	27	
	2.2.1 Materials	27	
	2.2.2 Solution preparation method	28	
	2.2.3 CO ₂ absorption experiment	28	
	2.3 MODIFIED KENT-EISENBERG MODEL FOR	30	
	MAE+AEEA+H ₂ O+CO ₂ SYSTEM		
	2.3.1 Reaction mechanism	30	
	2.3.2 Equilibrium constants	32	
	2.3.3 Mass balance, charge balance and CO_2 balance	35	
	2.4 RESULTS AND DISCUSSIONS	36	
	2.4.1 Experimental set up and procedure validation	36	
	$2.4.2 \text{ CO}_2$ loading	37	
	2.4.2.1 Effect of fraction of AEEA in the blend	37	
	2.4.2.2 Effect of total concentration of amine	39	
	blend		
	2.4.2.3 Effect of partial pressure of CO ₂	41	
	2.4.2.4 Effect of temperature	42	
	2.4.3 Modified Kent-Eisenberg model with newly	43	
	introduced correction factor (F_k) for		
	MAE+AEEA+H ₂ O+CO ₂ system		
	2.4.4 Heat of absorption measurement	46	
	2.5 CONCLUSIONS	47	
Chapter 3	Thermodynamic modeling and new experimental CO ₂	48	

solubility into aqueous EAE and AEEA blend, heat of		
absorption, cyclic absorption capacity and desorption study		
for post-combustion CO ₂ capture		
ABSTRACT	48	
3.1 INTRODUCTION	49	
3.2 EXPERIMENTAL SECTION	52	
3.2.1 Materials	52	
3.2.2 CO ₂ absorption study	54	
3.2.3 CO ₂ desorption study	55	
3.2.4 Heat of absorption measurement	57	
3.3 KENT-EISENBERG MODEL FOR EQUILIBRIUM CO ₂	57	
SOLUBILITY INTO AQUEOUS AMINE BLEND		
3.3.1 Reaction mechanism	57	
3.3.2 Equilibrium constants	59	
3.3.3 Mass balance, charge balance and CO_2 balance	60	
3.4 RESULTS AND DISCUSSIONS	61	
3.4.1 Experimental set-up validation	61	
3.4.2 Equilibrium CO ₂ solubility	61	
3.4.3 Semi-empirical Kent-Eisenberg thermodynamic	67	
model		
3.4.4 Empirical model for equilibrium CO ₂ solubility into	70	
aqueous EAE + AEEA blend		
3.4.5 Heat of CO_2 absorption (ΔH_{abs})	72	
3.4.6 CO_2 desorption study	74	
3.4.7 Rate of change of initial CO ₂ solubility	75	
3.5 CONCLUSIONS	77	
Viscosity, density, and derived thermodynamic properties of	79	
aqueous 2-(ethylamino)ethanol (EAE), aqueous		
aminoethylethanolamine (AEEA), and its mixture for post-		
combustion CO ₂ capture		
ABSTRACT	79	
4.1 INTRODUCTION	80	
4.2 EXPERIMENTAL SECTION	82	
	for post-combustion CO ₂ capture ABSTRACT 3.1 INTRODUCTION 3.2 EXPERIMENTAL SECTION 3.2.1 Materials 3.2.2 CO ₂ absorption study 3.2.3 CO ₂ desorption study 3.2.4 Heat of absorption measurement 3.3 KENT-EISENBERG MODEL FOR EQUILIBRIUM CO ₂ SOLUBILITY INTO AQUEOUS AMINE BLEND 3.3.1 Reaction mechanism 3.3.2 Equilibrium constants 3.3.3 Mass balance, charge balance and CO ₂ balance 3.4 RESULTS AND DISCUSSIONS 3.4.1 Experimental set-up validation 3.4.2 Equilibrium CO ₂ solubility 3.4.3 Semi-empirical Kent-Eisenberg thermodynamic model 3.4.4 Empirical model for equilibrium CO ₂ solubility into aqueous EAE + AEEA blend 3.4.5 Heat of CO ₂ absorption (ΔH _{abs}) 3.4.6 CO ₂ desorption study 3.4.7 Rate of change of initial CO ₂ solubility 3.5 CONCLUSIONS Viscosity, density, and derived thermodynamic properties of aqueous 2-(ethylamino)ethanol (EAE), aqueous aminoethylethanolamine (AEEA), and its mixture for post- combustion CO ₂ capture ABSTRACT 4.1 INTRODUCTION	

