Contents

iii
v
vii
viix
xi
xvii
xxvii
xxix
xxxiii
1
1
4
б
7

1.7.2 Microstuructural Control	
1.8 Present scenario of electrolyte materials for solid oxide fuel cell	
1.9 Materials for electrolytes	
1.9.1 Fluorite structured electrolyte	
1.9.2 Brownmillerite – type ceramics	
1.9.3 La ₂ Mo ₂ O ₉ (LAMOX) based electrolyte materials	
1.9.4 Apatite structure	
1.9.5 Perovskite-based ceramics	
1.9.6 Sodium Bismuth Titanate (Na _{0.5} Bi _{0.5} TiO ₃)	
1.9.7 Pyrochlores based ceramics	
1.9.8 δ-Bi ₂ O ₃ based ceramics	
1.10 Tri-Yttrium Gallate (Y ₃ GaO ₆)	
1.11 Objective of the Present Research Work	
CILADTED 2. Sandharia Chanadaria di marandi Analaria Tashainana	47
CHAPTER 2: Synthesis, Characterizations and Analysis Techniques	
2.1 Overview	
2.1 Overview 2.1.1 Specification of Raw Materials	
 2.1 Overview	47
 2.1 Overview	47 47 48 48 49 49
 2.1 Overview	47
 2.1 Overview	47 47 48 49 49 49 50 50 52 53 53 53 53
 2.1 Overview	47 47 48 49 49 49 50 50 52 53 53 53 53 55
 2.1 Overview	47 47 48 49 49 49 50 50 52 53 53 53 53 53 55 55 55 58
 2.1 Overview	47 47 48 49 50 50 50 51 53 53 55 55 55 55

2.4.7 Raman Spectroscopy	
2.4.8 X-Ray Photoelectron Spectroscopy (XPS)	65
2.4.9 Scanning Electron Microscopy (SEM)	67
2.4.10 Ultra-Violet Visible (UV-Vis) Spectroscopy	69
2.4.11 Photoluminescence Spectroscopy (PL)	
2.4.12 Density Measurement	
2.5 Electrical Data Analysis	
2.5.1 Impedance Spectroscopy Analysis	
2.5.2 Conductivity Spectroscopy Technique	80
2.6 Analysis Techniques	
2.6.1 Rietveld Refinement Technique	
2.6.2 Process of Analyzing the Obtained Data	
2.7 Theoretical Studies	
2.7.1 Bond Valance Energy-Based Approach	
CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na _{0.5} Bi _{0.5} TiO ₃	
CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na _{0.5} Bi _{0.5} TiO ₃ 3.1 Introduction	
CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na _{0.5} Bi _{0.5} TiO ₃ 3.1 Introduction	
CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na _{0.5} Bi _{0.5} TiO ₃ 3.1 Introduction 3.2 Experimental Procedure 3.3 Results and Discussion	\$ 89 89 90 91
CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na _{0.5} Bi _{0.5} TiO ₃ 3.1 Introduction 3.2 Experimental Procedure 3.3 Results and Discussion 3.3.1 Structural Studies	
CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na _{0.5} Bi _{0.5} TiO ₂ 3.1 Introduction 3.2 Experimental Procedure 3.3 Results and Discussion 3.3.1 Structural Studies 3.3.2 AC Conductivity Formalism	
 CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na_{0.5}Bi_{0.5}TiO: 3.1 Introduction	
CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na _{0.5} Bi _{0.5} TiO ₂ 3.1 Introduction 3.2 Experimental Procedure	
CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na _{0.5} Bi _{0.5} TiO: 3.1 Introduction	
CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na _{0.5} Bi _{0.5} TiO: 3.1 Introduction	
CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na _{0.5} Bi _{0.5} TiO: 3.1 Introduction	
CHAPTER 3: Effect of Sintering Temperature on Ion Dynamics of Na _{0.5} Bi _{0.5} TiO: 3.1 Introduction	

