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Chapter 3. PID Controller Design 

Techniques 

This chapter is divided into four sections. Conventional techniques of PID controller 

design are discussed in the first section. Internal Model Control (IMC) based PID 

controller design techniques are discussed in the second section. Generalized procedure 

for development of (linearized) state space and transfer function models of nonlinear 

multivariable processes, useful in controller design, is described in section three. Finally, 

the techniques of process identification are described in section four. 

3.1  Conventional PID Controller Design Techniques 

 The conventional PID controller design techniques can be broadly classified as: 

a) Closed loop tuning methods, and  

b) Open loop tuning methods.  

3.1.1  Ziegler-Nichols Closed loop Method 

The closed loop tuning method is based on the frequency response analysis of linear 

systems, when subjected to a periodic input (forcing function). The Ziegler-Nichols 

closed loop tuning method is also known as the ultimate gain method or the continuous 

cycling method (Ziegler & Nichols, 1993). In this method, the process is operated in 

closed loop using Proportional control action only. As the value of the proportional gain, 

KC is increased; the closed loop response becomes more and more oscillatory. At the 

critical value of proportional gain, KC=KCu (known as the ultimate gain),  the closed loop 

system exhibits continuous sustained oscillations and any further increase in the 

proportional gain KC leads to instability. The time period of sustained oscillations 

(corresponding to KC= KCu) is known as the critical or ultimate period of oscillation, Pu. 
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Based on the ultimate gain and period of oscillation, Ziegler-Nichols suggested a set of 

PID controller tuning parameters, as shown in Table 3.1 

Table 3. 1 PID Controller Parameters: Ziegler-Nichols Closed loop Method 

Controller  Ziegler-Nichols  (Z-N) Tuning Parameters 

KC
 

I  
D  

P only 0.5 KCu - - 

PI 0.45 KCu Pu/1.2 - 

PID 0.6 KCu Pu/2 Pu/8 

 

3.1.2  Tyreus-Luyben Closed loop Method  

Tyreus and Luyben (Luyben & Luyben, 1997) proposed slightly modified   PID controller 

tuning parameters,  originally based on the principle of continuous cycling method of 

Ziegler-Nichols. Their parameters show slight improvement over the Ziegler-Nichols 

parameters, with regard to handling process uncertainties and less oscillatory closed loop 

performance (Bequette, 2003). 

Table 3. 2 PID Controller Parameters: Tyreus-Luyben 

Controller Tyreus-Luyben Tuning Parameters 

KC
 

I  
D  

PI KCu/3.2 2.2 Pu - 

PID KCu/2.2 2.2 Pu Pu/6.3 
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3.1.3  Ziegler-Nichols Open loop Method 

In order to overcome the limitations of closed loop PID control parameters, Ziegler and 

Nichols suggested PID controller tuning parameters listed in Table 3.3, on the basis of 

open loop step response of an identified Integrator Plus Dead Time (IPDT) process. They 

extended their results to an identified First Order Plus Dead Time (FOPDT) process as 

well. One quarter decay ratio performance criterion was selected.  This method is also 

called the Process Reaction Curve (PRC) method (Ziegler & Nichols, 1993)  

Table 3. 3 PID controller tuning parameters based on Ziegler-Nichols open loop 

method 

Controller Ziegler-Nichols Open loop Tuning parameters 

KC
 

I  
D  

Integrator Plus Dead 

Time (IPDT) Process 

( ) s

p

K
g s e

s

  

First Order Plus Dead 

Time (FOPDT) Process

( )
( 1)

p s

p

p

K
g s e

s








 

  

P only 1

K
 p

pK




 

- - 

PI 0.9

K
 

0.9 p

pK




 

3.3  - 

PID 1.2

K
 

1.2 p

pK




 

2  0.5  
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3.1.4  Cohen-Coon Open loop Method 

Cohen and Coon (Cohen & Coon, 1953) suggested the PID controller tuning parameters 

(Table3.4)  based on the open loop step response of First Order Plus Dead Time (FOPDT) 

process model and one quarter decay ratio performance criterion. They further suggested 

that the open loop step response of any higher order system may be approximated by a 

First Order Plus Dead Time (FOPDT) process model and the PID controller is 

appropriately tuned based on the identified First Order Plus Dead Time (FOPDT) process 

model. 

