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Appendix A. Numerical Techniques 

for the Solution of Nonlinear 

Algebraic Equations 

Newton Raphson Method 

Solution of nonlinear algebraic equations encountered in steady state simulation is 

frequently carried out using the Newton Raphson method. The derivations of the Newton 

Raphson method for scalar (one variable) and vector (multivariable) functions are shown 

below: 

Scalar (one variable) Newton-Raphson method:  

The nonlinear algebraic equation is written as:  

( ) 0f x                                                                                                 Eq. A. 1 

Taylor series expansion of ( )f x  around an initial (or guess) point kx gives: 
' 1( ) 0 ( ) ( )( )k k k kf x f x f x x x                                                                            Eq. A. 2 

Accordingly, the value of x  in the 1thk  iteration is given as: 

1 '( ) / ( )k k k kx x f x f x                                                                           Eq. A. 3 

Where, '( )kf x  represents the derivative of ( )f x  evaluated at kx  , as shown: 

( )
( ) | k

k

x

df x
f x

dx
                        Eq. A. 4 

Convergence is achieved when the error between the successively estimated values of  the 

unknown variable  is less than the specified tolerance,  . 

1k kx x                           Eq. A. 5 
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Vector (multivariable) Newton-Raphson method: 

The set of simultaneous nonlinear algebraic equations ( n  equations in n  unknowns) are 

written as:   

( ) f x 0                                                                                                              Eq. A. 6 

Where, the (nx1) vector of (unknown) variables is defined as: 

1 2( , ,..., ,..., )T

i nx x x xx                      Eq. A. 7 

And the (nx1) vector of functions is defined as: 

1 2( , ,..., ,..., )T

i nf f f ff(x)                      Eq. A. 8 

The initial (or guess) value of the vector of variables is defined as: 

1 2( , ,..., ,..., )k k k k k T

i nx x x xx                      Eq. A. 9 

The Taylor series expansion of f(x)  around the initial (or guess) point 
k

x  gives: 

k+1 k -1 k k
x = x - J (x )f(x )                                                                                 Eq. A. 10 

Where, k
J(x ) represents the (nxn) jacobian matrix of derivatives evaluated at the point 

k
x  

Convergence is achieved when the error between the successively estimated values of  the 

unknown variables is less than the specified tolerance vector, ε . 

 k+1 kx x ε                      Eq. A. 11 
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Appendix B. Linear Regression  

Linear Least Squares Parameter Estimation 

Let the scalar dependent variable be denoted as: y . If y  is dependent on a set of k

independent variables, defined as:  

1 2 3( , , ,..., )T

kx x x xx                     Eq.B. 1                                                 

Then, the linear functionality of y  and x  is denoted as: 

 y  T
x β                                                                  Eq.B. 2 

Where, the vector of (unknown) parameters, β   to be estimated, is given as: 

1 2 3( , , ,..., )T

k   β                                                    Eq.B. 3 

If the values of β are known exactly, y  can be accurately predicted/inferred/estimated 

from the known values of x . 

However, in practice, such precision is almost never attainable and equation (B.2) is in 

error, since the parameter estimation problem is based on n  number of experimental 

observations (measurements) of y  and x , as shown in Table B.1 below: 
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Table B. 1  Data of experimental observations 

No. of 

Experimental 

observations, 

n  

Experimental 

observations of the 

independent variables, x  

Experimental 

observations 

of the 

dependent 

variable, y  

Estimates/prediction 

of the dependent 

variable, ŷ  

 

Square of 

error 

2
e  

1x  
2x  

3x   
kx  

1 
11x  

12x  
13x   

1kx  
1y  ^

1y  (
1y -

^

1y )
2 

2 
21x  

22x  
23x   

2kx  
2y  ^

2y  (
2y -

^

2y )
2 

3 
31x  

32x  
33x   

3kx  
3y  ^

3y  (
3y -

^

3y )
2 

         

n  
1nx  

2nx  
3nx   

nkx  
ny  ^

ny  (
ny -

^

ny )
2 

SUM 
2

1

( )
i n

T

i

i

e




e e  

 

Based on the experimental observations, the parameter estimation problem is framed as 

under: 

Let the ( x1n ) vector of observations of the dependent variable be denoted as:  

