CERTIFICATE

It is certified that the work contained in the thesis titled "**Modeling, Identification and IMC based PID Control of Multivariable Nonlinear Processes**" by **Durga Prasad A** is carried out under our supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph.D. Degree.

Prof. Ram Sharan Singh (Supervisor) Prof. Siddh Nath Upadhyay (Co-Supervisor)

Department of Chemical Engineering & Technology Indian Institute of Technology (Banaras Hindu University) Varanasi–221005

DECLARATION BY THE CANDIDATE

I, Durga Prasad A, certify that the work embodied in this thesis is the research work carried out by me under the supervision of Prof. Ram Sharan Singh (Supervisor) and Prof. Siddh Nath Upadhyay (Co-Supervisor) from December 2015 to April 2021, at the Department of Chemical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works are cited in my work in this thesis. I further declare that I have not wilfully copied others work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, thesis, etc., or available on the websites and have not included them in this thesis and have not cited as my own work.

Date:

Place: Varanasi

(DURGA PRASAD A)

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of our knowledge.

Prof. Ram Sharan Singh (Supervisor) Prof. Siddh Nath Upadhyay (Co-Supervisor)

Prof. Vijay Laxmi Yadav (Head) Department of Chemical Engineering & Technology Indian Institute of Technology (Banaras Hindu University) Varanasi

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Modeling, Identification and IMC based PID Control of Multivariable Nonlinear Processes

Name of the Student: Durga Prasad A

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy degree.

Date:

Place: Varanasi

(DURGA PRASAD A)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

DEDICATED TO MÝ BELOVED MOTHER SMT. A.V. RATNAM WHO HAS ALWAYS VALUED EDUCATION MORE THAN ANÝ MATERIAL POSSESSION

Acknowledgement

I find myself lacking in expression to extend my profound sense of respect and deepest gratitude to my Thesis supervisors Prof R.S. Singh and Prof S.N. Upadhyay, Department of Chemical Engineering & Technology, IIT (BHU) Varanasi under whose patronage I had the privilege to work. Today, this thesis has attained successful completion solely due to the inspiration and the technical cognizance that I was fortunate to receive from them. I shall always be indebted to them for their words of enthusiasm and encouragement that instil in me the spirit of devotion and hard work.

I also acknowledge my heartiest thankfulness to the members of RPEC: Prof. B.N. Rai and Prof. Pradyumn Ghosh, who have helped me with their valuable suggestions and technical assistance. They have always been a constant source of inspiration for me.

I would like to thank Prof. (Mrs.) V.L. Yadav, Head, Department of Chemical Engineering & Technology, IIT (BHU) for encouraging me and providing me all the facilities to carry out my research work. She has always motivated me and helped me overcome the challenges in life.

I shall always remain thankful to Prof. P.K. Mishra for his valuable guidance and support in all walks of life.

I take this opportunity to extend my thankfulness to Prof. S.B. Dwivedi, Prof. Rajiv Prakash, Prof. A.S.K. Sinha and Prof. G.V.S. Sastry, Dean (Academic Affairs) IIT (BHU) for their valuable support.

I am thankful to the honourable Directors of IIT (BHU) Varanasi, Prof. P.K. Jain and Prof. Rajeev Sangal for extending their support.

I am very thankful towards my coursework teachers: Prof. K.K. Srivastava, Prof. A.K. Verma, Dr. Chandan Upadhyay, Prof. Sirshendu De (IIT Kharagpur), Prof. S. Neogi (IIT Kharagpur) and Prof. Rabibrata Mukherjee (IIT Kharagpur). Their lessons, lectures and classes always helped me gain the necessary knowledge and wisdom to carry out my studies.

I shall always be indebted to my earlier supervisors: Prof. Saibal Ganguly (IIT Kharagpur), Prof. Sirshendu De (IIT Kharagpur) and Prof. A.S.K. Sinha for providing me ample opportunities of learning and enhancing my knowledge.

I am thankful to the two institutions IIT (BHU) Varanasi and IIT Kharagpur for giving me ample opportunities to learn.

I am extremely thankful to Dr. Hiralal Pramanik, Dr. Ankur Verma, Dr. Ravi Jaiswal and Dr. Jyoti Prasad. Chakraborty, the Conveners, DPGC and all the DPGC members for their support and favour.