4.2 Experimental Procedure	
4.3 Results and Discussion	111
4.3.1 Structural Studies	111
4.3.2 Microstructural Analysis	
4.3.3 X-ray Photoelectron Spectroscopy Analysis	115
4.3.4 Thermogravimetric Analysis (TGA)	
4.3.5 AC Conductivity Formalism	121
4.4 Degradation Mechanism	
4.4.1 Structural Properties Before and After Reduction	
4.4.2 Electrical Properties before and after reduction	126
4.5 Conclusion	
CHAPTER 5: Investigation of Oxide Ion Migration in Bi-deficient Mg ²⁻ Bismuth Titanate	⁺ Doped Sodium 135
5.1 Introduction	
5.2 Experimental Procedure	
5.3 Results and Discussion	137
5.3.1 Structural Analysis	137
5.3.2 Migration Pathway Analysis	
5.3.3 Surface Morphology Study	
5.3.4 FTIR Study	
5.3.5 Thermogravimetric Analysis	
5.3.6 Raman Spectroscopy Study	
5.3.7 Brunauer- Emmett-Teller (BET) Analysis	151
5.3.8 Electrical Conductivity Study	153
5.4 Conclusion	156
CHAPTER 6: Oxide-ion conduction in alkaline earth metal doped Y ₃ GaO ₆ A site	: Substitution on 159
6.1 Introduction	

6.2 Experimental Procedure	
PART A	
Oxide Ion Conduction in Alkaline Earth Metal Doped Y ₃ GaO ₆	
6.3 Results and Discussion	
6.3.1 Structural Analysis	
6.3.2 ConductivityAnalysis	
6.3.3 Photoluminesce (PL) Analysis	
6.3.4 UV-Vis Analysis	
6.3.5 FTIR Analysis	
6.3.6 SEM Analysis	
6.3.7 Thermal Expansion Study	
6.4 Conclusion	
PART B	
Examining the consequences of calcium substitution on the struct	ural and electrical
properties of Y3GaO ₆	
properties of Y₃GaO₆6.5 Results and Discussion	 184 184
 properties of Y₃GaO₆	
 properties of Y₃GaO₆	
 properties of Y₃GaO₆	 184 184 184 189 190
 properties of Y₃GaO₆	184 184 184 184 189 190 191
 properties of Y₃GaO₆	184 184 184 189 190 191 191
 properties of Y₃GaO₆	184 184 184 184 189 190 191 194 197
 properties of Y₃GaO₆	184 184 184 184 189 190 191 194 197 199
 properties of Y₃GaO₆	184 184 184 184 189 190 191 194 197 199 200
properties of Y ₃ GaO ₆ . 6.5 Results and Discussion. 6.5.1 Structural Studies. 6.5.2 Surface morphology and density . 6.5.3 UV-Vis Analysis. 6.5.4 Impedance Analysis. 6.5.5 Electron density map 6.5.6 PL Analysis. 6.5.7 Scaling behaviour and conduction mechanism. 6.5.8 Cyclic Voltammetry. 6.6 Conclusions	184 184 184 184 189 190 191 194 197 199 200 202
properties of Y ₃ GaO ₆	184 184 184 184 189 190 191 191 194 197 199 200 202 205
properties of Y ₃ GaO ₆	184 184 184 184 189 190 191 191 194 197 199 200 202 205 205

References	
List of Publications	

LIST OF FIGURES

		Page No.
Chapter I	Introduction and Literature review	
Fig. 1.1	(a) World energy consumption by different energy sources with projection from 2010 to 2050. (b) Energy consumption by fuel type	2
Fig. 1.2	William Groves battery diagram	4
Fig. 1.3	Maximum efficiency of hydrogen fuel cell with the steam produced compared to Carnot limit with 50 °C exhaust temperature	5
Fig. 1.4	Plot indicating for a low temperature fuel cell fed wih air and hydrogen	7
Fig. 1.5	Reactions at electrodes for different types of fuel cells	10
Fig. 1.6	Schematic of working principle of (a) oxide ion conducting (b) proton-conducting SOFC	12
Fig. 1.7	Schematic of ion diffusion mechanism (a) vacancy diffusion (b) Interstitial diffusion (c) ions exchange in solid state structure	17
Fig. 1.8	Comparative of bulk conductivity of prominent oxide ion conductors	18
Fig. 1.9	(a) Sources of ionic carriers in oxides (b) Correlation between composition, microstructure, processing, and electrical conductivity of polycrystalline materials	19
Fig. 1.10	Present scenario of electrolyte materials	28
Fig. 1.11	Fluorite structure	29
Fig. 1.12	Brownmillerite crystal structure	33
Fig. 1.13	Comparison of the cationic environment of β -SnWO ₄ and β -La ₂ Mo ₂ O ₉	34
Fig. 1.14	Structural defects position and conduction mechanism	36