Table 3. 4  PID controller tuning parameters suggested by Cohen and Coon Open 

loop Method 

Identified 

process 

First order plus dead time (FOPDT) model

( )
( 1)

p s

p

p

K
g s e

s








 

Controller Cohen and Coon Open loop Tuning Parameters 

KC
 

I  
D  

P only 
1

3

p

p pK

 

 

 
 

  

 
- - 

PI 
0.9

12

p

p pK

 

 

 
 

  

 
30 3 /

9 20 /

p

p

  

 

  


 

- 

PID 4

3 4

p

p pK

 

 

 
 

  

 
32 6 /

13 8 /

p

p

  

 

  


 

4

11 2 / p



 
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3.2  Internal Model Control (IMC) based Controller Design Techniques 

The Internal Model Control (IMC) based controller design technique involves the 

following steps: 

a) Development of process  (transfer function) model, ( )pg s  

The method of development of state space model and transfer function model of a general 

multivariable nonlinear process is elaborately described in Section 3.3.  

b) Dead time/Time delay Approximation  

Presence of dead time/time delay term introduces nonlinearity in a process transfer 

function. Hence it is important to appropriately approximate the dead time/time delay 

term (Mikleš & Fikar, 2007). Following are the three commonly used methods of 

approximation: 

i. First order Pade
’
 approximation:  

Approximation of dead time/time delay term up to linear term gives: 

   
0.5 1

0.5 1

s s
e

s

 



  



                       Eq. 3. 1 

First order Pade
’
 approximation introduces one additional pole and one additional zero 

(numerator dynamics) in a process transfer function. The additional pole is obtained by 

the solution of denominator polynomial as 

0.5 1 0s                           Eq. 3. 2 

2
p




                                        Eq. 3. 3 
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Since, the pole is located on the Left Half Plane (LHP), the first order Pade
’
 

approximation does not introduce any instability in the process. Similarly, the additional 

zero is obtained by the solution of numerator polynomial as 

( 0.5 1) 0s                          Eq. 3. 4 

2
z


                                      Eq. 3. 5 

Since, the zero is located on the Right Half Plane (RHP), the first order Pade
’
 

approximation leads to single inverse response in open loop. 

ii. Second order Pade
’
 approximation: 

   

Approximation of dead time/time delay term up to quadratic term gives: 

2 2

2 2

1
12 2

1
12 2

s

s s

e
s s



 

 



 



 

                                                               Eq. 3. 6                                                                   

Second order Pade
’
 approximation introduces two additional poles and two additional 

zeros (numerator dynamics) in a process transfer function. The additional poles are 

obtained by the solution of denominator quadratic polynomial (roots of s ) as: 

2 2

1 0
12 2

s s 
                          Eq. 3. 7 

1,2

3 3
p j

 


                                        Eq. 3. 8 

Since, the two poles are complex conjugates with negative real part, both the poles are 

open loop stable and hence the second order Pade
’
 approximation does not introduce any 
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instability in the process. Similarly, the two additional zeros are obtained by the solution 

of numerator quadratic polynomial (roots of s ) as: 

2 2

1 0
12 2

s s 
                          Eq. 3. 9 

1,2

3 3
z j

 
                       Eq. 3. 10 

Since, the two zeros are complex conjugates with positive real part, the two RHP zeros 

lead to double invers response in open loop. 

iii. Taylor series approximation: 

Approximation of dead time/time delay term up to linear term in Taylor series gives: 

(1 )se s                          Eq. 3. 11 

The Taylor series approximation introduces no additional pole but only an additional zero 

(numerator dynamics) in a process transfer function. The additional zero is obtained by 

the solution of polynomial: 

(1 ) 0s                        Eq. 3. 12 

1
z


                                    Eq. 3. 13 

Since, the zero is located on the Right Half Plane (RHP), the Taylor series approximation 

leads to single inverse response in open loop. 

c) Design of open loop model based controller, ( )q s   

The block diagram of open loop model based controller is shown in Figure 3.1. 
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Figure 3. 1 Block diagram of open loop model based controller 

The design of open loop model based controller involves obtaining a controller transfer 

function,  ( )q s , that provides an output ( )y s  with desirable characteristics (fast response, 

minimum or no overshoot, zero offset, fewer or no oscillations etc.); subject to step 

change in set point. The model based controller, ( )q s  is defined in terms of the inverse of 

process model. Based on the dynamic control law, the open loop model based controller 

is expressed as:  

1( ) ( ) ( )pq s g s f s

                        Eq. 3. 14 

Where,  ( )f s  represents the Internal Model Control (IMC) filter.  Proper selection of 

IMC filter ( )f s is very important in order to make the controller ( )q s  proper and avoid 

internal instability (Morari & Zafiriou, 1989). 

d) Selection of Internal Model Control (IMC) filter, ( )f s  

The two forms of IMC filter that are commonly used in controller design are: 

i. Low pass filter, expressed as: 

   
1

( )
( 1)n

f s
s




                                             Eq. 3. 15 

ii. Modified filter, expressed as: 

( 1)
( )

( 1)n

s
f s

s









                                    Eq. 3. 16 

( )y s( )spy s ( )pg s( )q s
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e) Factorization of process  (transfer function) model 

Since the model based controller ( )q s  makes use of the inverse of process model, it is 

important to factorize the process model into invertible part, ( )pg s  and non-invertible 

part, ( )pg s  and use only the invertible part, ( )pg s  in controller design. A process 

model is factorized as: 

( ) ( ) ( )p p pg s g s g s                                      Eq. 3. 17 

f) Design of closed loop IMC based PID controller 

 The open loop model based controller,  ( )q s   is effective only if the process model is 

perfect and there are no disturbances affecting the process. In practice, however, there is a 

mismatch between the actual process output and its model prediction. Moreover, the 

process may suffer from unmeasured disturbances/uncertainties. A closed loop control 

system is capable of overcoming the above shortcomings of an open loop control system. 