I am thankful to all the faculty members ((Late) Prof. Surendra Kumar, Prof. P.N. Tiwari, Prof. G.C. Baral, (Late)Prof. Ram Prasad, Prof. Pradeep Ahuja, Prof. M.K. Mondal, Prof. Satyavir Singh, Mr. A.C. Mohan, Dr. Bhawna Verma, Dr. Sweta, Dr. Manoj Kumar, Dr. Vijay Shinde, Dr. Debdip Bhandary and Dr. Rajesh Upadhyay, Chemical Engineering Department, IIT (BHU) Varanasi for their constant support throughout my learning.

I am thankful to the non-teaching staff, office staff and support staff of the Department for their collective support. I am thankful to Mr. Thapa, Mr. Sudhir (Senior), Mr. Sudhir (Junior), Mr. Ajay and Mr. Rakesh for helping me conduct experiments in the Process Control laboratory of the Department.

I am thankful to the research scholars, PG and UG students of the Department for sharing their knowledge with me.

I am especially thankful to Dr. Pradeep Kumar who has always extended his support and who always encouraged me to complete my thesis.

I am very thankful to Prof. Rajesh Kumar, Chairman, IWD, IIT (BHU) for his encouragement and support.

I am highly indebted to Prof. J.V. Medicherla (our beloved Jagan Sir), MBU, IMS, BHU who always supported me as my guardian and encouraged me to compete my Ph.D. thesis.

I am thankful to Mr. Ankit Kumar who has always been very friendly and who always helped me with his computer knowledge.

I am thankful to Mr. Varun for his constant cooperation and help in DPGC matters.

Special thanks to Dr. Bineeta Singh, Dr. Ravi Sonwani and Dr. Amrita Shahi for sparing their valuable time and helping me in my thesis preparation and submission.

I shall be failing in my duties, if I don't acknowledge the cooperation of my friends and colleagues from other departments of the Institute, who stood by me in my thick and thin times.

I am thankful to my father-in-law Mr. V. Syamala Rao and my mother-in-law Smt. V. Laxmi Rao for their affection. I am thankful to my daughter Ratna Mrinalini and son Lakshman Shubhankar for their support in our collective journey of student hood.

Above all, I wish to extend my sincerest regards to my parents and all my sisters (Smt. Laxmi Rao, Smt. Nagamani Rao, Smt. Ramani Rao, Smt. Aliveni Rao, Smt. Kiran Rao and Smt. Shivani Rao), brothers-in-law, nieces, nephews, and all my family members, whose well wishes and blessings have always played a key role in all walks of my life.

Last but not the least; I am very much thankful to my wife Mrs. Aparna for her constant support and companionship in this journey of 19 years and counting.

I shall always remain thankful to all the kind souls who have directly or indirectly sent their wishes for my well-being and whom I haven't acknowledged inadvertently.

Finally, in fond memory of my father (Late) Sri A. Lakshman Rao, I offer my prayers to Lord Vishwanath, Maa Annapoorna and Maa Danteshwari to keep showering their blessings upon the mankind.

(DURGA PRASAD A)

Preface

Design of efficient control systems is vital for any process industry for maintaining the product quality, meeting the safety needs, improving the energy efficiency and reducing the environmental pollution. The conventional Proportional Integral Derivative (PID) controllers are commonly used in majority (over 95%) of the process industries due to their simple configuration and wide range of applications. Tuning of PID controller is, however, a challenging task since it involves an in-depth understanding of both dynamic and static behaviours of process. Model based controller design techniques like the Direct Synthesis (DS) method and the Internal Model Control (IMC) method have come up as superior alternatives to the conventional PID controllers since they can be implemented within the PID controller framework without any additional hardware requirements. Moreover, the DS and Internal Model Control (IMC) based PID controllers have the added advantage of possessing only one tuning parameter as compared to three in the PID controller.

A process transfer function, derived from an appropriate mathematical model is an inherent necessity for the design of model based control systems. The process modeling activity is broadly classified into two categories: (a) Theoretical modeling and (b) Process Identification. Theoretical models are based on first principles and rigorous in nature. An indepth understanding of the physical and chemical nature of the process is the primary requirement for the development of theoretical models. Process identification, on the other hand, involves development of empirical and black (purely box data driven) models, based on extensive experimental/plant data.