Fig. 1.15	 (a) Perovskite structure ABO₃ (b) Schematic of the curved pathway of oxide ion migration along the BO₆ octahedron (c) Saddle point configuration of oxide ion migration showing relaxation 	37
Fig. 1.16	Visualization of δ -Bi ₂ O ₃ unit cell	41
Fig. 1.17	Crystal structure of Y_3GaO_6 along 001 direction showing GaO ₄ tetrahedra. Green, red and blue sphere represents the Y^{3+} , O^{2-} , and Ga ³⁺ ions, respectively. Y1 and Y2 of the crystallographic positions of Y	44
Chapter II	Synthesis, Characterizations and Analysis Techniques	
Fig. 2.1	Schematic of Solid-state reaction route	50
Fig. 2.2	Schematics of polyol mediated synthesis process	52
Fig. 2.3	Experimental setup of hydraulic press machine	53
Fig. 2.4	(a) The schematic representation and (b) experimental setup of TGA/DSC (right) [Central instrument facility (CIF) IIT (BHU)]	54
Fig. 2.5	(a) Visualization of Bragg's law (b) Schematic representation of $\theta/2\theta$ diffraction in Bragg-Brentano geometry	56
Fig. 2.6	Experimental setup of X-ray diffractometer CIF IIT (BHU) [Rigaku Miniflex II, Japan].	57
Fig. 2.7	(a) Mechanism and (b) experimental setup of Fourier transform infrared spectroscopy	58
Fig. 2.8	Experimental setup of Dilatometry for TEC measurement [NETZSCH DIL, 402 PC/4]	60
Fig. 2.9	(a) Mechanism and (b) Experimental setup of porosity and BET surface area analyzer [Micromeritics ASAP 2020]	62
Fig. 2.10	Schematic representation of the principle of Raman spectroscopy	64
Fig. 2.11	Experimental setup of DXRxi Raman measurement	65
Fig. 2.12	(a) Mechanism and (b) Experimental setup for the XPS spectroscopy (Kratos Amicus)	66

Fig. 2.13	(a) Mechanism and (b) Experimental setup of SEM measurement (CIF-IIT (BHU))	68
Fig. 2.14	Experimental setup of UV-Visible measurement [JASCO V- 770 UV–Vis spectrometer]	70
Fig. 2.15	(a) Mechanism and (b) Experimental setup of photoluminescence spectroscopy	72
Fig. 2.16	Density measurement kit by Sartorius, BSA2245-CW	73
Fig. 2.17	Experimental set up of automated impedance analyzer along with sample holder and furnace (6500 P Wayne Kerr, UK)	74
Fig. 2.18	Experimental set up of automated impedance analyzer along with sample holder and furnace (6500 P Wayne Kerr, UK)	79
Fig. 2.19	A typical conductivity spectra of a polycrystalline material	81
Fig. 2.20	A typical FullProf software interface during the Rietveld refinement process	84
Chapter III	Effect of Sintering Temperature on Ion Dynamics of Na0.5Bi0.5TiO3	
Fig. 3.1	(a) Rietveld refinement of XRD pattern for different sintering temperatures (b) FTIR of the sample sintered at $1100 \ ^{\circ}C$	91
Fig. 3.2	Depicts the variation of $\log \sigma$ vs $\log v$ from 500 °C to 700 °C at the step of 20 °C for the samples synthesized under different sintering temperatures (a) 1000 °C (b) 1050 °C (c) 1100 °C (d) 1150 °C	94
Fig. 3.3	(a) Variation of log $\sigma_{dc}vs$ log v_h (b) Arrhenius plot for estimation of activation energy for the samples synthesized under different sintering temperatures, (c) Variation of E_a with sintering temperature and (d) SEM micrographs of the samples sintered at different sintering temperatures and respective insets shows their grain size histograms	94
Fig.3.4	Variation of 'n' with temperature for the samples synthesized under different sintering temperatures	96
Fig.3.5	Variation of charge carrier concentration factor 'N' with temperature for the samples synthesized under different sintering temperatures	98
Fig.3.6	Ghosh scaling for the samples synthesized under different sintering temperatures	99

