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Chapter 6. Modeling and IMC based 

PID Control of Single Input Single 

Output Unstable Nonlinear Process 

6.1.  Introduction 

Continuous bioreactors find wide applications in wastewater treatment , fermentation 

processes, pharmaceutical industry, food industry, etc. (Bailey & Ollis, 1986). In recent 

years, various models for biochemical reactors have been developed to optimize the 

processes for the production of various products for agricultural, pharmaceuticals, sector 

etc. In industrial waste water treatment, membrane bioreactor technology is widely used. 

With this wide usage of bioreactor, there is a need to optimize and improve the bioreactor 

efficiency exercising proper control. Control of biochemical processes  presents a 

challenge due to their nonlinear unstable multiple steady-state and hysteresis behaviour. 

Several relations have been developed between the substrate concentration and the 

growth rate coefficient in order to develop a dynamic model for the control of 

biochemical reactors in which the Monod and Substrate Inhibition Kinetic models are 

very common. In case of the Substrate Inhibition, numbers of steady state solutions are 

three in which two are stable but the conditions required for their use are not optimum. 

The third steady state is unstable but provides optimum operating conditions. Hence there 

is need for designing an efficient control system for the stabilized operation of a 

bioreactor (Simon, 2013). 

One of the most critical process equipment from the control point of view that is widely 

used in the chemical and biochemical process industry is the Continuous Stirred Tank 

Reactor (CSTR) (Rao & Chidambaram, 2006). It is well established that the CSTR 

possesses nonlinear dynamic behaviour and also exhibits multiple steady states with the 
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possibility of one of the steady states being an unstable operating point (Bakošová et al., 

2009; Pinheiro & Kershenbaum, 1999). The operation of CSTR at the high temperature 

(stable) steady state may be desirable in terms of higher conversion but the equipment 

design and plant safety issues associated with high temperature operation makes it unsafe. 

The best overall system performance is obtained at the intermediate temperature 

(unstable) steady-state point (Biagiola & Figueroa, 2004; Pinheiro & Kershenbaum, 

1999). IMC based PID control of the CSTR at the unstable steady-state operating point is 

therefore studied.  

6.2  Continuous Bioreactor 

The schematic of a continuous stirred bioreactor is shown in Figure 6.1. The contents of 

the bioreactor are mixed thoroughly, ensuring uniform concentrations. The substrate is 

taken as input for the process which acts as a food for growth of biomass and its 

propagation. Substrate is quite often (but not necessarily) the pollutant/waste that gets 

consumed. Biomass is the biological cells that consume the substrate. The Monod Model 

and the Substrate Inhibition kinetic models have been used for present simulation. 

 

Figure 6. 1 Schematic of Continuous Bioreactor 

 

V 1x 2x 1x
2xF

F 1 fx 2 fx
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6.2.1  Mathematical Modeling of the Continuous Bioreactor 

The  different process variables and system parameters involved in the development of 

mathematical model of a continuous well mixed bioreactor are shown in Table 6.1. 

Table 6. 1 Parameters and Variables in Continuous Bioreactor 

Variable/Parameter Notation Description 

Biomass concentration 
1x  Mass of biomass cells/Volume 

Biomass concentration in 

feed 
1 fx  Mass of biomass cells/Volume 

Substrate concentration 
2x  Mass of substrate/Volume 

Substrate concentration 

in feed 
2 fx  Mass of substrate/Volume 

Rate of cell generation 
1r  Mass of biomass cells generated 

/(Volume)(time) 

Volumetric flowrate F  Volume/time 

Specific growth rate 

coefficient 
2( )x  Analogous to reaction rate constant 

Rate of substrate 

consumption 
2r  Mass of substrate consumed/(Volume)(time) 

Yield Y  Mass of biomass cells generated/Mass of 

substrate consumed 

Bioreactor volume V   

Dilution rate D  Analogous to space velocity 

 

6.2.1.1  Unsteady State Mass Balances 

Biomass material balance:  Applying mass balance across the bioreactor for biomass  

gives: 