From the controller design perspective, processes are categorized as Single Input Single Output (SISO) or Multiple Input Multiple Output (MIMO) processes. The Single Input Single Output (SISO) processes are simper to design since they have only one control loop involving one controlled variable (CV) and one manipulated variable (MV). The Multiple Input Multiple Output (MIMO) processes have multiple control loops and interaction among control loops is a primary factor in deciding the appropriate CV-MV pairing for each control loop.

Most chemical and biochemical processes are multivariable in nature, inherently nonlinear, possess time-varying parameters and are subjected to process uncertainties. Also chemical

and biochemical reactors are known to exhibit multiple steady states and stability of the operating steady state plays an important role in the controller design methodology.

Based on the literature review and above facts, this thesis is divided into seven chapters. Chapter 1 deals with the general introduction to the process control, necessity of process control, challenges of exercising adequate control, importance of process modelling and identification in control studies, controller design strategies for Single Input Single Output (SISO) and Multiple Input Multiple Output (MIMO) processes.

Chapter 2 covers the literature review on design and tuning of Internal Model Control (IMC) based PID controller and its applications to Single Input Single Output (SISO) stable, Single Input Single Output (SISO) unstable, and Multiple Input Multiple Output (MIMO) systems. Chapter 3 provides the detailed derivations of conventional and model based controller design techniques. Chapter 4 describes the details of modeling, identification and Internal Model Control (IMC) based PID control of Two Input Two Output process (e. g. a quadruple tank setup) operated at non-minimum phase condition. Chapter 5 is devoted to an in-depth experimental and modeling study on identification and Internal Model Control (IMC) based controller design for a stable nonlinear Single Input Single Output (SISO) process (annular conical tank). Chapter 6 presents the study of theoretical modeling and Internal Model Control (IMC) based controller design for two unstable nonlinear Single Input Single Output (SISO) processes using examples of continuous bioreactor and non-adiabatic jacketed CSTR. The work is summarized and scope of future is discussed in Chapter 7. The literature cited in the thesis is referenced. The work presented in the thesis is fully documented in the form of journal publications.

Contents

Certificates		ii-iv
Dedication		v
Ackno	owledgement	vi
Prefac	ce	ix
Conte	nts	xi
List o	f Figures	xvii
List o	f Tables	xix
Nome	nclature	XX
Chapt	er 1. Introduction	1
1.1	Importance of Process Control	1
1.2	Challenges in Controller Design	1
1.3	Importance of Process Modeling and Identification in Control	2
1.3.1	Desirable Characteristics of Process Model	3
1.3.2	Classification of Process Models	4
1.4	Classification of Variables from the Process Control Perspective	9
1.5	Multivariable Process Control	10
1.5.1	Degrees of Freedom Analysis	11
1.6	Proportional Integral Derivative (PID) Feedback Control	12
1.7	PID Controller Design Methods	13
1.8	Computer Simulation	15
1.8.1	Software Platforms	15
1.8.2	Basic Types of Engineering Problems	16
1.9	General Objectives of the Present Work	17

Chapt	Chapter 2. Literature Review 18	
2.1	Introduction	18
2.2	Control of Multiple Input Multiple Output (MIMO) Processes	18
2.3	Control of Single Input Single Output (SISO) Stable Processes	19
2.4 Co	ontrol of Single Input Single Output (SISO) Unstable Processes	20
2.5	Specific Objectives of the Present Work	30
Chapt	Chapter 3. PID Controller Design Techniques	
3.1	Conventional PID Controller Design Techniques	31
3.1.1	Ziegler-Nichols Closed loop Method	31
3.1.2	Tyreus-Luyben Closed loop Method	32
3.1.3	Ziegler-Nichols Open loop Method	33
3.1.4	Cohen-Coon Open loop Method	33
3.2	Internal Model Control (IMC) based Controller Design Techniques	35
3.2.1	IMC based PID Controller Design for First Order Stable Process	42
3.2.2	IMC based PID Controller Deign for Second Order Stable Process	43
3.2.3	IMC based PID Controller Deign for	
	First Order Plus Dead Time Stable Process	45
3.2.4	IMC based PID Controller Deign for First Order Unstable Process	46
3.2.5	IMC based PID Controller Deign for First Order Unstable Process	
	(RHP pole and Numerator dynamics)	48
3.3	Process Models for Controller Design	50
3.3.1	Linearized State Space Model (Time domain)	52
3.3.2	Transfer Function Model (Laplace domain)	55
3.4	Process Identification	58
3.4.1	Identification from Open loop Step Response Experimental Data	58
3.4.2	Identification from Steady State Input-Output Experimental Data	60