	4.2.1 Cher	nicals		82
	4.2.2 Solut	tion preparation meth	od	82
	4.2.3 Visco	osity measurement		83
	4.2.4 Dens	sity measurement		84
	4.3 RESULTS A	ND DISCUSSIONS		84
	4.3.1 Vali	idation of used app	paratus and experimental	84
	procedure			
	4.3.2 Visco	osity		86
	4.3.2	2.1 Viscosity of aqu	ueous EAE and aqueous	86
	AEEA			
	4.3.2	2.2 Viscosity of EAE	+ AEEA + H ₂ O blend	93
	4.3.3 Dens	sity		97
	4.3.3	3.1 Density of aqu	eous EAE and aqueous	97
	AEEA			
	4.3.3	3.2 Density of EAE +	$AEEA + H_2O$ blend	101
	4.3.4 Isobaric thermal expansion coefficient		104	
	4.3.5 Derived thermodynamic properties for activation of		106	
	viscous flow			
	4.4 CONCLUSIONS		108	
Chapter 5	Experimental data and modeling for density and viscosity of 1			
	carbon dioxide	(CO ₂)-loaded and -	unloaded aqueous blend	
	of 2-(eth	ylamino)ethanol	(EAE) and	
	aminoethylethar	nolamine (AEEA) f	or post-combustion CO ₂	
	capture			
	ABSTRACT			110
	5.1 INTRODUCTION		111	
	5.2 EXPERIMEN	NTAL SECTION		113
	5.2.1 Che	emicals and -unloaded	d sample preparation	113
	5.2.2 CO	2-loaded sample prep	aration	114
	5.2.3 Der	nsity measurement		115
	5.2.4 Vis	cosity measurement		115
	5.3 RESULTS A	ND DISCUSSIONS		115
	5.3.1 Der	nsity		115

	5.3.1.1 Density of CO ₂ -unloaded aqueous EAE +	115	
	AEEA		
	5.3.1.2 Density of CO_2 -loaded aqueous EAE +	121	
	AEEA		
	5.3.2 Viscosity	125	
	5.3.2.1 Viscosity of CO ₂ -unloaded aqueous EAE + AEEA		
	5.3.2.2 Viscosity of CO ₂ -loaded aqueous EAE +	128	
	AEEA		
	5.3.3 Diffusivity of CO ₂ into aqueous EAE + AEEA		
	blend		
	5.4 CONCLUSIONS	132	
Chapter 6	Overall conclusions and recommendations	134	
	6.1 OVERALL CONCLUSIONS	134	
	6.2 RECOMMENDATIONS FOR FUTURE WORKS	137	
	References	138	
	Appendix - A	159	
	Appendix- B	171	
	Publications	172	