The block diagram of open loop model based control system is therefore modified into a 

closed loop system, as shown in Figure 3.2 

 

Figure 3. 2 Closed loop Model based Controller 

( )y s



+

( )q s





( )d s

( )pg s

( )pg s
( )u s





Process

Model based Controller

( )spy s

( )y s

( )d s
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The closed loop model based controller is further rearranged as a standard Internal Model 

Control (IMC) based PID feedback controller (Yesil et al., 2007), as shown in Figure 3.3. 

 

Figure 3. 3 Closed loop Block Diagram of IMC based Feedback Controller 

Upon simplification of the closed loop block diagram shown in Figure 3.3, the Internal 

Model Control (IMC) based PID controller relationship is obtained as:  

( ) ( )
( )

( ) [1 ( ) ( )]
c

p

u s q s
g s

s q s g s
 


                   Eq. 3. 18 

The IMC based PID controller derived in Equation 3.18 is finally compared with a 

standard PID controller, represented as: 

2( 1)1
( ) (1 ) I D I

c c D c

I I

s s
g s K s K

s s

  


 

 
                                    Eq. 3. 19 

The block diagram of Internal Model Control (IMC) based PID controller in standard 

form is shown in Figure 3.4. 

( )y s



+

( )q s




( )d s

( )pg s

( )pg s
( )u s( )s

( )y s




( )y s
Process

IMC based PID Controller

( )spy s
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Figure 3. 4 Closed loop block diagram of IMC based PID controller 

g) Closed loop transfer functions of IMC based PID controller 

Based on the closed loop block diagram of Internal Model Control (IMC) based PID 

controller shown in Figure  3.4, the two closed loop transfer functions for set point and 

load change are derived as: 

i. Close loop transfer function for set point change: 

( ) ( )( )
( )

( ) 1 ( )[ ( ) ( )]

p

sp

sp p p

q s g sy s
g s

y s q s g s g s
 

 
                                 Eq. 3. 20 

ii. Close loop transfer function for load change: 

[1 ( ) ( )]( )
( )

( ) 1 ( )[ ( ) ( )]

p

load

p p

q s g sy s
g s

d s q s g s g s


 

 
                                 Eq. 3. 21 

As a special case, when the process model is perfect (no mismatch with actual process) 

and there are no disturbances acting on the process, the IMC based PID controller 

behaves like an open loop model based controller, as shown in Figure 3.1. 

The case of perfect model is mathematically expressed as:  

( ) ( )p pg s g s                                      Eq. 3. 22 

Substitution of equation 3.22 into equation 3.20 yields: 

( )y s



+

( )pg s
( )u s( )s

( )y s




Process

IMC based PID Controller

( )spy s ( )
( )

[1 ( ) ( )]
c

p

q s
g s

q s g s



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( )
( ) ( ) ( )

( )
sp p

sp

y s
g s q s g s

y s
                      Eq. 3. 23 

The block diagram of closed loop transfer functions is shown in Figure 3.5 

 

Figure 3. 5 Block Diagram of Closed loop Transfer Functions 

Based on the steps outlined in section 3.2, an Internal Model Control (IMC) based PID 

controlled is designed for stable and unstable processes, as shown below:

 

3.2.1  IMC based PID Controller Design for First Order Stable Process 

The transfer function of a first order stable process is represented as: 

( )
( 1)

p

p

p

K
g s

s



                                 Eq. 3. 24                                                                                                

The invertible and non-invertible parts of the process transfer function are obtained by 

factorization (using equation 3.17) as: 

(s) 1pg                                  Eq. 3. 25                

( ) ( )
( 1)

p

p p

p

K
g s g s

s
  


                               Eq. 3. 26 

The IMC filter is selected (based on equation 3.15) as: 

( )y s

( )spy s ( )spg s




( )loadg s( )d s
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1

( )
( 1)

f s
s




                                         Eq. 3. 27                                                                                  

The model based controller, ( )q s  is obtained (using Equation 3.14) as: 

( 1)1
( )

( 1)

p

p

s
q s

K s









                                                   Eq. 3. 28 

The IMC based PID controller, ( )cg s  is obtained (using Equation 3.18) as:  

( 1)
( )

p p

c

p p

s
g s

K s

 

 


                                        Eq. 3. 29 

Comparing equation 3.29 with that of a standard Proportional Integral (PI) controller 

(equation 3.19), the PID controller parameters are obtained as: 

1 p

c

p

K
K




                                                               Eq. 3. 30 

I p                                                    Eq. 3. 31 

The IMC based PID controller for a first order stable process results in a standard PI 

controller whose parameters are evaluated using equations 3.30 and 3.31, with   as the 

tuning parameter. 