Chapt	er 4. Modeling, Identification and IMC based PID Control of	
Two Input Two Output Non-minimum Phase Nonlinear Process		62
4.1.	Introduction	62
4.1.1	Experimental Quadruple Tank Process (QTP)	62
4.2	Mathematical Model of Quadruple Tank Process (QTP)	67
4.2.1	Assumptions	68
4.2.2	Process Operating Conditions:	69
4.2.3	Unsteady State Mass balances	69
4.2.4	Steady State Solution	70
4.3	Linearized State Space Model of the Quadruple-Tank Process (QTP)	70
4.3.1	Degrees of Freedom Analysis	73
4.3.2	Classification of Variables	74
4.4	Transfer function Model of Quadruple-Tank Process (QTP)	76
4.5	Transmission Zeros of Quadruple-Tank Process (QTP)	77
4.6	Identification of Quadruple-Tank Process (QTP)	81
4.6.1	Open loop Experiments (Pure Capacity Mode)	83
4.6.1.	1 Experimental Procedure	83
4.6.1.2	2 Estimation of Linear Velocity	85
4.6.1.3	3 Estimation of Split Fractions	86
4.6.2	Open loop Experiments (Resistance Mode)	90
4.6.2.2	1 Experimental Procedure	90
4.6.2.2	2 Estimation of Nonlinear Flow Resistances	92
4.6.2.3	3 Estimation of Time Constant and Steady State Gain	95
4.7	Multivariable Process Transfer Function Matrix	97
4.7.1	Transmission Zeros	98
4.7.2	Control loop Interactions	98
4.7.2.1 Relative Gain Array (RGA) Analysis		98

4.8	Closed loop Response of Quadruple Tank Process (QTP) with interactions	100
4.9	Design of Inverted Decoupling Controller	101
4.10	Closed loop Response of Quadruple Tank Process (QTP)	
	with Inverted Decoupling Controllers	102
4.11	IMC based PID Controller Design for the	
	Decoupled Quadruple Tank Process	104
4.12	Closed loop Response of IMC based PID Decoupling Controller	105
4.13	Comparison with Open Literature	106
4.14	Conclusion	108
Chapte	er 5. Modeling, Identification and IMC based PID Control of	
Single	Input Single Output Stable Nonlinear Process	109
5.1.	Introduction	109
5.2	Experimental Annular Flow Conical Tank Liquid Level	
	Nonlinear Process	109
5.2.1	Process Description	110
5.3	Mathematical Modeling of Annular Flow Conical Tank Process	112
5.3.1	Process Variables and Parameters	112
5.3.2	Unsteady State Mass balances	113
5.3.3	Linearized State Space Model and Transfer Function Model	116
5.4	Process Identification	118
5.4.1	Identification from Open loop Steady State Experimental Data	118
5.4.1.1	Experimental Procedure	119
5.4.1.2	Estimation of Nonlinear Flow Resistance	121
5.4.1.3	Estimation of Steady State Gain and Time Constant	122
5.4.2	Identification from Open loop Step response Experimental Data	125
5.5	Controller Design	126
5.5.1	Controller Design based on Cohen and Coon Method	126