List of Figures

<u>Figure No.</u>	<u>Caption</u>	Page No.
Figure 1.1	Contributions of different major source of energy in CO_2	2
	emission in 2018 (a) World, and (b) India (IEA, 2019)	
Figure 2.1	Schematic diagram of experimental set up for absorption	29
Figure 2.2	Effect of weight fraction of AEEA in the aqueous	37
	(MAE+AEEA) blend mixture at T = 303.15 K, $p_{CO2} = 15.2$	
	kPa, and $C_T = 10$ wt. %	
Figure 2.3	Effect of total concentration of blend on (a) CO_2 loading, and	40
	(b) CO ₂ absorption capacity, at T = 303.15 K, $p_{CO2} = 15.2$ kPa,	
	and $w_{AEEA} = 0.30$	
Figure 2.4	Effect of partial pressure of CO_2 on CO_2 loading for T:	41
	303.15 K; a 313.15 K, respectively, $C_T = 30$ wt.%, and w_{AEEA}	
	= 0.30	
Figure 2.5	Effect of temperature on CO_2 loading for p CO_2 : \blacktriangle 15.2 kPa;	43
	20.67kPa, respectively, and $w_{AEEA} = 0.30$ and (a) $C_T = 10$ wt.	
	%, and (b) $C_T = 30$ wt. %	
Figure 2.6	Experimental (denoted by symbols) and model predicted	45
	(denoted by lines) plot (p_{CO2} vs α) for aqueous MAE + AEEA	
	blend for, T: \blacktriangle 303.15 K; \blacksquare 313.15 K, respectively, C _T = 30	
	weight %, and $w_{AEEA} = 0.30$	
Figure 2.7	Model predicted CO_2 solubility vs. experimental CO_2	45
	solubility data	
Figure 3.1	Experimental set-up for CO ₂ desorption study	56
Figure 3.2	Effect of AEEA weight fraction (wAEEA) on the CO2 solubility	64
	at constant 298.15 K temperature and constant 20.27 kPa	
	partial pressure of CO_2 gas for aqueous EAE and AEEA blend:	
	Experimental (Exp.) and model (Eq. 3.35) predicted data	
Figure 3.3	Effect of total concentration (C_T) of the aqueous EAE and	65
	AEEA blend with 0.30 $w_{\mbox{\scriptsize AEEA}}$ and at 15.20 kPa partial pressure	
	of CO_2 on the CO_2 (a) solubility, and (b) absorption capacity:	

Experimental (Exp.) and model (Eq. 3.35) predicted data

- Figure 3.4 Effect of CO₂ partial pressure on the CO₂ solubility for the 30 66 wt. % (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend: Experimental (Exp.) and model (Eq. 3.35) predicted data.
- Figure 3.5 Effect of temperature on the CO₂ solubility for the 30 wt. % 67 (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend of constant concentration: Experimental (Exp.) and model (Eq. 3.35) predicted data
- Figure 3.6Parity plot of experimental and calculated (by Eq. 3.40) CO272solubility for the aqueous EAE and AEEA blend
- Figure 3.7Plot of $\ln(p_{CO_2})$ vs. (1/T) for the 30 wt. % (21 wt. % + 9 wt.73%) aqueous EAE and AEEA blend
- Figure 3.8 Cyclic CO₂ solubility and cyclic absorption capacity of 30 75 wt.% MEA solution and aqueous EAE and AEEA blend with 0.30 w_{AEEA}
- Figure 3.9 CO₂ solubility vs. time plot of 30 wt. % MEA and 30 wt. % 76 (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend during (a) CO₂ absorption, and (b) CO₂ desorption
- Figure 4.1 Viscosity versus temperature of EAE + H₂O for different 91 concentration of EAE in terms of weight fraction (w₁) of EAE, w₁: ◆ 0.05; 0.10; ▲ 0.15; × 0.20; * 0.25; 0.30; − calculated values with Eq. 4.3
- Figure 4.2 Viscosity versus temperature of AEEA + H₂O for different 91 concentration of AEEA in terms of weight fraction (w₁) of AEEA, w₁: ◆ 0.05; 0.10; ▲ 0.15; × 0.20; * 0.25; 0.30; calculated values with Eq. 4.3
- **Figure 4.3** Viscosity versus temperature of EAE + AEEA + H₂O for 96 concentration in weight fraction $(w_1 + w_2)$ of EAE + AEEA , $(w_1 + w_2)$: • 0.10; • 0.20; • 0.30; - calculated values with Eq. 4.4 with different weight ratio of EAE/AEEA (w_1/w_2) for (a) $(w_1/w_2) = 9/1$, (b) $(w_1/w_2) = 8/2$, and (c) $(w_1/w_2) = 7/3$
- Figure 4.4Density versus temperature of $EAE + H_2O$ for different100concentration of EAE in terms of weight fraction (w_1) of EAE,

 w_1 : • 0.05; • 0.10; • 0.15; × 0.20; * 0.25; • 0.30; - calculated values with Eq. 4.9