1
1 1 1f

dVx
Fx Fx Vr

dt
                                                                                                 Eq. 6. 1              
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Similarly, the material balance for the substrate gives: 

2
2 2 2f

dVx
Fx Fx Vr

dt
  

                                                             
                        Eq. 6. 2         

The rate equation is given as: 

1 1r x                                                                                                                       Eq. 6. 3 

The yield is defined as: 

1

2

r
Y

r
                                                                                                   Eq. 6. 4 

Equation 6.4 is written as: 

1 1
2

r x
r

Y Y


                                                                                                   Eq. 6. 5 

Assuming  the volume of reactor to be constant, the dilution rate is defined as: 

F
D

V
                         Eq. 6. 6 

The equations 6.1 and 6.2 are simplified as:  

1
1 1 1f

dx
Dx Dx x

dt
                                                                            Eq. 6. 7 

2 1
2 2f

dx x
Dx Dx

dt Y


                                                                            Eq. 6. 8 

Assuming no biomass in feed: 

1 0fx                                                                             Eq. 6. 9 
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Equations 6.6 and 6.7 are simplified as: 

1
1 1 2 1( , ) ( )

dx
f x x D x

dt
                                                                          Eq. 6. 10 

2 1
2 1 2 2 2( , ) ( )f

dx x
f x x D x x

dt Y


                                                               Eq. 6. 11 

Equations 6.9 and 6.10 represent the mathematical model of the continuous bioreactor in 

terms of two nonlinear functions, 1f  and 2f . 

6.2.1.2  Rate Equations 

Monod Model: 

The Monod model is analogous to the Langmuir adsorption isotherm. The Monod model 

is represented as: 

max 2
2

2

( )
m

x
x

k x


 


                                                                        Eq. 6. 12 

Substrate Inhibition (SI) Model: 

In the Substrate Inhibition (SI) model, the toxicity of substrate is also considered. It is 

represented as: 

max 2
2 2

2 1 2

( )
m

x
x

k x k x


 

 
                                                                       Eq. 6. 13 

In the Substrate Inhibition (SI) model, the growth rate coefficient (µ) reaches a maximum 

and then decreases at high substrate concentration (x2), due to the toxic effect on biomass 

cells. A comparison of the Monod model and the Substrate Inhibition (SI) model  is 

shown in Figure 6.2. 
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Figure 6. 2  Comparison of the Monod and the Substrate Inhibition (SI) Models 

6.2.1.3  Steady State Solution of the Continuous Bioreactor 

Parameters of the Substrate Inhibition (SI) model and the Monod model are shown in 

Table 6.2 and the operating conditions of the continuous bioreactor are shown in Table 

6.3, (Agrawal & Lim, 1984), (Bequette, 1998). 

Table 6. 2 Parameters of the Substrate Inhibition Model and the Monod Model 

Model Parameter/Operating condition Substrate Inhibition (SI) Model Monod Model 

max  (hr
-1

) 0.53 0.53 

mk  (g/lit) 0.12 0.12 

1k  (lit/g) 0.4545 NA 
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Table 6. 3 Operating conditions of the Continuous Bioreactor 

Operating Variable Value 

Substrate concentration in feed, 
2 fx  (g/lit)  4.0 

Biomass concentration in feed, 
1 fx  (g/lit) 0 

Dilution rate, D (hr
-1

) 0.30 

 

The steady state solution is obtained by setting the derivative terms of equations 6.9 and 

6.10 to zero. The subscript ‘s’ is used to denote the steady state condition. The steady 

state equations are given as: 

1
1( ) 0s

s s s

dx
D x

dt
                                                                          Eq. 6. 14 

12
2 2( ) 0s ss

s fs s

xdx
D x x

dt Y


                                                               Eq. 6. 15 

 The above steady state equations have two solutions: 

1. Steady state solution 1: It is also called the trivial solution (Washout condition). It 

represents no conversion as all the biomass cells are washed out of the bioreactor. 