3.2.2  IMC based PID Controller Deign for Second Order Stable Process 

The transfer function of a second order stable process is represented as: 

1 2

( )
( 1)( 1)

p

p

p p

K
g s

s s 


 
                                   Eq. 3. 32

 

The invertible and non-invertible parts of the process transfer function are obtained by 

factorization (using equation 3.17) as: 
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(s) 1pg                                  Eq. 3. 33                

1 2

( ) ( )
( 1)( 1)

p

p p

p p

K
g s g s

s s 
  

 
                             Eq. 3. 34 

The IMC filter is selected (based on equation 3.15) as: 

   
1

( )
( 1)

f s
s




                                         Eq. 3. 35                                                                                  

The model based controller, ( )q s  is obtained (using Equation 3.14) as: 

1 2
( 1)( 1)

( )
( 1)

p p

p

s s
q s

K s

 



 



                                   Eq. 3. 36 

The IMC based PID controller, ( )cg s  is obtained (using equation 3.18) as:  

1 2 1 21 2

1 2

2 ( ) 1( )
( )

( )

p p p pp p

c

p p p

s s
g s

K s

    

  

     


                        Eq. 3. 37 

Comparing equation 3.37 with that of a standard Proportional Integral Derivative (PID) 

controller (equation 3.19), the PID controller parameters are obtained as: 

1 2
( )p p

c

p

K
K

 




                                     Eq. 3. 38 

1 2
( )I p p                                                       Eq. 3. 39 

1 2

1 2
( )

p p

D

p p

 


 



                                                   Eq. 3. 40 
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The IMC based PID controller for a first order stable process results in a standard PID 

controller whose parameters are evaluated using equations 3.38-3.40, with   as the 

tuning parameter. 

3.2.3  IMC based PID Controller Deign for First Order Plus Dead Time Stable 

Process 

The transfer function of a First order Plus Dead Time (FOPDT) Process is represented as: 

( )
( 1)

p s

p

p

K
g s e

s








                                              Eq. 3. 41  

Using first order Pade
’
 approximation for dead time (equation 3.1), the process transfer 

function is represented as: 

( 0.5 1)
( )

( 1) (0.5 1)

p

p

p

K s
g s

s s



 

 


 
                                   Eq. 3. 42 

The invertible and non-invertible parts of the process transfer function are obtained by 

factorization (using equation 3.17) as: 

( ) ( 0.5 1)pg s s                                 Eq. 3. 43                

( )
( 1)(0.5 1)

p

p

p

K
g s

s s 
 

 
                              Eq. 3. 44 

The IMC filter is selected (based on equation 3.15) as: 

   
1

( )
( 1)

f s
s




                   Eq. 3. 45                                                                                  

The model based controller, ( )q s  is obtained (using equation 3.14) as: 
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( 1)(0.5 1)1
( )

( 1)

p

p

s s
q s

K s

 



 



                    Eq. 3. 46 

The IMC based PID controller, ( )cg s  is obtained (using equation 3.18) as:  

20.5 ( 0.5 ) 1( 0.5 )
( )

( 0.5 ) ( 0.5 )

p pp

c

p p

s s
g s

K s

   

   

     
 

             Eq. 3. 47 

Comparing equation 3.47 with that of a standard Proportional Integral (PI) controller 

(equation 3.19), the PID controller parameters are obtained as: 

( 0.5 )

( 0.5 )

p

c

p

K
K

 

 





                     Eq. 3. 48 

( 0.5 )I p                         Eq. 3. 49 

0.5

( 0.5 )

p

D

p




 



                     Eq. 3. 50 

The IMC based PID controller for a first order stable process results in a standard PID 

controller whose parameters are evaluated using equations 3.48-50, with   as the tuning 

parameter. 

3.2.4  IMC based PID Controller Deign for First Order Unstable Process  

Let the transfer function of a first order unstable process (having one RHP pole) be 

represented as:   

( )
( 1)

p

p

u

K
g s

s


 
                               Eq. 3. 51 

    Where, the unstable pole is represented as: 



47 

 

1
u

u

p


                                                                   Eq. 3. 52 

The invertible and non-invertible parts of the process transfer function are obtained by 

factorization (using equation 3.17) as: 

(s) 1pg                                    Eq. 3. 53    

( ) ( )
( 1)

p

p p

u

K
g s g s

s
  

 
                                                        Eq. 3. 54 

The IMC filter is selected (based on equation 3.16) as: 

Let 
2

( 1)
( )

( 1)

s
f s

s









                                                                 Eq. 3. 55 

Since the additional parameter   in the IMC filter defined above introduces an additional 

degree of freedom, the following additional condition is therefore used: 