- Figure 4.5 Density versus temperature of AEEA + H₂O for different 100 concentration of AEEA in terms of weight fraction (w₁) of AEEA, w₁: ◆ 0.05; 0.10; ▲ 0.15; × 0.20; * 0.25; 0.30; calculated values with Eq. 4.9
- **Figure 4.6** Density versus temperature of EAE + AEEA + H₂O for 102 concentration in weight fraction $(w_1 + w_2)$ of EAE + AEEA , $(w_1 + w_2)$: • 0.10; • 0.20; • 0.30; - calculated values with Eq. 4.11 with different weight ratio of EAE/AEEA (w_1/w_2) for (a) $(w_1/w_2) = 9/1$, (b) $(w_1/w_2) = 8/2$, and (c) $(w_1/w_2) = 7/3$
- Figure 5.1 Density of aqueous EAE+AEEA blend versus temperature for 116 different concentration (in weight fraction) of EAE+AEEA, w: for (◆) 0.10; (■) 0.20; (▲) 0.30; and lines (−) for calculated values with Eq. 5.5
- Figure 5.2 Relative deviations of experimental and calculated density data 120 of CO₂-unloaded aqueous EAE +AEEA blend from Eq. 5.6 as a function of (a) temperature and (b) concentration (EAE+AEEA weight fraction)
- Figure 5.3 Experimental and calculated density data of CO₂-loaded 124 aqueous EAE +AEEA blend as a function of temperature for different (EAE+AEEA) concentration and CO₂ loading (α); (a) w = 0.10 and α: for (♦) 0.27; (■) 0.52; (▲) 0.77; and (×) 0.981; (b) w = 0.20 and α: for (♦) 0.155; (■) 0.502; (▲) 0.657; and (×) 0.754; (c) w = 0.30 and α: for (♦) 0.129; (■) 0.464; (▲) 0.644; and (×) 0.76; and lines (−) for calculated values with Eq. 5.7
- Figure 5.4 Viscosity of aqueous EAE+AEEA blend versus temperature 125 for different concentration (in weight fraction) of EAE+AEEA, w: for (◆) 0.10; (■) 0.20; (▲) 0.30; and lines (−) for calculated values with Eq. 5.8
- **Figure 5.5** Relative deviations of experimental and calculated viscosity 127 data of CO₂-unloaded aqueous EAE +AEEA blend from Eq.

5.9 as a function of (a) temperature and (b) concentration (EAE+AEEA weight fraction)

- **Figure 5.6** Experimental and calculated viscosity data of CO₂-loaded 129 aqueous EAE +AEEA blend as a function of CO₂ loading (α) at different temperature; T: for (•) 293.15 K; (•) 298.15 K; and (*) 303.15 K; (+) 308.15 K; (-) 313.15 K; (•) 318.15 K; (×) 323.15 K; and lines (--) for calculated values with Eq. 5.10. For different (EAE+AEEA) concentration in weight fraction with (w_1/w_2) = 7/3 (**a**) w = 0.10, (**b**) w = 0.20, and (**c**) w = 0.30
- Figure 5.7 Comparison of relative deviations of experimental and 130 calculated viscosity data of CO₂-loaded aqueous EAE +AEEA blend from Eq. 5.10 (▲) and Eq. 5.11 (♦) as a function of (a) temperature, (b) CO₂ loading, and (c) concentration (EAE+AEEA weight fraction)
- Figure 5.8 Diffusivity of CO₂ into the aqueous EAE + AEEA blend 132 versus temperature for different concentration (in weight fraction) of EAE+AEEA, w: for (◆) 0.10; (■) 0.20; and (▲) 0.30
- Figure A1 Comparision of experimental data and literature data of CO₂ 159 solubility (mol CO₂/mol amine) for 30 wt. % aqueous MEA at 313.15 K temperature and CO₂ partial pressure of 12.16, 15.20, and 20.27 kPa
- Figure A2 Effect of AEEA weight fraction (w_{AEEA}) on the CO₂ solubility 160 at 298.15 K temperature and 20.27 kPa partial pressure of CO₂ gas for the EAE and AEEA blend, lines () are for polynomial trend line
- Figure A3 Effect of total concentration (C_T) of the aqueous EAE and 161 AEEA blend with 0.30 w_{AEEA} and at 15.20 kPa partial pressure of CO₂ on the CO₂ solubility, lines (-) are for polynomial trend line
- Figure A4Effect of CO2 partial pressure on the CO2 solubility for the 30162wt. % (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend,