1 2 3( , , ,..., )T

ny y y yy                                                                    Eq.B. 4 

The ( kx1) vector of (unknown) parameters to be estimated, is given as: 

1 2 3( , , ,..., )T

k   β                                                                Eq.B. 5   

The ( nxk ) matrix of  n  observations of the k independent variables is denoted as:   

11 12 1

21 22 2

1 2

k

k

n n nk

x x x

x x x

x x x

 
 
 
 
 
 

Α                                          Eq.B. 6 
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Let the ( x1n ) vector, 
^

y  denote the estimates of the dependent variable, based on the 

functionality of y  and x , as shown in equation B.2. 
^

y  is given as: 


^

y Aβ                                            Eq.B. 7 

Let the ( x1n ) vector, e  represent the error between the experimental and predicted values 

of the dependent variable, denoted as: 

^

e = (y - y) = (y - Aβ)                                                        Eq.B. 8  

A common method of estimating the parameters β  is the method of Least Squares (LS), 

which is based on the following assumptions: 

i. Since the error vector, e  represents the error from various sources, e  is assumed 

to have zero mean. 

ii. The variance of  e  is constant and independent of the matrix A . 

The covariance of e  is denoted as: 

cov( , ) 0 ( )i je e i j                                                      Eq.B. 9 

2cov( , ) var( , ) ( )i j i je e e e i j                                        Eq.B. 10 

The ( xnn ) variance-covariance matrix of errors is thus represented as: 

2

2

2

2

0 0

0 0

0 0








 
 
  
 
 
 

P I                                      Eq.B. 11 

The assumptions imply that the error vector e  has multivariate normal 

distribution, given as: 

2(0, )N e I                                                                       Eq.B. 12  

iii. The Matrix A is a set of fixed numbers and does not contain any error. 
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iv. The rank of matrix A  is k , where, k n . This implies that the k variables are 

linearly independent. 

v. The number of experimental observations exceeds the number of parameters to be 

estimated.  

The method of Least Squares (LS) 

The method of Least Squares (LS)  based on the minimization of the sum of squares of 

errors. The (scalar) objective function, ( ) β  is therefore represented as: 

Minimize: ( ) T β e e                                                                                     Eq.B. 13 

Applying the necessary condition for optimality: 

The Jacobin vector (first partial derivatives of ( ) β  with respect toβ ) must be zero: 

0



β
                                                                      Eq.B. 14  

( ) 0T T
     

= A (y - Aβ) (y - Aβ) A
β

                                                           Eq.B. 15 

Using the matrix –vector identity, T TA v v A ,  the above equation is simplified as: 

2 0T   A (y - Aβ)                                                                                     Eq.B. 16 

Further simplification of equation B.16 gives: 

( )T TA A β A y                                                                          Eq.B. 17 

Equation B.17 represents a set of k  number of simultaneous linear algebraic equations, 

called the normal equations. Solution of equation B.17 is given as: 

1( )T Tβ A A A y                                                                                     Eq.B. 18 

The matrix ( 
T

A A ) is symmetric matrix of dimension ( xk k ). 

The assumption (iv) guarantees that ( 
T

A A ) is non-singular and hence its inverse exists. 
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Statistical Performance Indices (SPI) 

Once the parameters are estimated using equation B.18, the following Statistical 

Performance Indices (SPI) are used to provide a quantitative measure of the goodness of 

the estimates of the dependent variable. 

a. Mean and variance / standard deviation 

b. Sum of Square of Error (SSE) 

c. Root Mean Square Error (RMSE)  

d. Mean Absolute Percentage Error (MAPE)  

e. Coefficient of Multiple Determination (CMD) 

f. Covariance-Correlation matrix and Correlation Coefficient 

The Sum of Square of Error (SSE) is defined as: 

TSSE  e e                                                                                      Eq.B. 19 

The absolute value of error is given as: 

 ( )abs e                       Eq.B. 20 

The percentage error is given as:   

100.* ( ). /absp e y                                                    Eq.B. 21 

The Mean Absolute Percentage Error (MAPE) is given as: 

( * ). /TMAPE n j p                                         Eq.B. 22 

Where, the ( x1n ) vector j  is defined as:   

