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Preface
For millennia, the Sun (and the universe) has been viewed in the visual light. As the

bestower of light and life, the ancients made God out of the Sun. With the Babylonians,

or with the multiple origins with the Chinese, Egyptians and Indians, quoting the Rig

Veda: “All that exists was born from Sūrya, the God of god”, we have come a long way to

understanding the Sun. In the early seventeenth century, however, Galileo showed that the

Sun was not an immaculate object. Thus began our scientific interests in our nearest stellar

neighbour, the Sun, with its sunspots and the related solar activity. The observations of

the Sun and their interpretations are of universal importance for at least two reasons: First,

the Sun is the source of energy for the entire planetary system and all aspects of our life

have direct impact on what happens on the Sun; and second, the Sun’s proximity makes it

unique among the billions of stars in the sky of which we can resolve its surface features

and study physical processes at work.

Observations of the solar atmosphere led to the development of the theory of radiative

transfer in stellar atmospheres and the discovery of the element helium. Moreover, the Sun

is the principal magnetohydrodynamic (MHD) laboratory for large magnetic Reynolds

numbers, exhibiting the totally unexpected phenomena of magnetic fibrils, sunspots,

prominences, flares, coronal loops, coronal mass ejections (CMEs), the solar wind, the

X-ray corona, and irradiance variations etc. It is the physics of these exotic phenomena,

collectively making up variations of solar activity, with which we are confronted today.

The activity affects the terrestrial environment, from occasionally knocking out power

grids to space weather and most probably general climate.

Beginning with the first solar ultraviolet light from space in 1946, X-rays in 1948, hard

X-rays and γ-rays in 1958; many experiments have been conducted or being conducted

using balloons, rockets and satellites (e.g., OSOs, Skylab, SMM, Yohkoh, SOHO, TRACE,

RHESSI, Hinode, STEREO, SDO, IRIS, Solar Orbiter etc.). Artificial satellites have
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provided the unique opportunity to have uninterrupted observations of the Sun from the

vantage points, such as the Sun-Earth Lagrangian point L1 (e.g., SOHO), or from outside

the ecliptic plane (e.g., Ulysses), or in stereoscopic modes using different orbits (e.g.,

STEREO). All these have provided a rich source of data, unlocking the secrets of the

Sun and addressing some of its outstanding riddles (e.g., coronal heating, solar wind

acceleration etc.).

Ground-based observations suffer from the effects of the Earth’s atmosphere such as

atmospheric extinction resulting in the limited radiative spectrum of the Sun, and turbulence

resulting in image distortions. None the less, making use of adaptive optics system, solar

images with resolution of about 0.13′′ (90 km on the Sun), or even smaller structures

down to 60 km, have been obtained by the Swedish 1-meter Solar Telescope (SST) on La

Palma. Further, the resolution of ≤ 30 km has been achieved after the first-light from the

4-m Daniel K. Inouye Solar Telescope (DKIST) at Hawaii, revealing new science above

the solar surface. Similarly, the Solar Orbiter from space has recently imaged the EUV

corona with a fine resolution of about 100 km, providing a host of enormous small-scale

solar flares going into the solar corona and most likely acting as potential candidates for

generating energy. Apart from the observations of the solar atmosphere, the neutrino

detectors have provided a unique tool for probing the Sun’s interior by comparing the

emitted flux with the predictions of the standard solar models. Helioseismology from space

and from the ground (e.g., GONG) have revolutionised our understanding of the workings

of the Sun.

As pointed out above, the solar studies inform us of nature operating on the enor-

mous scales encountered across the Universe. It exhibits remarkable phenomena, such as

sunspots, the corona, flares, the solar wind, and CMEs. The Sun is a machine that converts

a small but important fraction of its benign power into variable energetic radiation, mag-

netism and particles. Today the biggest problems in solar physics concern the dynamical
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interactions between solar plasma and its magnetic fields. While passing through the Earth,

solar outbursts disturb Earth’s protective magnetic field, causing problems for electrical

infrastructure, though leading to beautiful aurorae. Our increasing technology-dependence

makes our way of life vulnerable to sustaining damage as a result of the poorly-understood

workings of the Sun.