Fig. 3.7	Summerfield scaling for the samples synthesized under different sintering temperatures	100
Fig. 3.8	Modulus scaling (M"/M" _{max} vs ν/ν_{max}) with the variation of sintering temperature (a) 1000 °C (b) 1050 °C (c) 1100 °C (d) 1150 °C	100
Fig. 3.9	Variation of Na/Bi-Ti bond with the sintering temperature (inset) structure of NBT from Diamond	101
Fig. 3. 10	Estimation of K using relation $ Z _{adj} = f^{-K}$ from log $ Z $ vs log v for all the studied samples	102
Fig. 3. 11	Variation of K with temperature ranging from 500 °C to 700 °C for all the studied samples	103
Fig. 3.12	(a) Normalized M" and Z" isotherms with frequency in the temperature range of 500 °C to 700 °C with the variation of sintering temperature (b) Variation of relaxation hopping frequency with temperature for the samples sintered at 1000 °C and 1150 °C (c) Range of Δv_r for all the studied samples	103
Fig. 3.13	(a) Plot of XRD intensity of peak $(2\theta \sim 32^{\circ})$ vs $2\theta \cdot \delta$ (°) where δ is the angle at which maxima occurs showing diffuseness of XRD peak with the sintering temperature, (b) Variation of coherence length, L _{coh} and lattice constant, a with the sintering temperature	105
Fig. 3.14	X-ray diffractograms of the NBT sample and the sample dipped in propan-2-ol (C ₃ H ₇ OH) for two days (i) log σ vs log v for the NBT sample and sample dipped in propan-2-ol (ii) Modulus Nyquist plots at room temperature for the NBT sample and sample dipped in propan-2-ol (iii) Gray highlighted region of inset (ii) showing modulus Nyquist plots of pure NBT sample at room temperature	107
Chapter IV	Ion Dynamics of Non-Stoichiometric Na _{0.5+x} Bi _{0.5-x} TiO _{3-ð} : A Degradation Study	
Fig. 4.1	X-ray diffractograms of the $Na_{0.5+x}Bi_{0.5-x}TiO_{3-\delta}(x = -0.02, -0.01, 0.0, 0.01 and 0.02)$ compositions	111
Fig. 4.2	Rietveld refined X-ray diffractograms of the studied $Na_{0.5+x}$ Bi _{0.5-x} TiO _{3-δ} (x = -0.02, -0.01, 0.0, 0.01 and 0.02) compositions	112
Fig. 4.3	Volume and tolerance factor of the studied $Na_{0.50+x} Bi_{0.50-x}TiO_{3-\delta}$ (x = -0.02,-0.01,0.0,0.01 and 0.02) compositions	114

Chapter V	Investigation of Oxide Ion Migration in Bi-deficient Mg ²⁺ Doped Sodium Bismuth Titanate	
Fig. 4.16	Thermogravimetric analysis of the reduced $Na_{0.5+x}Bi_{0.5-x}TiO_{3-\delta}$ (x = -0.01, 0.0 and 0.01) compositions	132
Fig. 4.15	Variation of tan δ with temperature of the fresh and reduced x = -0.01, 0.0 and 0.01 samples	131
Fig. 4.14	Variation of the value of concentration of mobile charge ions with temperature of the fresh and reduced $x = -0.01, 0.0$ and 0.01 samples	130
Fig. 4.13	Comparative of log τ_o vs x of the fresh and reduced x = -0.01, 0.0 and 0.01 samples, (inset) Linear fitting of log v _h vs 1000/T of the fresh x = -0.01, 0.0 and 0.01 samples	129
Fig. 4.12	Comparative of $\ln \sigma$ vs 1000/T, exponent vs temperature with error bars and $\log \sigma_{dc}$ and $\log v_h$ of the fresh and reduced x = -0.01, 0.0 and 0.01 samples	128
Fig. 4.11	Comparative of $\log \sigma$ vs $\log \nu$ of the fresh and reduced x = 0.0 sample	127
Fig. 4.10	(a) Comparative of X-ray diffractograms of the fresh and reduced samples and (b) Visualization of unit cell structure of fresh and reduced sample of composition with $x = 0$	124
Fig. 4.9	(a) Variation of log σ vs log ν for x =0.0 sample (for instance), (b) Variation of exponent with temperature, (c) Variation of log σ_{dc} vs log ν_h and (d) Arrhenius fitting of conductivity	123
Fig. 4.8	Thermogravimetric analysis of the studied $Na_{0.5+x}Bi_{0.5-x}TiO_{3-\delta}$ (x = -0.01, 0.0 and 0.01) compositions	120
Fig. 4.7	Depicts the Na/Bi ratio and grain size obtained from XPS and grain histograms, respectively	119
Fig. 4.6	X-ray photoelectron spectroscopy measurements (de- convoluted peaks)of the studied $Na_{0.5+x}Bi_{0.5-x}TiO_{3-\delta}$ (x = - 0.02, 0.0, 0.01 and 0.02) compositions	117
Fig. 4.5	Wide range X-Ray photoelectron spectra of $Na_{0.5+x}Bi_{0.5-x}TiO_{3-\delta}$ (x = -0.02, 0.00, 0.01 and 0.02) compositions showing the presence of Na, Bi, Ti and O	117
Fig. 4.4	SEM micrographs of the studied $Na_{0.5+x} Bi_{0.5-x} TiO_{3-\delta}$ (x = -0.02, -0.01, 0.0, 0.01 and 0.02, (a-e)) compositions	115