lines (-) are for polynomial trend line

- Figure A5 Effect of temperature on the CO₂ solubility for the 30 wt. % 163 (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend, lines () are for polynomial trend line
- Figure A6 CO₂ solubility vs. time plot of 30 wt. % MEA and 30 wt. % 164 (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend during CO₂ absorption, lines (-) are for linear trend line
- Figure A7 CO₂ solubility vs. time plot of 30 wt. % MEA and 30 wt. % 165 (21 wt. % + 9 wt. %) aqueous EAE and AEEA blend during CO₂ desorption, lines (-) are for linear trend line
- Figure A8 Viscosity of EAE + H₂O versus weight fraction of EAE (w₁) at 166 different temperature (T), T: 293.15 K; ▲ 303.15 K; dashed lines are for corresponding available literature data (Gao et al., 2017 a)
- Figure A9 Density of AEEA + H₂O versus mole fraction of AEEA (x₁) at 167 different temperature (T), T: 298.15 K; ▲ 313.15 K; 328.15 K; dashed lines are for corresponding available literature data (Stec et al., 2014)
- Figure A10 Density of aqueous EAE+AEEA blend versus temperature for 168 different concentration (in weight fraction) of EAE+AEEA, w: for (◆) 0.10; (■) 0.20; (▲) 0.30; and lines (−) for calculated values with Eq. 5.6
- Figure A11 Relative deviations of experimental and calculated density data 169 of CO₂-loaded aqueous EAE +AEEA blend from Eq. 5.7 as a function of (a) temperature, (b) CO₂ loading, and (c) concentration (EAE+AEEA weight fraction)
- Figure A12 Viscosity of aqueous EAE+AEEA blend versus temperature 170 for different concentration (in weight fraction) of EAE+AEEA, w: for (♦) 0.10; (■) 0.20; (▲) 0.30; and lines (−) for calculated values with Eq. 5.9

List of Tables

<u>Table No.</u>	<u>Captions</u>	<u>Page No.</u>
Table 1.1	CO ₂ emissions data (IEA, 2020)	2
Table 1.2	Literature related to CO ₂ solubility into aqueous MAE and aqueous EAE	11
Table 1.3	Literature related to CO_2 solubility into aqueous AEEA and its blends	14
Table 1.4	Literature related to physicochemical properties of MAE, EAE, and AEEA	19
Table 2.1	Chemical sample information	27
Table 2.2	Values of coefficients for temperature dependency of Henry's law constant and equilibrium constants	34
Table 2.3	CO ₂ solubility data in aqueous blend of MAE+AEEA with standard uncertainties ^a	38
Table 2.4	Values of coefficients of correction factor F_k for Equation 2.31	44
Table 3.1	Information of used chemicals	53
Table 3.2	Equilibrium CO_2 solubility data of aqueous EAE and	62
	AEEA blend at atmospheric pressure	
Table 3.3	Values of coefficients for temperature dependent equilibrium constants	68
Table 3.4	Regressed coefficients of Eq. (3.38) for estimated reaction equilibrium constants	69
Table 3.5	Values of coefficients of model (Eq. 3.40) to calculate equilibrium CO_2 solubility of the aqueous EAE and AEEA blend	71
Table 4.1	Details of used chemicals in this study	83
Table 4.2	Experimental data of density and viscosity of EAE and AEEA at $T = (293.15-323.15)$ K and 101.325 kPa pressure and comparison with data available in the literature [*]	85
Table 4.3	Viscosity (μ), density (ρ), and excess molar volume (V ^E), of aqueous EAE and aqueous AEEA at T = (293.15-	87