As noted in above paragraphs, the interplay of the complex magnetic field and plasma

generates a variety of dynamical plasma processes in the solar atmosphere. A major

development has taken place since the SOHO era in the form of the observations of the

localized giant plasma eruptions in the solar corona, which exhibit the properties of the

jet-like guided motion along the magnetic field lines, and termed as “The Coronal Jets”.

These massive ejecta signify as ubiquitous solar transients that are triggered more often in

the solar corona locally, and may transport significant mass and energy into the overlying

solar atmosphere and the solar wind. Although the energy budget of these jets is less

compared to the typical solar flares and CMEs, yet these ejecta are also considered as an

explosive magnetically driven transients. The study of the coronal jets, therefore, may

provide critical and significant knowledge about the bigger and more complex drivers of

the solar activity, and their inherent energetics.

Coronal jets are typically seen very clearly erupting along the open field lines of the

coronal holes as well as in polar caps as the background radiation is less there because

of the darker background. In the typical X-ray and Extreme Ultraviolet Emissions, these

jets are observed as collimated, beam-like structures, which are anchored on the bright

small-scale loop-like base revealing their reconnection-generated origin. The signature

of these collimated jets can be seen up to several tens of mega-meter in the EUV and

X-ray images in the inner corona. Sometimes, the traces of these coronal jets can also

be seen up to several solar radii in white-light coronagraphic images, supporting the

fact that these jets could be an efficient means of structuring the plasma in the extended
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corona also that may further lead to mass transport. The unprecedented development in

the spatial and temporal resolution of imaging observations in the last over three decades

from various space missions and their imagers (e.g., Yohkoh, SOHO, STEREO, Hinode,

SDO, IRIS, Solar Orbiter) provide further details of the origin and evolution of the coronal

jets, and their capability to couple the solar atmosphere by the means of energy and mass

transport processes. The fine details of the morphology, kinematics and dynamics, and

their connection and interaction with other coronal structures are unveiled recently by the

high-resolution recent imaging and spectroscopic observations that have yielded unique

scientific information about these important coronal transients.

Apart from typical scenario of the magnetic reconnection between the emerging twisted

fluxtubes with the pre-existing ambient fields in the formation of coronal jets, the remark-

able advancement has taken place during the last decade, regarding understanding the

details of the role of mini-filaments and magnetic (e.g., kink) as well as gravity-driven

(e.g., Kelvin-Helmholtz) instabilities. Moreover, the improved observational manifestation

has also revealed the fine structure dynamics (e.g., motion of the helical magnetic skeleton

and tornadoe-like motions), wave motions (e.g., kink and Alfvén waves) in the jets, as

well as revealed a variety of the information about the inter-relationship of these jets with

other coronal structures and transients, e.g., plumes, sigmoids, solar wind, narrow-CMEs,

energetic particles, etc.

The connection between coronal jets and narrow-CME is a front-line research topic

in the field of solar physics. A CME is described in terms of the significant release of

magnetized plasma and associated flux-rope/magnetic field from the solar corona. They

are usually accompanied by the onset of solar flares and are typically evolved during a

solar prominence eruption. However, CMEs may also occur without the occurrence of the

solar flare and prominence eruption also. In the outer solar atmosphere, the CMEs may

slide or dragged by the solar wind plasma once they are injected into its stream. The CMEs
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are most often triggered above flaring active regions on the Sun’s surface, and they consist

of three part structure namely the core, cavity, and shock-front. These CMEs, propagating

towards the Earth, may cause severe geo-magnetic storm and can cause the space-weather.