Fig. 5.1	(a) X-ray diffractogram pattern of $Na_{0.5}Bi_{0.49}Ti_{(1-x)}Mg_{(x)}O_{3-\delta}$ (x = 0.00, 0.01, 0.02, 0.03) (b) Representative crystal structure in 3D view	138
Fig. 5.2	Rietveld refinement pattern of NBT4900, NBT4901, NBT4902 and NBT4903. Black circles represent the experimental data, and red lines are the fit. (a) Variation of lattice parameters a , c and volume (b)	139
Fig. 5.3	Octahedral tilting (ϕ) with composition obtained from Rietveld refinement	140
Fig. 5.4	(i) Bond valence energy landscape (BVEL) of all the investigated system at the iso-surface value 2.5 eV (ii) Oxide ion migration channel of studied composition in the b-c plane obtained from BVE method.	142
Fig. 5.5	(a-d) Oxide ion diffusion energy migration barrier landscape for NBT4900, NBT4901, NBT4902 and NBT4903, respectively. All the sample are showing 3D migration channel except NBT4903 in which 2D migration is pre- dominating (e) A representative BVEL of NBT4902 unit cell	144
Fig. 5.6	SEM Micrographs of the sintered samples. Inset shows grain size distribution histogram	145
Fig. 5.7	FTIR spectrum of Na _{0.5} Bi _{0.49} Ti _(1-x) Mg _(x) O _{3-δ} (x = 0.00, 0.01, 0.02, 0.03)	146
Fig. 5.8	TGA of $Na_{0.5}Bi_{0.49}Ti_{(1-x)}Mg_{(x)}O_{3-\delta}$ (x = 0.00, 0.01, 0.02, 0.03) in N ₂ atmosphere	148
Fig. 5.9	Room temperature Raman spectra of the studied compositions	149
Fig. 5.10	Deconvoluted Raman spectra using 13 peaks showing the presence of R3c symmetry	150
Fig. 5.11	FWHM variation in Raman spectra for E(TO4) and E(LO9) mode of all the investigated compositions	151
Fig. 5.12	BET nitrogen adsorption isotherm as a function of relative pressure	152
Fig. 5.13	(a) Representative AC impedance spectra at 500 °C (b) Arrhenius plot for total conductivity (c) Variation of	155

migration barrier and activation energy for $Na_{0.5}Bi_{0.49}Ti_{(1-x)}Mg_{(x)}O_{3-\delta}$ (x = 0.00, 0.01, 0.02, 0.03)

Chapter VI **Oxide-ion** conduction in alkaline earth metal doped Y₃GaO₆: Substitution on A site **Fig. 6.1** (a) Room-temperature XRD pattern of the studied samples 164 and XRD of Y₃GaO₆ taken from ICSD database (b) 3D polyhedral representation of crystal structure **Fig. 6.2** Rietveld refined patterns with observed (black circles), **164** calculated (solid red line), Bragg reflections (green vertical ticks) and (blue line) difference profiles for the studied compositions sintered at 1350 °C for 6h Fig. 6.3 (a) Schematic of the energy barrier landscape of single oxide 166 ion migration inside the crystal lattice (b) Crystal structure, including migration iso-surface of at 2.7 eV in Y₃GaO₆. Yellow colour represents the iso-surface. Fig. 6.4 167 (a-b) Bond valance energy landscape for oxide ion migration viewed along c axis with various iso-surface. Yellow isosurface in Fig. (a) represents the presence of migration pathway and the rejected iso-surface in Fig. (b) represents the absence of migration channel. The energy difference between fig. a and b gives the Energy barrier E_b for migration at room temperature (c) Energy barrier histogram at room temperature for studied compositions. Fig. 6.5 Oxygen ion diffusion iso-surface channel of YGO and 168 YCGO along c-axis at (a) 2.80 eV (b) at 3.90 eV derived from the bond valence energy landscape using VESTA software. Fig. 6.6 (a) Complex Impedance plot of studied compositions at 600 172 °C in the air. (b) Complex Impedance plot for YCGO and YSGO sample. (c) Arrhenius plot (Variation of $\log [\sigma_{bulk} * T]$ with the inverse of temperature) of the studied compositions with the inversed of temperature. Fig. 6.7 Dependence of (a) total conductivity (b) oxide ion 173 conductivity on the dopant ionic radii at 700 °C Intrinsic strain developed inside the crystal due to defects, 175 **Fig. 6.8** grain boundary and faults calculated using Williamson-Hall analysis