5.5.2	IMC based PID Controller Design	126
5.6	Closed Loop Response	127
5.7	5.7 Conclusion	
Chapte	er 6. Modeling and IMC based PID Control of	
	Single Input Single Output Unstable Nonlinear Process	130
6.1.	Introduction	130
6.2	Continuous Bioreactor	131
6.2.1	Mathematical Modeling of the Continuous Bioreactor	132
6.2.1.1	Unsteady State Mass Balances	132
6.2.1.2	2 Rate Equations	134
6.2.1.3	3 Steady State Solution of the Continuous Bioreactor	135
6.2.1.4	Linearized State Space Model of the Continuous Bioreactor	137
6.2.1.5	5 Stability Analysis of the Continuous Bioreactor	138
6.2.1.6	5 Degrees of Freedom Analysis of the Continuous Bioreactor	140
6.2.1.7	7 Transfer Function Model of the Continuous Bioreactor	141
6.2.2	IMC based PI Controller Design for the Continuous Bioreactor	141
6.2.3	Closed loop Response of the IMC based PI Controller	142
6.2.4	Conclusion	143
6.3	Non-Adiabatic Jacketed CSTR	144
6.3.1	Mathematical Model of the Non-adiabatic Jacketed CSTR	144
6.3.1.1	Unsteady State Mass and Energy Balances	144
6.3.1.2	2 Steady State Solution of the Non-adiabatic Jacketed CSTR	145
6.3.1.3	3 Linearized State Space Model of the Non-adiabatic Jacketed CSTR	146
6.3.1.4	4 Stability Analysis of the Non-adiabatic Jacketed CSTR	148
6.3.1.6	5 Degrees of Freedom Analysis	149
6.3.1.7	Transfer Function Model of the Non-adiabatic Jacketed CSTR	150
6.3.2	IMC based PID Controller Design for the Non-adiabatic Jacketed CSTR	152

6.3.3	Closed loop Response of the IMC based PI Controller	153
6.3.4	Conclusion	154
Chapte	er 7. Summary and Scope of Future Work	155
7.1	.1 Summary of the Thesis	
7.2.	Scope of Future Work	157
References		158
Publications		172
Appen	dix A. Numerical Techniques for the Solution of	
Nonlinear Algebraic Equations 17		173
Appendix B. Linear Regression		175
Appendix C. Tridiagonal Matrix Algorithm		180

List of Figures

FIGURE 1.1	IMPORTANCE OF PROCESS MODELING AND IDENTIFICATION IN CONTROL	8
FIGURE 1.2	CLASSIFICATION OF VARIABLES FROM THE CONTROL PERSPECTIVE	10
FIGURE 1.3	MULTIVARIABLE PROCESS CONTROL	12
FIGURE 1.4	CLOSED LOOP BLOCK DIAGRAM OF A PID FEEDBACK CONTROL SYSTEM	13
FIGURE 1.5	BASIC TYPES OF ENGINEERING PROBLEMS	17
FIGURE 3.1	BLOCK DIAGRAM OF OPEN LOOP MODEL BASED CONTROLLER	38
FIGURE 3.2	CLOSED LOOP MODEL BASED CONTROLLER	39
FIGURE 3.3	CLOSED LOOP BLOCK DIAGRAM OF IMC BASED FEEDBACK CONTROLLER	40
FIGURE 3.4	CLOSED LOOP BLOCK DIAGRAM OF IMC BASED PID CONTROLLER	41
FIGURE 3.5	BLOCK DIAGRAM OF CLOSED LOOP TRANSFER FUNCTIONS	42
FIGURE 3. 6`	BLOCK DIAGRAM OF SINGLE INPUT SINGLE OUTPUT (SISO) PROCESS	56
FIGURE 3.7	BLOCK DIAGRAM OF TWO INPUT TWO OUTPUT (TITO) PROCESS	57
FIGURE 4.1	EXPERIMENTAL SETUP OF THE QUADRUPLE TANK PROCESS (QTP)	64
FIGURE 4.2	SCHEMATIC OF THE QUADRUPLE TANK PROCESS (QTP)	65
FIGURE 4.3	PROCESS VARIABLES AND SYSTEM PARAMETERS IN THE QUADRUPLE TANK PROCESS (QTP)	67
FIGURE 4.4	OPEN LOOP RESPONSE OF QUADRUPEL TANK PROCESS (PURE CAPACITY MODE)	87
FIGURE 4.5	ESTIMATION OF LINEAR VELOCITY OF TANK 1	87
FIGURE 4.6	ESTIMATION OF LINEAR VELOCITY OF TANK 2	88
FIGURE 4.7	ESTIMATION OF LINEAR VELOCITY OF TANK 3	88
FIGURE 4.8	ESTIMATION OF LINEAR VELOCITY OF TANK 4	89
FIGURE 4.9	OPEN LOOP STEP RESPONSE OF LIQUID LEVEL IN TANK 1 AND TANK 2	92
FIGURE 4.10	STEADY STATE INPUT-OUTPUT CURVE FOR TANK 1	93
FIGURE 4.11	STEADY STATE INPUT-OUTPUT CURVE FOR TANK 2	93
FIGURE 4.12	STEADY STATE INPUT-OUTPUT CURVE FOR TANK 3	94
FIGURE 4.13	STEADY STATE INPUT-OUTPUT CURVE FOR TANK 4	94
FIGURE 4. 14	CLOSED LOOP RESPONSE OF CONVENTIONAL CONTROLLER (WITH INTERACTIONS)	101
FIGURE 4. 15	CLOSED LOOP BLOCK DIAGRAM WITH INVERTED DECOUPLING CONTROLLERS	102
FIGURE 4. 16	CLOSED LOOP RESPONSE OF CONVENTIONAL CONTROLLER (WITH DECOUPLERS)	103
FIGURE 4. 17	CLOSED LOOP RESPONSE OF INVERTED DECOUPLING IMC-PID CONTROLLERS	105
FIGURE 4. 18	COMPARATIVE PERFORMANCE OF IMC-PID DECOUPLING CONTROLLERS	107
FIGURE 5.1	EXPERIMENTAL SETUP OF CONICAL TANK PROCESS	111
FIGURE 5.2	SCHEMATIC DIAGRAM OF CONICAL TANK PROCESS	111
FIGURE 5.3	PROCESS MODEL OF CONICAL TANK LIQUID LEVEL PROCESS	112
FIGURE 5.4	RELATIONSHIP BETWEEN VOLUMETRIC FLOWRATE AND CONTROLLER OUTPUT	119