2

1
( ) 1

( ) 1
1

( ) 1

u

u

s p

u

f s









 
 

  
 

 
 

                                                 Eq. 3. 56 

A relationship between the two parameters (  and ) of the IMC filter is obtained from 

the solution of equation 3.56, as shown: 

2
u


 



 
  

 
                                    Eq. 3. 57 

The model based controller, ( )q s  is obtained (using equation 3.14) as: 

2

( 1) ( 1)
( )

( 1)

u

p

s s
q s

K s

 



  



                              Eq. 3. 58     
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The IMC based PID controller, ( )cg s  is obtained (using equations 3.18 and 3.58) as:                                                    

( 1)
( )

(2 )
c

p

s
g s

K s



 





                                                                Eq. 3. 59 

Comparing equation 3.59 with that of a standard Proportional Integral (PI) controller 

(equation 3.19), the PI controller parameters are obtained as: 

1

(2 )
c

p

K
K



 



                                                         Eq. 3. 60                             

2I

u


  



 
   

 
                                                                   Eq. 3. 61                    

The IMC based PID controller for a first order unstable process results in a standard PI 

controller whose parameters are evaluated using equations 3.60 and 3.61.   as the tuning 

parameter.                                                                              

3.2.5  IMC based PID Controller Deign for First Order Unstable Process (RHP 

pole and Numerator dynamics) 

The transfer function of a first order unstable process having RHP pole and numerator 

dynamics is represented as:   

( 1)
( )

( 1)( 1)

p n

p

u p

K s
g s

s s



 




  
                                            Eq. 3. 62                                                                            

Where, the unstable pole is represented as: 

1
u

u

p


                                                                Eq. 3. 63 

The invertible and non-invertible parts of the process transfer function are obtained by 

factorization (using equation 3.17) as: 
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(s) 1pg                                                                                          Eq. 3. 64     

( 1)
( ) ( )

( 1)( 1)

p n

p p

u p

K s
g s g s

s s



 



 

  
                                                                         Eq. 3. 65 

The IMC filter is selected (based on equation 3.16) as: 

Let 
2

( 1)
( )

( 1)

s
f s

s









                                                                                                 Eq. 3. 66 

The model based controller, ( )q s  is obtained (using equation 3.14) as: 

2

( 1)( 1) ( 1)
( )

( 1) ( 1)

u p

p n

s s s
q s

K s s

  

 

   


 
                                                             Eq. 3. 67     

Using the IMC filters parameter relationships (equations 3.56 and 3.57), the IMC based 

PID controller, ( )cg s  is obtained (using equations 3.18) as:                                                    

( 1)1 ( 1)
( )

(2 ) ( 1)

p

c

p n

ss
g s

K s s

 

   

   
       

                                                              Eq. 3. 68 

Comparing equation 3.68 with that of a standard Proportional Integral (PI) controller 

(equation 3.19), the PI controller parameters are obtained as: 

1

(2 )
c

p

K
K



 



                                                                                         Eq. 3. 69                             

2I

u


  



 
   

 
                                                                    Eq. 3. 70           

Lead lag filter: 

( 1)
( )

( 1)

p

f

n

s
g s

s









                                                                                          Eq. 3. 71                                                                                                 
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The IMC based PID controller for a first order unstable process having RHP pole and 

numerator dynamics results in a standard PI controller cascaded with a lead lag filter 

(equation 3.71). The PI parameters are evaluated using equations 3.69 and 3.70.   as the 

tuning parameter of the IMC based PI controller. 

3.3  Process Models for Controller Design 

Considering a general nonlinear multivariable dynamic process model (in time domain) 

having ‘n’ number of state variables, ‘m’ number of input variables and ‘r’ number of 

measured output variables ( r n ),  as shown: 

1
1 1 2 1 2( , ,..., ,..., , u , ,..., ,..., u )i n j m

dx
f x x x x u u

dt
                                                         Eq. 3. 72 

2
2 1 2 1 2( , ,..., ,..., , u , ,..., ,..., u )i n j m

dx
f x x x x u u

dt
                                                        Eq. 3. 73 

 

1 2 1 2( , ,..., ,..., , u , ,..., ,..., u )i
i i n j m

dx
f x x x x u u

dt
                        Eq. 3. 74     

                                       

1 2 1 2( , ,..., ,..., , u , ,..., ,..., u )n
n i n j m

dx
f x x x x u u

dt
                                                        Eq. 3. 75 

In vector-matrix notation,  

the vector of state variables having dimensions (nx1) is defined as: 

1 2( , ,..., ,..., )T

i nx x x xx                                                                                            Eq. 3. 76 
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the vector of input variables having dimensions (mx1) is defined as: 

1 2(u , ,..., ,..., u )T

j mu uu                                                                                          Eq. 3. 77 

the vector of nonlinear functions having dimensions (nx1) is defined as: 