The trivial solution of equations 6.13 and 6.14  is given as: 

1 0sx                                                                  Eq. 6. 16 

2 2s fsx x                                                                  Eq. 6. 17 

2. Steady state solution 2:  The non-trivial solution ( 1 0sx  ) of equations 6.13 and 

6.14   is given as: 



137 

 

2( )s s sx D                                                                          Eq. 6. 18 

1 2 2( )s fs sx Y x x                                                                           Eq. 6. 19 

The solution of 2sx  is obtained by substituting equation 6.17 into the Substrate Inhibition 

(SI) model (equation 6.12).  The Substrate Inhibition (SI) model equation is quadratic and 

has two solutions, which are represented as: 

2

max max
1

2

1

1 1 4

2

m

s s

s

k k
D D

x
k

    
       
   

                                                Eq. 6. 20 

6.2.1.4  Linearized State Space Model of the Continuous Bioreactor 

The linearized state space model of the continuous bioreactor is obtained from the 

nonlinear model equations (equations 6.10 and 6.11).  

The (2x1) vector of state variables (in deviation form) is defined as: 

  
1 2 1 1 2 2[ , ] [( ) , ( )]T T

s sx x x x x x   x               Eq. 6. 21                                                       

The (2x1) vector of time derivatives of state variables (in deviation form) is defined as: 

1 2[ / , / ]Tdx dt dx dtx                                                                        Eq. 6. 22 

The (2x1) vector of input variables (in deviation form) is defined as:  

1 2 2 2[u , ] [( ) , ( ) ]T T

s f fsu D D x x   u                                                Eq. 6. 23 

The elements of  (2x2) A  matrix of the state space model (equation 3. 96) are given as: 

11 s sa D                                                                                                 Eq. 6. 24 

'

12 1s sa x                                                                                                 Eq. 6. 25 
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Where, '

s  is defined as: 

2

max 1 2

2 2

2 2 1 2

( )

( )

s m s
s

s m s s

k k x

x k x k x

 


 
  

  
                   Eq. 6. 26 

21
sa

Y


                                                                                                 Eq. 6. 27 

1
22

s s
s

x
a D

Y


                                                                                      Eq. 6. 28 

Similarly, the elements of  (2x2) B  matrix of the state space model (equation 3. 96) are 

given as:  

11 1sb x                                                                                                 Eq. 6. 29 

12 0b                                                                                                  Eq. 6. 30 

21 2 2fs sb x x                                                                                      Eq. 6. 31  

22 sb D                                                                                                Eq. 6. 32 

6.2.1.5  Stability Analysis of the Continuous Bioreactor 

The stability analysis is carried out by calculating the Eigen values of  the A  matrix 

(equations 6.24-6.28).  The  two Eigen values ( 1  and 2 ) are given as : 

1 sD                                                                                                  Eq. 6. 33 

1
2

s s
s s

x
D

Y


 


                                                                                      Eq. 6. 34 

Since  the dilution rate, sD  is always positive,  equation 6.33 shows: 

1 0                                                                                                             Eq. 6. 35 
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One of the Eigen values, 1  is always negative. 

Stability of the non-trivial solution: 

For the non-trivial solution (equations 6.18 and 6.19),  

1
2

s sx

Y





                    Eq. 6. 36                                                                                

The Eigen value 2 may be negative or positive depending on the sign of the slope of the 

growth rate coefficient , s . Accordingly, the following two cases are possible: 

Case A: If 0s  , then 2 0                 Eq. 6. 37 

In this case, since both the Eigen values are negative, hence, the system is stable.  

Case B: If 0s  , then 2 0                 Eq. 6. 38 

In this case, since one of the Eigen values, 2  is positive, hence, the system is unstable. 