333.15) K and 101.325 kPa pressure ^a

- **Table 4.4**Fitting parameters of Eq. 4.2 in the range of T = (293.1; 89)333.15) K and for different weight fraction of amine (w_1)
- **Table 4.5**Standard deviation^a (s.d.) (mPa.s) for experimental data of92viscosity of binary mixture and model predicted viscositydata in the range of T = (293.15-333.15) K and fordifferent weight fraction of amine (w1)
- **Table 4.6**Viscosity (μ), density (ρ), and excess molar volume (V^E),94of EAE + AEEA + H2O blend at T = (293.15-333.15) Kand 101.325 kPa pressure ^a
- **Table 4.7**Coefficients of Redlich-Kister equation (Eq. 4.8) for99calculation of density of aqueous EAE and aqueous AEEA
- **Table 4.8** Regressed coefficients of Eq. 4.11 to calculate density of103 $EAE + AEEA + H_2O$
- **Table 4.9** The values of isobaric thermal expansion coefficient for105 $EAE+H_2O$, $AEEA+H_2O$, and $EAE + AEEA + H_2O$ at T =(293.15-333.15) K and 101.325 kPa pressure
- **Table 4.10**Activation molar enthalpy, entropy, and Gibbs free energy107at 298.15 K for activation of viscous flow of EAE $+H_2O$,AEEA $+H_2O$, and EAE + AEEA + H₂O blend
- **Table 5.1**Details of used chemicals in this work114
- **Table 5.2**Density, excess volume, viscosity, and diffusivity of117aqueous EAE + AEEA blend at T = (293.15-323.15) K and101.325 kPa pressure^a
- **Table 5.3** Regressed parameters $(c_0, c_1, \text{ and } c_2)$ of Eq. 5.5 and Eq. 5.8119at different temperature
- Table 5.4Density and viscosity of CO_2 -loaded aqueous EAE + 121AEEA blend at T = (293.15-323.15) K and 101.325 kPapressure^a
- **Table B1**Values of fitting parameters of Eq. 4.13171

Abbreviations/	Full form/Meaning
Symbols/ Subscripts	
Abbreviations	
1MPZ	1-methylpiperazine
3DMA1P	3-dimethyl amino-1-propanol
ADD	Absolute average deviation
AEEA	Aminoethylethanolamine
AMP	2-amino-2-methyl-1-propanol
ARD	Absolute relative deviation
BAE	2-(butylamino)ethanol
BZA	Benzylamine
DEA	Diethanolamine
DEAE	Diethylaminoethanol
DETA	Diethylenetriamine
DIPA	Diisopropanolamine
DMAP	4-Dimethylaminopyridine
EAE	2-(ethylamino)ethanol
EDA	Dthylinediamine
HMDA	Hexamethylenediamine
IEA	International Energy Agency
IPAE	2-(isopropylamino)ethanol
IPCC	Intergovernmental panel on climate change
MAE	2-(methylamino)ethanol
MAPA	3-(methylamino)propanolamine
MDEA	N-methyl-diethanolamine
MEA	Monoethanolamine
MPDL	N-methyl-4-piperidinol
NMP	N-methyl-2-pyrrolidone
PSA	Pressure swing adsorption
PZ	Piperazine
TEA	Triethanolamine
TEPA	Triethylenepentamine
TETA	Triethylenetetramine

Nomenclature

TSA	Thermal swing adsorption
Symbols	
α	CO ₂ Solubility (mol CO ₂ /mol amine)
$lpha_p$	Isobaric thermal expansion coefficient
C _T	total concentration
ΔG^*	Activation molar Gibbs free energy
ΔH^*	Activation molar enthalpy
ΔH_{abs}	Heat of absorption
h	Plank constant (6.626 *10 ⁻²³ J.s),
K _i	i th Equilibrium constant
μ	Viscosity
N_A	Avogadro number
p _{co2}	Partial pressure of CO ₂ gas
ρ	Density
R	Universal gas constant
ΔS^*	activation molar entropy
Т	Temperature (K)
t	Temperature (°C)
VE	Excess volume
V _m	Molar volume
W	Concentration in weight fraction
wt. %	Weight %
Subscripts	
calc	Calculated data
eqlm	At the equilibrium