1 2( , ,..., ,..., )T

i nf f f ff                                                                                            Eq. 3. 78 

the vector of time derivatives of state variables having dimensions (nx1) is defined as: 

1 2
1 2( , ,..., , ) ( , ,..., ,... )T Ti n

i n

dx dxdx dx
x x x x

dt dt dt dt
 x                  Eq. 3. 79 

In vector-matrix compact notation, the equations 3.72-3.75 are written as 

x f(x,u)                                                                                                                  Eq. 3. 80 

Under steady state conditions, equations 3.76-3.80 are correspondingly written as:  

1 2( , ,..., ,..., )T

s s is nsx x x xsx                                                         Eq. 3. 81                                                        

1 2(u , ,..., ,..., u )T

s s js msu usu                                                                                     Eq. 3. 82 

1 2( , ,..., ,..., )T

s s is nsf f f fsf = 0                                                                                Eq. 3. 83 

1 2
1 2( , ,..., , ) ( , ,..., ,... )T Ts s is ns
s s is ns

dx dx dx dx
x x x x

dt dt dt dt
  sx 0                  Eq. 3. 84 

s s sx = f(x ,u ) = 0                                                                                                       Eq. 3. 85 

Here the subscript, ‘s’ is used to denote the steady state condition.  

Under steady state conditions, the vector equation 3.85 represents a set of nonlinear 

algebraic equations in ‘n’ unknown variables, whose solution is numerically obtained by 
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multivariable  Newton Raphson Method (Scarborough, 1958) (Appendix A). The 

tridiagonal matrix algorithm (Appendix C) is very useful in solving a set of linear (or 

linearized nonlinear) algebraic equations that are most frequently encountered  in the 

steady state solution of all counter current flow equilibrium staged processes such as 

distillation columns, tray column absorbers etc.(Tomich, 1970) (Broyden, 1965) (Friday 

& Smith, 1964) (Tierney & Bruno, 1967) 

3.3.1  Linearized State Space Model (Time domain) 

Linearization of the nonlinear functions (equation 3.80) around their steady state 

operating point, is performed using the Taylor series expansion (up to linear terms only): 

1 1 1
1 1 1 1 2 2

1 2

1 1 1
1 1 2 2

1 2

( ) | ( ) ( ) | ( ) ... ( ) | ( )

( ) | (u ) ( ) | (u ) ... ( ) | (u )

s s s s s s n ns

n

s s s s s m ms

m

f f f
f f x x x x x x

x x x

f f f
u u u

u u u

   
         

   

   
      

   

              Eq. 3. 86 

2 2 2
2 2 1 1 2 2

1 2

2 2 2
1 1 2 2

1 2

( ) | ( ) ( ) | ( ) ... ( ) | ( )

( ) | (u ) ( ) | (u ) ... ( ) | (u )

s s s s s s n ns

n

s s s s s m ms

m

f f f
f f x x x x x x

x x x

f f f
u u u

u u u

   
         

   

   
      

   

             Eq. 3. 87 

 

1 1 2 2

1 2

1 1 2 2

1 2

( ) | ( ) ( ) | ( ) ... ( ) | ( )

( ) | (u ) ( ) | (u ) ... ( ) | (u )

n n n
n ns s s s s s n ns

n

n n n
s s s s s m ms

m

f f f
f f x x x x x x

x x x

f f f
u u u

u u u

   
         

   

   
      

   

             Eq. 3. 88 

The vector of state variables in deviation form, having dimensions (nx1), is defined as: 

1 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ( , ,..., ,..., ) ( , ,..., ,..., )T T

i n s s i is n nsx x x x x x x x x x x x     x                         Eq. 3. 89 
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The vector  of time derivatives of state variables in deviation form, having dimensions 

(nx1), is defined as: 

1 1 2 2( ) ( ) ( ) ( )
ˆ , ,..., ,...

T

s s i is n nsd x x d x x d x x d x x

dt dt dt dt

    
  
 

x                                    Eq. 3. 90 

The vector  of input variables  in deviation form, having dimensions (mx1), is defined as: 

1 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ( , ,..., ,..., ) (u , ,..., ,..., u )T T

j m s s j js m msu u u u u u u u u u     u                      Eq. 3. 91 

vector of nonlinear functions in deviation form, having dimensions (nx1), is defined as: 

1 2 1 1 2 2
ˆ ˆ ˆ ˆˆ ( , ,..., ,..., ) ( , ,..., ,..., )T T

i n s s i is n nsf f f f f f f f f f f f     f                        Eq. 3. 92 

The square matrix of partial derivatives of nonlinear functions with respect to state 

variables, evaluated at steady state and having dimensions (nxn) is defined as: 

1 1 1 1

1 2

2 2 2 2

1 2

1 2

( ) | ( ) | ( ) | ( ) |

( ) | ( ) | ( ) | ( ) |

( ) | ( ) | ( ) | ( ) |

s s s s

i n

s s s s

i n

n n n n
s s s s

i n

f f f f

x x x x

f f f f

x x x x

f f f f

x x x x

    
    