Stability of the trivial solution: 

For the trivial solution (equations 6.16 and 6.17), the stability condition is given as: 

s sD                                                      Eq. 6. 39 

Based on the Substrate Inhibition (SI) model, the three steady state solutions (one trivial 

solution  and two nontrivial solutions)  corresponding to the input operating conditions 

(Table 6.3) of the continuous bioreactor, are shown in Table 6.4. One of the two non-

trivial solutions is unstable. 
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Table 6. 4 Stability analysis of steady states in continuous bioreactor 

Kinetic Model Substrate Inhibition Model 

Steady State 

Solution 

Trivial Solution Non trivial Solution 1 Non trivial 

Solution 2 

x1s 0 0.9951 1.5302 

x2s 4.0 1.5123 0.1746 

μs 0.1861 0.3 0.3 

μ's -0.0292 -0.0683 0.5913 

1  -0.3 -0.3 -0.3 

2  -0.1139 +0.1698 -2.2619 

Remark Stable ( s sD  ) 

 

Unstable ( 0s  ) Stable 

 

6.2.1.6  Degrees of Freedom Analysis of the Continuous Bioreactor 

The degrees of freedom analysis is useful in identifying the number of state variables to 

be measured (measured outputs) and the number of controllers required. In the case of 

continuous bioreactor, the total number of variables  is 4vn  , total number of equations 

is 2en   (equations 6.14 and 6.15). The degrees of freedom, is 2v ef n n   . One of 

the two input variables, (substrate concentration in feed, 
2 fx ) is specified. Therefore, the 

number of measured outputs and the number of controllers required is one. The control 

objective is to design a suitable controller to control the biomass concentration (controlled 

variable), 1x  using the dilution rate, 1u  as the manipulated variable.  
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6.2.1.7  Transfer Function Model of the Continuous Bioreactor 

The transfer function model (equations 3.103 and 3.104) of the continuous bioreactor is 

obtained  for the unstable steady state (non trivial solution 1). The transfer function of the 

biomass concentration with respect to the dilution rate is given as: 

 
1

11

1

( ) 5.8604
( )

( ) 5.8893 1

x s
g s

u s s
 

 
                                                                                                          Eq. 6. 40 

Similarly, the transfer function of the substrate concentration with respect to the dilution 

rate is given as: 

2
21

1

( ) 14.6508
( )

( ) 5.8893 1

x s
g s

u s s


 

 
                                                                                        Eq. 6. 41 

The pole of  the transfer functions, 11( )g s  and 21( )g s  is obtained from the solution of the 

denominator polynomial (characteristic equation) as: 

5.8893 1 0s                                                                                      Eq. 6. 42 

0.1698p                                                                                                  Eq. 6. 43 

The pole of the transfer functions, 11( )g s  and 21( )g s   is same as  the Eigen value, 2  

(Table 6.4). Since  the location of the pole of the transfer functions, 11( )g s  and 21( )g s  is 

on the Right Half Plane (RHP), the transfer functions, 11( )g s  and 21( )g s  represent  first 

order unstable processes. 

6.2.2  IMC based PI Controller Design for the Continuous Bioreactor 

The process transfer function of bioreactor is unstable first order as shown in equation 

6.40. To control the open loop unstable process, an Internal Model Control (IMC) based 

Proportional Integral (PI) controller is designed based on equations 3.60 and 3.61 (section 
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3.2.4) . The Integral of Square of Error (ISE)  is used as the Quantitative Performance 

Index (QPI) to select the  optimum value of  the Internal Model Control (IMC) based PI 

controller tuning parameter, ,  as shown in Figure 6.3.    

 

Figure 6. 3 Tuning of IMC based PI Controller for Continuous Bioreactor 

6.2.3  Closed loop Response of the IMC based PI Controller  

The closed loop response of the Internal Model Control (IMC) based Proportional 

Integral (PI) controller, to step change in the biomass concentration (servo problem) is  

shown in Figure 6.4. The designed controller has good set point tracking properties 

(minimum overshoot and zero offset). 
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Figure 6. 4  Closed loop response of Bioreactor with IMC based PID controller 

6.2.4  Conclusion 

The mathematical model of a continuous bioreactor based on substrate inhibition kinetic 

model is developed.  The continuous bioreactor has multiple steady-states. From the 

stability analysis, it is observed that one of the three steady states is unstable. An Internal 

Model Control (IMC) based PI controller is designed to control the biomass concentration 

in the continuous bioreactor. Efficient control of the continuous bioreactor at the unstable 

steady state operating point is achieved by optimum tuning of the controller parameter. 
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 6.3  Non-Adiabatic Jacketed CSTR 

Consider a constant volume non-adiabatic jacketed Continuous Stirred Tank Reactor 

(CSTR) (Bequette, 2003), as shown in Figure 6.5. A first order exothermic reaction 

kA B  takes place within the reactor. 