If a CME reaches the Earth’s outer atmosphere, it may produce a geomagnetic storm

causing anomalies and disruptions to the modern conveniences upon which the humanity

depends. In a quantitative measure, the fluctuating magnetic fields associated with these

geo-magnetic storms may induce currents in power-grids causing a wide-spread blackouts,

disruption in the telecommunication and air-aviation, space-hazard to the satellites and

astronauts, and many more. Therefore, the study of the solar eruptions and CMEs and their

forecast in causing space-weather is at the forefront of the solar and heliospheric research.

As stated above, the study of the origin, evolution, and kinematical properties of CMEs

are important for the space-weather research and its real-time forecast. Their origin in

the inner corona and linkage with the upper atmospheric response as well as directivity

towards the Earth must be understood together to make a real-time space-weather forecast

tool and to inhibit the potential space-weather related damages to the mankind. Apart

from the typical CMEs, there are unique CMEs discovered in the recent era, which are

generated due to the eruption of the coronal jets and termed as narrow-CMEs. These CMEs

possess different morphology, kinematics, and energetics, but put on similar effects in the

heliosphere and Earth’s outer atmosphere. A recent study has revealed that narrow CMEs

which are originated due to coronal jets, in turn can generate low-energy particles in the

vicinity of the Earth without commencement of the other large-scale solar eruptions on the

Sun. This scenario adds a fascinating development in the space-weather forecast that in

addition to the classical solar eruptions (e.g., solar flares, CMEs) the atypical silent players

(e.g., coronal jets and associated narrow CMEs) could also be given attention. Their origin

in the solar atmosphere, and their imprints in the heliosphere must also be included in

the study of the solar transients that may also be useful for the space weather studies and
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related predictions. The present thesis aims to reveal the multi-wavelength origin of the

coronal jets and underlying physical processes, and their connection with the CMEs. As

stated above, the scientific objectives and derived new results in the present thesis will

make an advancement in understanding the inter-relationship between coronal jets and

CMEs, and also provide the clues to their potential future use in space weather studies

and related forecast. The present thesis therefore, uniquely deals with the one of the front-

line scientific themes in the field of the solar physics, which is related to understanding

the physics of coronal jets and associated CMEs. This will further provide a platform

to study such transients in greater details using multi-wavelength and multi-instrument

observations to explore their physical behaviour starting from the solar atmosphere up to

the inter-planetary space, and their role in causing the space weather. Against this brief

background and significance of my works, more precisely we have focused on describing

the observational works of coronal jets in order to understand the role of mini-filaments

in the eruption of coronal jets. We have explored the relation and association of coronal

jets with CMEs, and also the conditions when a coronal jet becomes CME-productive and

non-productive. This thesis is organized as follows:

Chapter 1:- Introduction

This chapter gives a brief introduction of the Sun’s structure and its atmosphere. The

magnetic field behavior and its relation with the solar activity are discussed. Different

transient phenomena e.g., flares, filaments and prominence, coronal jets and CMEs are

presented. The detailed observational view and numerical models of solar coronal jets are

also described. At the end, this chapter briefly outlines the new scientific results derived in

Chapter 3-5.

Chapter 2:- Observations and Data Analysis Techniques: Space and Ground-

based Instruments

This chapter describes a brief overview of different observational data and related instru-
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ments used to study the transient phenomena (e.g., flares, coronal jets, and CMEs), and the

techniques used to analyze them.

Chapter 3:- Quiet Sun Coronal Jets and Twin CMEs

This chapter is devoted to the observational study of a blowout jet which was observed on