 
    
 
     

 
 
    

     

A                                                     Eq. 3. 93       

The matrix of partial derivatives of nonlinear functions with respect to input variables, 

evaluated at steady state and having dimensions (nxm) is defined as: 

1 1 1 1

1 2

2 2 2 2

1 2

1 2

( ) | ( ) | ( ) | ( ) |

( ) | ( ) | ( ) | ( ) |

( ) | ( ) | ( ) | ( ) |

s s s s

j m

s s s s

j m

n n n n
s s s s

j m

f f f f

u u u u

f f f f

u u u u

f f f f

u u u u

    
    
 
    
 
     

 
 
    

     

B                                                    Eq. 3. 94 
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Equations 3.86 to 3.88 are compactly written in vector matrix notation, in terms of 

deviation variables as: 

ˆ ˆ ˆx = Ax + Bu                                                                                                             Eq. 3. 95 

In general notation, the superscript ^  in equation 3.95 is omitted and the linearized  state 

space model (in time domain) is represented as: 

x = Ax +Bu                                                                                                             Eq. 3. 96 

It is implied that all the variables in the vector-matrix equation 3.96 are expressed in 

deviation form. 

If the state variables of a process are not measurable or if only a subset of state variables 

are require to be measured for the sake of controller design, the linearized state space 

model is accompanied by a measurement equation, as shown: 

y = Cx + Du                                                                                                             Eq. 3. 97 

Where, the measurement vector, y  having dimensions (rx1), is represented as: 

1 2( , ,..., ,..., )T

k ry y y yy                                                                                          Eq. 3. 98 

The measurement vector, y  is a subset of the state variable vector x , such that r n .  

The Matrices of constant coefficients  C  having dimensions (rxn) and D having 

dimensions (rxm) are appropriately chosen. In most cases, 

D = 0                                                                                                                        Eq. 3. 99 
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3.3.2  Transfer Function Model (Laplace domain) 

Equations 3.96 and 3.97 represent the linearized state space model of a process in time 

domain. Taking Laplace transform of the vector-matrix equations, 3.96 and 3.97: 

{ } ( ) (0) ( ) ( )L s s s s   x x x Ax Bu                                                                      Eq. 3. 100 

{ } ( ) ( )L s s y y Cx                                                                                               Eq. 3. 101 

Choosing the initial steady state as initial condition, results in: 

 (0) x 0                                                                                                                 Eq. 3. 102 

Solution of equation 3.100 yields: 

1( ) ( ) ( )s s s x I A B u                                                                                           Eq. 3. 103 

Substitution of equation 3.103 into 3.101 gives: 

1( ) ( ) ( )s s s y C I A B u                                 Eq. 3. 104 

Defining a multivariable process transfer function matrix, ( )sG , equation 3.104 is 

simplified as: 

( ) ( ) ( )s s sy G u                                                                            Eq. 3. 105 

Where,  

1( ) ( )s s  G C I A B                                                                           Eq. 3. 106                                             

Each element of the multivariable process transfer function matrix, ( )sG ,  relates the k
th

 

output of a process to its j
th

 input.  Scalar elements of  the multivariable process transfer 

function matrix, ( )sG  are represented as: 
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11 12 1 1

21 22 2 2

1 2

1 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )( ) ( ) ( )

( ) ( ) ( ) ( )

j m

j m

kjk k km

r r rj rm

g s g s g s g s

g s g s g s g s

s
g sg s g s g s

g s g s g s g s

 
 
 
 

  
 
 
 
  

G                                                     Eq. 3. 107 

A general element of the multivariable process transfer function matrix is represented as: 

( )
( )

( )

k
kj

j

y s
g s

u s
                                                                                                         Eq. 3. 108 

Based on equation 3.105, the transfer function of Single Input Single Output (SISO) 

process is represented as: 

1 11 1( ) ( ) ( )y s g s u s                                                                                                  Eq. 3. 109 

The block diagram of a Single Input Single Output (SISO) process is shown in Figure 3.6. 

 

Figure 3. 6 Block diagram of Single Input Single Output (SISO) process 

Similarly, based on equation 3.105, the transfer functions of a Two Input Two Output 

(TITO) process are represented as: 

1 11 1 12 2

2 21 1 22 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

y s g s u s g s u s

y s g s u s g s u s

  
 

  
                    Eq. 3. 110                                                 

The block diagram of a Two Input Two Output (TITO) process is shown in Figure 3.7. 
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Figure 3. 7 Block diagram of Two Input Two Output (TITO) process 