 

Figure 6. 5  Schematic of the Non-adiabatic Jacketed  CSTR 

6.3.1  Mathematical Model of the Non-adiabatic Jacketed CSTR 

The contents of  the non-adiabatic jacketed Continuous Stirred Tank Reactor (CSTR) are 

assumed to be perfectly mixed. The model equations of the CSTR and jacket are obtained 

by writing the mass and energy balances: 

6.3.1.1.  Unsteady State Mass and Energy Balances 

The total mass balance equation for the reactor is written as: 

( ) i i

d
V F F

dt
                                                       Eq. 6. 44 

Assuming constant density and constant volume of the reactor, equation 6.44 is simplified 

as: 

 

 Reactants Inlet 
F0, CA0, T0 

Jacket Outlet 
FJ, TJ 

Jacket Inlet 
FJ0, TJ0 

Reactants Outlet 
F, CA, T 

 

A→B 
V, CA, T 

Jacket 
VJ, TJ 

Jacketed Continuous Stirred Tank Reactor 
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iF F                                      Eq. 6. 45 

The component mass balance equation for the reactor is written as: 

1 0( , ) (C )A
A A A A

dC F
f C T C r

dt V
                                                    Eq. 6. 46 

The energy balance equation  for the reactor is written as: 

2 0( , ) (T ) ( )H
A A J

p p

UAdT F H
f C T T r T T

dt V c V C 


                             Eq. 6. 47 

The reaction kinetics is expressed as: 

0 exp( / )A A Ar kC k E RT C                                                                Eq. 6. 48 

6.3.1.2  Steady State Solution of the Non-adiabatic Jacketed CSTR 

The input operating conditions and the design parameters of the non-adiabatic jacketed 

CSTR are shown in Table 6.5.  

Table 6. 5 Operating Conditions and Design Parameters of  the CSTR 

Process Parameters Input variables Value 

/F V  (hr
-1

)  1 

0k  (hr
-1

)  9703*3600 

H  (Kcal/kmol)  -5960 

E  (Kcal/kmol)  11843 

pC (Kcal/ m
3 o

C)  500 

/HUA V  (Kcal/m
3 o

C hr)  150 

JT  (K)  298 

 
0T  (K) 298 

 
0C A  (Kmol/m

3
) 10 
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The steady state solution is obtained from the solution of the mathematical model 

(equations 6.48 and 6.49)  based on the input operating conditions and the design 

parameters (Table 6.5). Under steady state conditions, the time derivatives  in the 

differential equations (equations 6.48 and 6.49) vanish resulting in two nonlinear 

algebraic equations (in two unknowns, AC  and T ), whose solution is numerically 

obtained by the multivariable  Newton Raphson method (Appendix A).  

The non-adiabatic jacketed CSTR has three steady state solutions: (1) the low 

temperature, low conversion steady state, (2) the intermediate temperature,  intermediate 

conversion steady state, and (3) the high temperature,  high conversion steady state, as 

shown in Table 6.6.  

Table 6. 6 Multiple Steady States in the Non-adiabatic Jacketed CSTR 

Steady state 

solution 

Low temperature,  

low conversion 

steady state 

Intermediate 

temperature,  

Intermediate conversion 

steady state 

High temperature,  

high conversion 

steady state 

C As

(Kmol/m
3
) 

8.56 5.52 2.36 

sT  (K) 311.2 339.1 368.1 

 

6.3.1.3  Linearized State Space Model of the Non-adiabatic Jacketed CSTR 

The linearized state space model of the non-adiabatic jacketed CSTR  is obtained from 

the nonlinear model equations (equations 6.46 and 6.47) . 