exp	Experimental data

Preface

Greenhouse gases are the main cause of global warming. Carbon dioxide (CO₂) contributes to a major fraction of greenhouse gases. CO₂ emitted into the atmosphere by the combustion of fossil fuels during industrial activities. CO₂ capture from the flue gases is important due to environmental concern. The post-combustion absorption technique is most matured and useful for CO₂ capture containing low partial pressure CO₂. The aqueous monoethanolamine (MEA)) has been shown good CO₂ absorption capability with fast reaction kinetics and considered as an industrial benchmark solution for CO₂ absorption. But its high heat of CO₂ absorption is a major drawback because of the high energy requirement for regeneration of CO₂-loaded solution. In order to minimize demerits and utilize the advantages of individual single amines, amine blends are used. However, it is still a matter of research to find out a solvent that has high CO₂ solubility, a faster CO₂ absorption-desorption rate, and low heat of absorption as well.

2-(methylamino)ethanol (MAE) and 2-(ethylamino)ethanol (EAE) produce less stable carbamate, with fast reaction kinetics towards CO_2 , have better favorable properties of CO_2 absorption, and reported as a better alternative to MEA in the literature. Aminoethylethanolamine (AEEA) is a di-amine containing one primary and one secondary amine. Its absorption capacity and absorption rate are high. AEEA was used as an activator for secondary and tertiary amines in the literature.

So, the research objectives were decided to study of aqueous MAE + AEEA and aqueous EAE + AEEA blend for post-combustion CO_2 capture. The complete research work of this thesis can be summarized in different chapters as follows:

Chapter 1 explains the CO_2 emission scenario and its consequences on the environment based on fossil-fuel combustion. Various technologies and techniques for

 CO_2 capture are discussed. Post-combustion CO_2 capture using chemical absorption technique based on the amine solvents are described. Literature reviews related to CO_2 absorption into MAE, EAE, and AEEA are given in detail. Literature reviews about CO_2 solubility models and physicochemical properties of amine absorbents are also depicted briefly. The literature gaps have been identified and included in this chapter. The objectives of the present work also have been provided in this chapter.

Chapter 2 describes CO_2 solubility data of aqueous (MAE + AEEA) blend at different operating conditions. Modified Kent-Eisenberg (K-E) thermodynamic model has been given for CO_2 solubility in aqueous (MAE + AEEA) blend. Determination of heat of CO_2 absorption for aqueous (MAE + AEEA) blend using CO_2 solubility data has also been provided.

Chapter 3 explains experimental CO_2 solubility measurement and modified K-E model for aqueous (EAE + AEEA) blend. The development of an empirical model for CO_2 solubility prediction has been also shown. The heat of CO_2 absorption for the aqueous (EAE + AEEA) blend has been discussed based on Gibbs-Helmholtz equation. The initial rate of change of CO_2 solubility with respect to time during absorption as well as desorption has been discussed. Cyclic capacity of aqueous (EAE + AEEA) blend and its comparison with cyclic capacity of aqueous monoethanolamine (MEA) are discussed.

Chapter 4 describes the viscosity and density of $EAE + H_2O$, $AEEA + H_2O$, and $EAE + AEEA + H_2O$. Excess molar volume has been calculated for mixtures in the range of 293.15 K to 333.15 K and correlated to the Redlich-Kister model. Experimental viscosity and density data have been correlated to the newly developed empirical models. In order to extend the knowledge of molecular interaction, derived thermodynamic properties have been studied.

Chapter 5 illustrates the density and viscosity of the CO₂-loaded and –unloaded aqueous (EAE+AEEA) blend. Excess volume has been calculated in the temperature range of 293.15 to 323.15 K for –unloaded aqueous (EAE+AEEA) blend and fitted to the newly developed empirical model. Newly proposed empirical correlations have been given to predict the density and viscosity of the CO₂-loaded and –unloaded aqueous (EAE+AEEA) blend. CO₂ diffusivity into the aqueous EAE+AEEA blend has been discussed.

Chapter 6 contains the overall conclusions of this research work and recommendations for future work. On the basis of this research work, it has been concluded that the aqueous (EAE+AEEA) blend has a good potential for post-combustion CO_2 absorption.