A description of the vectors and matrices used in the linearized state space and transfer 

function models, along with their dimensions, is given in Table 3.5 

Table 3. 5  Dimensionality of State Space and Transfer Function Models 

Notation Dimensions Description 

x  (nx1) Vector  of state variables in deviation form 

x  (nx1) Vector  of time derivatives of state variables in 

deviation form 

u  (mx1) Vector  of input variables in deviation form 

y  (rx1) r n  Vector  of measured outputs in deviation form 

A  (nxn) Matrix of partial derivatives with respect to state 

variables evaluated at steady state 

B  (nxm) Matrix of partial derivatives with respect to input 

variables evaluated at steady state 

C  (rxn) Matrix of constant coefficients in measurement 

equation 

D  (rxm) Matrix of constant coefficients in measurement 

equation 

G  (rxm) Matrix of multivariable transfer functions 

1y ( )s1( )u s

2 ( )u s

11( )g s




12 ( )g s

21( )g s

22 ( )g s





2y ( )s
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3.4  Process Identification  

3.4.1  Identification from Open loop Step Response Experimental Data 

The open loop step response experimental data is used for identification of transfer 

function models  (Chidambaram, 1998). Cohen and Coon suggested that a higher order 

system can be approximated as a First Order Plus Dead-Time (FOPDT) process (Cohen 

& Coon, 1953). The transfer function model of a First Order Plus Dead-Time (FOPDT) 

FOPDT process is represented as: 

( )
( )

( ) 1

p s

p

Ky s
g s e

u s s





 


                                                                                       Eq. 3. 111 

Where, 

pK  represents the steady state gain of the process 

p  represents the time constant of the process 

  represents the time delay/dead-time 

For a step input of magnitude u in the process input variable: 

u( )
u

s
s


                                                                                                               Eq. 3. 112 

Substituting equation 3.112 into 3.111:  

( ) ( ) ( )
( 1)

p s

p

K u
y s g s u s e

s s








 


                                                                            Eq. 3. 113 

Taking invers Laplace transform of equation 3.113, the transient response (in time 

domain) is obtained as: 
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 
0;

(t)
1 exp ( ) / ;p p

t
y

K u t t



  

  
  

         

                                                  Eq. 3. 114 

In equation 3.114, the unknown process parameter pK  is estimated from the ultimate 

(final steady state) value of response: 

( ) py K u                                                                                                            Eq. 3. 115 

The other (unknown) process parameters p and   are estimated from the step response 

experimental data. At this stage, the equation of (t)y ( equation 3.114) is nonlinear with 

respect to process parameters. 3.114 is therefore combined with equation 3.115 and 

rearranged as shown: 

( ) y(t)
exp ( ) /

( )
p

y
t

y
 

 
    

                                                                            Eq. 3. 116 

Taking logarithm on both sides, equation 3.116 is transformed as: 

( ) y(t)
ln

( ) p p

y t

y



 

  
  

 
                                                                                    Eq. 3. 117 

Defining the transformed dependent variable (ordinate) as:  

( ) y(t)
ln

( )

y
Y

y

  
  

 
                                                                                              Eq. 3. 118 

Defining the transformed (yet to be estimated)  parameters as: 

1

p





                                                                                                                   Eq. 3. 119 

2

1

p




                                                                                                                 Eq. 3. 120 
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Equation 3.117 is written in terms of transformed variables and parameters as: 

1 2Y t                                                                                                              Eq. 3. 121 

Equation 3.121 is linear with respect to the two parameters, 
1  and 

2 . The unknown 

parameters are estimated by any of the following two methods: 

i. Graphical method: 

In the graphical method, a straight line is plotted between the transformed dependent 

variable (ordinate), Y  against  the abscissa, t .  
2  is obtained from the slope of straight 

line and 
1  is obtained from the intercept (on the ordinate) of straight line.  

ii. Linear regression (Least squares parameter estimation) 

More accurate values of the unknown parameter vector  1 2( , )T β are estimated using 

the method of linear regression  (Ross, 2020), (Himmelblau, 1970) (Least squares 

parameter estimation). The linear least squares parameter estimation methodology is  

elaborately described in Appendix B.  

Finally, equations 3.115, 3.119 and 3.120 are used to identify the unknown process 

parameters. 

3.4.2  Identification from Steady State Input-Output Experimental Data  

 The steady state input-output experimental data is of utmost importance in understanding 

the nonlinear behaviour of a process. The chemical engineering processes are mostly 

nonlinear and exhibit higher order (sluggish) response. As suggested by Cohen and Coon, 

the higher order systems can be approximated as FOPDT processes. 

First order flow systems are characterized by (a) their capacity to store mass or thermal 

energy and (b) their resistance offered to flow of mass or energy (Svrcek et al., 2014). 
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The (graphical) plots of steady state input-output experimental data is therefore very 

useful in establishing the linear/nonlinear relationships between the flows and system 

states. Typically, in first order liquid level systems, the following process parameters are 

estimated based on the steady state experimental data: 

1. Linear/nonlinear flow resistance  

2. Process time constant (product of capacitance and resistance) 

3. Steady state  process gain 

 