The (2x1) vector of state variables (in deviation form) is defined as: 

1 2[ , ] [(C C ) , ( )]T T

A As sx x T T   x                                                            Eq. 6. 49  

The (2x1) vector of time derivatives of state variables (in deviation form) is defined as: 
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1 2[ , ] [( / ) , ( / )]T T

Ax x dC dt dT dt x                                                                       Eq. 6. 50 

                                                    

The (3x1) vector of input variables (in deviation form) is defined as:  

1 2 3 0 0 0 0[u , u ] [(T T ) , ( ) , ( )]T T

J Js A A s su C C T T    u             Eq. 6. 51 

The elements of  (2x2) A  matrix of the state space model (equation 3. 96) are given as: 

11 ( / ) k sa F V                                                                                      Eq. 6. 52 

'

2

k
| ks s s

s

E
k

T RT

   
    

   
                                                                       Eq. 6. 53 

'

12 As sa C k                                                                                      Eq. 6. 54 

21 ( H/ )kp sa C                                                                           Eq. 6. 55 

'

22 ( / ) H
As s

p p

UA H
a F V C k

V C C 


                                                               Eq. 6. 56 

Similarly, the elements of  (2x3) B  matrix of the state space model (equation 3. 96) are 

given as:  

11 0b                                                                                                             Eq. 6. 57 

12 ( / )b F V                                                                                                Eq. 6. 58 

13 0b                                                                                                  Eq. 6. 59 

21
H

p

UA
b

V C
                                                                                     Eq. 6. 60 
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22 0b                                                                           Eq. 6. 61 

23 ( / )b F V                                                                                     Eq. 6. 62 

6.3.1.4  Stability Analysis of  the  Non-adiabatic Jacketed CSTR 

The stability analysis is carried out by calculating the Eigen values of  the A  matrix of 

the state space model (equations 6.52-6.56).  Corresponding to each of the three steady 

states (Table 6.6) of the non-adiabatic jacketed CSTR , the  Eigen values ( 1  and 2 ) are 

calculated, as shown in Table 6.7.  

Table 6. 7 Steady State Multiplicity and Stability Analysis of  the CSTR 

Steady state Eigen value, α1 Eigen value, α2 Stability 

Analysis 

Low temperature,  low 

conversion steady state 

-0.90 -0.52 Open loop Stable 

(the two Eigen 

values are real 

and negative) 

Intermediate temperature,  

Intermediate conversion 

steady state 

-0.84 +0.50 Open loop 

Unstable 

(One Eigen value 

is positive) 

High temperature,  high 

conversion steady state 

0.77 0.96 i   0.77 0.96 i   Open loop Stable 

(The two Eigen 

values are 

complex 

conjugates with 

negative real part) 

 

Based on the Eigen values, ( 1  and 2 ), the following inferences are drawn with regard 

to stability of each of the three steady states: 

a. Stability of Low temperature,  low conversion steady state: 
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Since the two Eigen values are real and negative, the low temperature, low 

conversion steady state is open loop stable. 

b. Stability of intermediate temperature,  intermediate conversion steady state: 

Since one of the Eigen values is positive, the intermediate temperature,  

intermediate conversion steady state is open loop unstable. (Anusha & Rao, 2012). 

c. Stability of high temperature,  high conversion steady state: 

Since the two Eigen values are complex conjugates with negative real part, the 

high temperature,  high conversion steady state is also open loop stable.   

6.3.1.6  Degrees of Freedom Analysis 

The classification of process outputs (state variables or controlled variables), process 

inputs (disturbance and manipulated variables) and the process parameters are shown in 

Table 6.8. 

Table 6. 8 Classification of variables and parameters in the Non-adiabatic Jacketed 

CSTR 

State variables Process Input variables Process 

Parameters 

Unmeasured Measured 

Controlled 

variables 

(CV) 

Manipulated 

Variables 

(MV) 

Disturbance 

Variables (DV) 

AC  T  JT  0C A  

0T  

0k , E , H , 

UA , V , F , 

pC  
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The degrees of freedom analysis helps in (a) deciding the number of control loops 

required, and (b) deciding the proper pairing of the controlled variables (CV) with the 

Manipulated Variables (MV).  