FIGURE 5.5	RELATIONSHIP BETWEEN VOLUMETRIC FLOWRATE AND	120
	PNEUMATIC VALVE STEM PRESSURE	
FIGURE 5.6	RELATIONSHIP BETWEEN PNEUMATIC VALVE STEM PRESSURE	121
	AND CONTROLLER OUTPUT	
FIGURE 5.7	ESTIMATION OF NONLINEAR FLOW RESISTANCE	122
FIGURE 5.8	VARIATION OF STEADY STATE GAIN WITH RESPECT TO HEIGHT	124
FIGURE 5.9	VARIATION OF TIME CONSTANT WITH RESPECT TO HEIGHT	124
FIGURE 5.10	OPEN LOOP STEP RESPONSE OF LIQUID LEVEL IN CONICAL	125
	TANK PROCESS	
FIGURE 5.11	CLOSED LOOP BLOCK DIAGRAM OF IMC BASED PID	127
	CONTROLLER	
FIGURE 5.12	COMPARISON OF EXPERIMENTAL CLOSED LOOP RESPONSES	129
FIGURE 6.1	SCHEMATIC OF CONTINUOUS BIOREACTOR	131
FIGURE 6.2	COMPARIOSN OF THE MONOD AND THE SUBSTRATE	135
	INHIBITION (SI) MODELS	
FIGURE 6.3	TUNING OF IMC BASED PI CONTROLLER FOR CONTINUOUS	142
	BIOREACTOR	
FIGURE 6.4	CLOSED LOOP RESPONSE OF BIOREACTOR WITH IMC BASED PID	143
	CONTROLLER	
FIGURE 6.5	SCHEMATIC OF THE NON-ADIABATIC JACKETED CSTR	144
FIGURE 6.6	IMC BASED PID CONTROLLER TUNING OF THE NON-ADIABATIC	152
	JACKETED CSTR	
FIGURE 6.7	CLOSED LOOP RESPONSE OF IMC BASED PID CONTROLLER	153