16 May 2014 in the internetwork region of the quiet-Sun using SDO/AIA observations. The

twin CMEs as jet-like and bubble-like CMEs observed by LASCO-C2 onboard the SOHO

and STEREO-A and STEREO-B/COR2. These CMEs are associated with the eruption

of northern and southern sections of the filament. The circular filament is rooted at the

base of blowout jet. The continuous magnetic flux cancellation is observed by SDO/HMI

line-of-sight (LOS) magnetograms at the northern end of the filament, which makes this

filament unstable and further makes it to erupt in two different stages. In the first stage, the

northern section of circular filament is ejected and drives the evolution of northern part

of blowout jet. The Kelvin-Helmholtz (K-H) unstable plasma blobs are detected in the

northern twisted magneto-plasma spire of blowout jet. The northern part of the blowout

jet is further extended in the form of jet-like CME. In the second stage, the southern

section of circular filament erupts in the form of twisted magnetic flux rope and forms the

southern part of the blowout jet. The eruption of the southern section of filament most

likely is due to the eruption of the northern section of filament, which removes the confined

overlying magnetic field. The eruption of the southern section of filament further drags a

bubble-like CME. To the best of our knowledge, this provides first detailed observations

and inter-relationship between quiet-Sun network-flare, eruption of multiple segments of

filaments, episodic formation of coronal jets, and evolution and propagation of two CMEs

in the outer corona.

Chapter 4:- Origin of CME Productive and Non-productive Coronal Jets

This chapter deals with the observational study of recurring jets near active region AR11176

during the period 31 March 2011 17:00 UT to 01 April 2011 05:00 UT using observations
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from SDO/AIA. Two Mini-filaments are found at the base of these recurring jets where

mini-filament1 is found at the base of first three jets shows partial eruption and mini-

filament2 at the base of fourth jet shows complete eruption and drives evolution of a full

blow-out jet. Second mini-filament triggers C-class (GOES C-3.1) flare and full blow-out

jet. This blow-out jet further triggers a CME. The plane-of-sky velocities of recurring

jets are 160 kms−1, 106 kms−1, 151 kms−1 and 369 kms−1. The estimated velocity of

CME is 636 kms−1. The plasma blobs are detected during the eruption of first jet. The

continuous magnetic flux cancellation is found at the base of jet productive region which

is the reason of eruption of mini-filaments and recurring jets. In the former case when

mini-filament1 is partially erupted and first three jets are produced the rate of cancellation

was low. In the latter case, when mini-filament2 is fully erupted and triggered C-class flare

and CME-productive blow-out jet the flux cancellation rate is high. The partial eruption

of mini-filament1 is pushed the overlying dynamic complex thin loops and made them to

reconnect and drive first three jets. The present chapter provides new scientific information

on the linkage of mini-filament eruptions with the multiple coronal jets, and differentiate

about the CME-productive and non-productive jets above the eruption site.

Chapter 5:- Study of Two-Stage Coronal Jet Associated with a C1.4 Class Solar

Flare

This chapter is devoted to observational study of a complex active region jet which evolved

from southward of a major sunspot of NOAA AR12178 on 04 October 2014. This complex

jet is associated with a GOES C-1.4 flare and a cool surge. Different observational data

e.g., SDO/AIA, SDO/HMI, GONG Hα and GOES are used to analyse the observed event.

We have termed this jet as a two-stage confined eruption. In first stage of jet, some

plasma erupts above the compact flaring region and in second stage eruptive jet plasma

and associated magnetic fields interact with another set of magnetic fields in south-east

direction. At the interaction point of these two different magnetic fields a null point (X-
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point) is created, where second stage of jet deflected along curvilinear path into overlying

corona. The magnetic flux cancellation at the base of jet causes a C-class flare and the

flare energy energizes first stage of coronal jet. The lower part of jet is followed by a cool

surge visible only in Hα emissions. This two-stage jet observation imposes some rigid

constraints on existing jet models. The new scientific results in this chapter put a rigid

constraint on the existing coronal jet models, and advocate in their refinements as the real

observed jet in the present case is very complex and display multiple physical processes

during its evolution.

Chapter 6:- Conclusions and Future Plans

This chapter briefly presents conclusions and summary of thesis work and also describes

some future plans in the direction of this area of research.

The main new results of Chapters 3 to 5 of this thesis have already been published in

the reputed international journals, e.g., Solar Physics, Astrophysics & Space Science, and

presented in the national and international conferences (e.g., IAU Symposium) during the

Ph.D. programme.
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