(1,1, ,1)Tj                                   Eq.B. 23 
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Appendix C. Tridiagonal Matrix 

Algorithm 

The steady-state process model of counter current flow equilibrium staged processes is  

represented by a system of n  linear (or linearized nonlinear) algebraic equations in n  

unknowns, as shown:  

1 1 1 2 1

2 1 2 2 2 3 2

3 2 3 3 3 4 3

1 1

1 2 1 1 1 1

1

i i i i i i i

n n n n n n n

n n n n n

b x c x d

a x b x c x d

a x b x c x d

a x b x c x d

a x b x c x d

a x b x d

 

     



  
 

   
   
 
 
   
 
 
 

  
 
   

                                    Eq. C. 1  

The (nx1) vector of (unknown) output variables is defined as:  

1 2 3( , , ,..., )T

nx x x xx                                       Eq. C. 2 

The vector of n  (known) inputs is defined as: 

1 2 3( , , ,..., )T

nd d d dd                                      Eq. C. 3 

The ( xn n ) tridiagonal matrix of (known) coefficients is defined as: 

      

1 1

2 2 2

3 3 3

1 1 1

0 0 0 0 0

0 0 0 0

0 0 00

00 0 0

0 0 0 0 0

n n n

n n

b c

a b c

a b c

a b c

a b

  

 
 


 
 

  
 
 
 
  

U                                   Eq. C. 4 

The equation C.1 is conveniently expressed in vector-matrix notation as: 

Ux d                                        Eq. C. 5 
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  The first equation of equation C.1 is written as:    

  1 1 2 1x p x q                                                         Eq. C. 6 

Where, 1p  and 1q  are defined as: 

1 1 1/p c b                                                       Eq. C. 7 

1 1 1/q d b                                                       Eq. C. 8 

Combining the second equation of  equation C.1 with equation C.6 gives: 

2 2 3 2x p x q                                                        Eq. C. 9 

Where, 2p  and 2q  are defined as: 

2 2 2 1 2[ / ( )]p c b p a                                                    Eq. C. 10 

2 2 1 2 2 1 2[( ) / ( )]q d q a b p a                                                    Eq. C. 11 

Similarly, any general 
thi equation of equation C.1 is written as:    

1i i i ix p x q    ( 1:i n  )                                 Eq. C. 12 

Where, ip  and iq  are defined as:  

1[ / ( )]i i i i ip c b p a                                                    Eq. C. 13 

1 1[( ) / ( )]i i i i i i iq d q a b p a                                                    Eq. C. 14 

0 0 0p q                                                     Eq. C. 15 

The 1thn  equation of equation C.1 is written as: 

1 1 1n n n nx p x q                                                       Eq. C. 16 

And since 1nx   does not exist, the 
thn equation of equation C.1 is written as: 

n nx q                                                    Eq. C. 17 

Based on equations C.6 to C.17, the system of equations represented by equation in C.1 

are transformed as: 
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1 1 2 1

2 2 3 2

1i i i i

n n

x p x q

x p x q

x p x q

x q



  
 

  
 
 

  
 
 
  

                                                  Eq. C. 18 

The tridiagonal algorithm  is implemented as a sequential numerical solution. The 

computational steps in the tridiagonal algorithm are written as:           

Step 1 : Input Specification  

Read all specified data ((nx1) vector of coefficients , , ,a b c d in equation C.1) 

2 3(0, , ,..., )T

na a aa                                                   Eq. C. 19 

1 2 3( , , ,..., )T

nb b b bb                                                   Eq. C. 20 

1 2 3 1( , , ,..., ,0)T

nc c c c c                                                  Eq. C. 21 

1 2 3( , , ,..., )T

nd d d dd                                                   Eq. C. 22 

Step 2:Forward substitution  

For ( 1,2, , )i n , compute ip  and iq  using equations C.13-C.15. 

Step 3: Assignment   

For ( )i n , assign: 

n nx q                                                    Eq. C. 23 

Step 4: Backward substitution  

For ( 1, 2, ,1)i n n   , compute: 

1 1 1n n n nx q p x                                                      Eq. C. 24 

1i i i ix q p x                                                      Eq. C. 25 

1 1 1 2x q p x                                                     Eq. C. 26 

 


