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distribution (e) Grain size variation of the studied
compositions

Thermal expansion curve of YGO, YCGO and YSGO
compositions from Room temperature to 1000 °C

(@ XRD patterns of studied compositions (b) Crystal
structure of Y3GaOe

The percentage of phase purity with the increase in calcium
concentration in Y3GaOs

(a) Rietveld refinement fit pattern of all the studied systems
(b) Full structure refinement of 0Ca and 2Ca composition.

(a-c) Variation of lattice parameters and volume with dopant
concentration for orthorhombic (Y3GaOe), cubic (Y203) and
triclinic (CaCOs) phases, respectively (d) Oxygen
percentage change for all the compositions analyzed from
Rietveld refinement and SEM-EDX studies.

(a-e) SEM micrographs of Y3zxCasxGaOes (x = 0, 0.02,
0.04, 0.08, 0.12) compositions.

Tauc plot showing the variation of (chv)? vs hv with dopant
concentration

(a) Impedance Nyquist plot at 700 °C. Inset depicts the
equivalent circuit to fit the impedance spectra along with
impedance plot of Ca doped compositions (b) Arrhenius plot
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for total conductivity of studied compositions. Inset depicts
the conductivity histogram at 700 °C

Fig. 6.22 Arrhenius plot for (a) grain (b) grain-boundary conductivity 194
of studied compositions

Fig. 6.23 Electron density contour map of all studied compositions in 196
the z-y plane

Fig. 6.24 Space charge ionic fitting model for all the studied 197
specimens

Fig. 6.25 (a-b) Room temperature photoluminescence spectra with an 198
excitation wavelength of 305 nm

Fig. 6.26 Modulus scaling behaviour for all the samples at different 199
temperatures

Fig. 6.27 (a-b) Cyclic voltammogram curve with the various scan rate 201

(c) Specific capacitance at different scan rate for 0Ca and
2Ca sample (d) Chronoamperometry plot of undoped
Y3GaOs sample at 1.5V
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