For the case of the Non-adiabatic Jacketed CSTR,  the number of independent equations 

2en   and the number of variables 5vn  . The degrees of freedom is 3f  . In order to 

obtain a unique solution, the degrees of freedom must be reduced to zero. This is 

accomplished by: 

a) specifying the values of two disturbance variables (DV), 0C A  and 0T , and, 

b) Writing one controller equation relating the controlled variables (CV), T  with the 

Manipulated Variables (MV), JT . 

Based on the degrees of freedom analysis, the rector temperature is selected as the 

controlled variable (CV), since the online and continuous measurement of temperature is 

easier than the measurement of concentration. The degrees of freedom analysis also 

suggests that the reactor concentration gets automatically controlled by controlling the 

reactor temperature and that no additional control loop for the control of  reactor 

concentration is necessary. 

6.3.1.7  Transfer Function Model of  the  Non-adiabatic Jacketed CSTR 

The transfer function model (equations 3.103 and 3.104) of the non-adiabatic jacketed 

CSTR is obtained corresponding to the unstable intermediate temperature,  intermediate 

conversion steady state.  

The transfer function of the reactor concentration, AC  with respect to the jacket 

temperature, JT  is given as: 
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                                                                      Eq. 6. 63 

The transfer function, 11( )g s  (equation 6.63) suggests that the reactor concentration, AC  

follows second order dynamics with respect to change in the jacket temperature, JT . 

Similarly, the transfer function of the reactor temperature, T with respect to the jacket 

temperature, JT  is given as: 

21 2
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( )

0.34 0.42

s
g s

s s




 
                                                                       Eq. 6. 64 

The transfer function, 21( )g s  (equation 6.64) suggests that the reactor temperature, T

follows numerator dynamics (relative order of transfer function is first order) with respect 

to change in the jacket temperature, JT . 

The poles of  the transfer functions, 11( )g s  and 21( )g s  are obtained from the solution of 

the denominator polynomial (characteristic equation) as shown: 

2( 0.34 0.42) 0s s                                      Eq. 6. 65 

The two poles are given as: 

1 0.84p                                        Eq. 6. 66 

2 0.5p                                       Eq. 6. 67 

The two poles of  the transfer functions, 11( )g s  and 21( )g s  are same as the two Eigen 

values, ( 1  and 2 ) of the A  matrix of the state space model (equation 3. 96).  
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6.3.2  IMC based PID Controller Design for the Non-adiabatic Jacketed CSTR  

In order to control the temperature of the non-adiabatic jacketed CSTR at its unstable 

steady state, an Internal Model Control (IMC) based PI controller cascaded with a lead 

lag filter  is designed, based on equations 3.69 and 3.70 (section 3.2.5).    

The Integral of Square of Error (ISE)  is used as the Quantitative Performance Index 

(QPI) to select the  optimum value of  the controller tuning parameter,  , as shown in 

Figure 6.6. 

 

 

Figure 6. 6 IMC based PID controller tuning of the Non-adiabatic Jacketed CSTR 
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6.3.3  Closed loop Response of the IMC based PI Controller  

For a step change in the  reactor temperature set point (servo problem), the closed loop 

response of the Internal Model Control (IMC) based Proportional Integral (PI) controller 

is studied for different values of the controller tuning parameter,  . The designed 

controller has good set point tracking properties (minimum overshoot and zero offset) as 

shown in Figure 6.7. 

 

Figure 6. 7 Closed loop response of IMC based PID controller 
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6.3.4  Conclusion 

The conventional methods of PID based controller tuning may work well for open loop 

stable systems; but in case of open loop unstable systems (as exemplified by the  non-

adiabatic jacketed CSTR) the Internal Model Control (IMC) based PID tuning method 

proves to be superior. From the closed loop response of the system, it is observed that the 

dynamics of the system is fast enough to warrant a satisfactory operation of the non-

adiabatic jacketed CSTR at the unstable steady state. The performance indices also show 

promising results for the tuning method used for this problem.  