List of Tables

TABLE 1.1	PID CONTROLLER DESIGN METHODS	14
TABLE 1.2	CONTROLLER PERFORMANCE CRITERIA (QUANTITATIVE PERFORMANCE INDEX)	14
TABLE 3.1	PID CONTROLLER PARAMETERS: ZIEGLER-NICHOLS CLOSED LOOP METHOD	32
TABLE 3.2	PID CONTROLLER PARAMETERS: TYREUS-LUYBEN	32
TABLE 3.3	PID CONTROLLER TUNING PARAMETERS BASED ON ZIEGLER-NICHOLS OPEN LOOP METHOD	33
TABLE 3.4	PID CONTROLLER TUNING PARAMETERS SUGGESTED BY COHEN AND COON OPEN LOOP METHOD	34
TABLE 3.5	DIMENSIONALITY OF STATE SPACE AND TRANSFER FUNCTION MODELS	57
TABLE 4.1	TECHNICAL SPECIFICATIONS OF THE EXPERIMENTAL QUADRUPLE TANK PROCESS	66
TABLE 4.2	PROCESS VARIABLES AND SYSTEM PARAMETERS IN QTP	68
TABLE 4.3	CLASSIFICATION OF PROCESS VARIABLES AND SYSTEM PARAMETERS IN QTP	74
TABLE 4.4	DESIGN PARAMETERS OF QUADRUPLE-TANK PROCESS EXPERIMENTAL SETUP	82
TABLE 4.5	OPEN LOOP EXPERIMENT 1 (PURELY CAPACITIVE MODE)	84
TABLE 4.6	OPEN LOOP EXPERIMENT 2 (PURELY CAPACITIVE MODE)	85
TABLE 4.7	ESTIMATION OF SPLIT FRACTIONS	89
TABLE 4.8	STEADY STATE EXPERIMENTAL DATA OF QUADRUPLE TANK PROCESS	91
TABLE 4.9	ESTIMATION OF NONLINEAR FLOW RESISTANCE	95
TABLE 4. 10	ESTIMATION OF TIME CONSTANTS CORRESPONDING TO DIFFERENT STEADY STATES	96
TABLE 4. 11	ESTIMATION OF STEADY STATE GAIN CORRESPONDING TO DIFFERENT STEADY STATES	97
TABLE 4. 12	QUANTITATIVE PERFORMANCE INDICES (QPI) FOR CONVENTIONAL CONTROLLER	104
TABLE 4. 13	QPI FOR IMC BASED PID DECOUPLING CONTROLLER	106
TABLE 4. 14	QUANTITATIVE PERFORMANCE INDICES (QPI) FOR COMPARATIVE STUDY	108
TABLE 5.1	SPECIFICATION OF ANNULAR FLOW CONICAL TANK LIQUID LEVEL SETUP	110
TABLE 5.2	ESTIMATION OF PROCESS PARAMETERS FROM EXPERIMENTAL STEADY STATE DATA.	123
TABLE 5.3	IMC BASED PID CONTROLLER PARAMETERS CORRESPONDING TO DIFFERENT STEADY STATES	126
TABLE 5.4	QUANTITATIVE PERFORMANCE INDICES FOR IMC BASED PID CONTROLLER.	128
TABLE 6.1	PARAMETERS AND VARIABLES IN CONTINUOUS BIOREACTOR	132
TABLE 6.2	PARAMETERS OF THE SUBSTRATE INHIBITION MODEL AND THE MONOD MODEL	135
TABLE 6.3	OPERATING CONDITIONS OF THE CONTINUOUS BIOREACTOR	136
TABLE 6.4	STABILITY ANALYSIS OF STEADY STATES IN CONTINUOUS BIOREACTOR	140
TABLE 6.5	OPERATING CONDITIONS AND DESIGN PARAMETERS OF THE CSTR	145
TABLE 6.6	MULTIPLE STEADY STATES IN THE NON-ADIABATIC JACKETED CSTR	146
TABLE 6.7	STEADY STATE MULTIPLICITY AND STABILITY ANALYSIS OF THE CSTR	148
TABLE 6.8	CLASSIFICATION OF VARIABLES AND PARAMETERS IN THE NON- ADIABATIC JACKETED CSTR	149

Nomenclature

S	Laplace domain
t	Time domain
$y_{sp}(s)$	Set point
y(s)	Process output
$\overline{y}(s)$	Process model prediction of output
u(s)	Controller output
d(s)	Load/Disturbance
$\mathcal{E}(s)$	Error
K_p	Steady state gain
$ au_p$	Time constant of process
λ	IMC (low pass filter) tuning parameter
γ	IMC (all pass filter) tuning parameter
n	Order of IMC filter
K_{c}	Controller gain (PID controller tuning parameter)
$ au_I$	Integral time (PID controller tuning parameter)
$ au_{\scriptscriptstyle D}$	Derivative time (PID controller tuning parameter)
θ	Dead time/Time delay
$g_c(s)$	PID controller
$g_p(s)$	Process transfer function
$g_d(s)$	Load transfer function
$g_{sp}(s)$	Closed loop transfer function (Servo problem)
$g_{load}(s)$	Closed loop transfer function (Regulator problem)
$g_f(s)$	Transfer function of final control element
$g_m(s)$	Transfer function of measuring element
f(s)	IMC filter transfer function
$\overline{g}_p(s)$	Process model transfer function
$\overline{g}_{p-}(\mathbf{s})$	Invertible part of process model transfer function
$\overline{g}_{p+}(\mathbf{s})$	Non-invertible part of process model transfer function
q(s)	IMC based open loop controller transfer function
р	Pole of transfer function
Z.	Zero of transfer function

F_1	Volumetric flowrate
F_{ij}	Volumetric flowrate of water flowing from Pump i to tank j.
F_{Oi}	Outlet volumetric flowrate discharging through tank j.
h_i	Height of liquid level in tank j
${\gamma}_1$	Adjustable split fraction of water flowing from Pump 1 to tank 1
γ_2	Adjustable split fraction of water flowing from Pump 2 to tank 2
$oldsymbol{eta}_{j}$	Nonlinear flow resistance of outlet discharge valve of tank j.
A_{j}	Area of tank j.
v	Linear velocity
Н	Height of cylindrical tank
D	Diameter of the cylindrical tank
V_{c}	Volume of cone
V_a	Volume of annulus
V_T	Volume of cylindrical tank
F_i	Volumetric flowrate of inlet stream
$h_{ m max}$	Height of the cone
d_1	Bottom diameter of the cone
d_2	Top diameter of the cone
β	Nonlinear flow resistance
ρ	Density of liquid
<i>x</i> ₁	Biomass concentration
X_{1f}	Biomass concentration in feed
<i>x</i> ₂	Substrate concentration
X_{2f}	Substrate concentration in feed
<i>r</i> ₁	Rate of cell generation
$\mu(x_2)$	Specific growth rate coefficient
r_2	Rate of substrate consumption
Y	Yield
V	Volume
D	Dilution rate
κ ₀	Kate constant
ΔH	Heat of reaction
ΔE	Activation energy

Specific heat
Overall heat transfer coefficient
Heat transfer area
Jacket temperature
Reactor inlet temperature
Reactor outlet temperature
Concentration of component A

Vectors and Matrices

Α	Matrix of partial derivatives with respect to state variables
В	Matrix of partial derivatives with respect to input variables
С	Matrix of constant coefficients in measurement equation
D	Matrix of constant coefficients in measurement equation
G	Matrix of multivariable transfer functions
u	Vector of input variables in deviation form
X	Vector of state variables in deviation form
ż	Vector of time derivatives of state variables in deviation form
У	Vector of measured outputs in deviation form

Acronyms

ANN	Artificial Neural network
BC	Boundary Condition
BVP	Boundary Value Problem
CSTR	Continuous Stirred Tank reactor
CV	Controlled Variable
DS	Direct Synthesis
DV	Disturbance Variable
FOPDT	First Order Plus Dead Time
IAE	Integral of Absolute Error
IMC	Internal Model Control
IPDT	Integrator Plus Dead Time
ISE	Integral of Square of Error
ITAE	Integral of Time Absolute Error
IVP	Initial Value Problem
LHP	Left Half Plane
LPH	Litres Per Hour

MIMO	Multiple Input Multiple Output
MV	Manipulated Variable
ODE	Ordinary Differential Equation
OLETF	Open Loop Equivalent Transfer Function
OP	Output
PDE	Partial Differential Equation
PFR	Plug Flow Reactor
PID	Proportional Integral Derivative
PV	Process Variable
QPI	Quantitative Performance Index
QTP	Quadruple Tank Process
RGA	Relative Gain Array
RHP	Right Half Plane
SI	Substrate Inhibition
SISO	Single Input Single output
SOPDT	Second Order Plus Dead Time
SS	Steady State
SSE	Sum of Squares of Error
TF	Transfer function
TITO	Two Input Two Output
TV	Total Variation
VFD	Variable Frequency Drives