Fig. 6.9	Oxygen partial-pressure dependence of total electrical conductivity of YGO, YCGO, and YSGO samples at (a) 700 and (b) 800 °C, respectively.	175
Fig. 6.10	Room temperature photoluminescence spectra under an excitation wavelength of 260 nm and slit width 1nm	176
Fig. 6.11	(a) Tauc's plot for direct band-gap calculation of YGO, YCGO, YSGO and YBGO samples. (b) Corresponding band structure.	177
Fig. 6.12	Room temperature FTIR spectra of YGO, YCGO, YSGO and YBGO samples. Figure in the inset shows the decrease in the metal-oxygen bond intensity with the increase in the atomic mass of dopant	179
Fig. 6.13	(a-d) SEM Micrographs of YGO, YCGO, YSGO and YBGO samples. Inset in the figure shows grain size distribution (e) Grain size variation of the studied compositions	180
Fig. 6.14	Thermal expansion curve of YGO, YCGO and YSGO compositions from Room temperature to 1000 °C	182
Fig. 6.15	(a) XRD patterns of studied compositions (b) Crystal structure of Y_3GaO_6	185
Fig. 6.16	The percentage of phase purity with the increase in calcium concentration in Y_3GaO_6	187
Fig. 6.17	(a) Rietveld refinement fit pattern of all the studied systems(b) Full structure refinement of 0Ca and 2Ca composition.	188
Fig. 6.18	(a-c) Variation of lattice parameters and volume with dopant concentration for orthorhombic (Y_3GaO_6), cubic (Y_2O_3) and triclinic (CaCO ₃) phases, respectively (d) Oxygen percentage change for all the compositions analyzed from Rietveld refinement and SEM-EDX studies.	189
Fig. 6.19	(a-e) SEM micrographs of $Y_{3(1-x)}Ca_{3x}GaO_6$ (x = 0, 0.02, 0.04, 0.08, 0.12) compositions.	189
Fig. 6.20	Tauc plot showing the variation of $(\alpha h \upsilon)^2$ vs h υ with dopant concentration	191
Fig. 6.21	(a) Impedance Nyquist plot at 700 °C. Inset depicts the equivalent circuit to fit the impedance spectra along with impedance plot of Ca doped compositions (b) Arrhenius plot	193

	for total conductivity of studied compositions. Inset depicts the conductivity histogram at 700 $^{\circ}\mathrm{C}$	
Fig. 6.22	Arrhenius plot for (a) grain (b) grain-boundary conductivity of studied compositions	194
Fig. 6.23	Electron density contour map of all studied compositions in the z-y plane	196
Fig. 6.24	Space charge ionic fitting model for all the studied specimens	197
Fig. 6.25	(a-b) Room temperature photoluminescence spectra with an excitation wavelength of 305 nm	198
Fig. 6.26	Modulus scaling behaviour for all the samples at different temperatures	199
Fig. 6.27	(a-b) Cyclic voltammogram curve with the various scan rate (c) Specific capacitance at different scan rate for 0Ca and 2Ca sample (d) Chronoamperometry plot of undoped Y_3GaO_6 sample at 1.5 V	201

LIST OF TABLES

		Page No.
Chapter I	Introduction and Literature review	
Table 1.1	Different types of fuel cells with their characteristics	9
Chapter II Table 2.1	Synthesis, Characterizations and Analysis Techniques Description of the raw materials with their chemical formula, purity, and manufacturer used for the preparation of proposed compositions	48
Chapter III	Effect of Sintering Temperature on Ion Dynamics of Na0.5Bi0.5TiO3	
Table 3.1	Atomic positions and R-factors obtained after refinement for the Na _{0.5} Bi _{0.5} TiO ₃ samples sintered at different temperature	92
Chapter IV	Ion Dynamics of Non-Stoichiometric Na0.5+xBi0.5-xTiO3-8: A Degradation Study	
Table 4.1	Lattice parameters, atomic positions and goodness of fitting parameters of the studied $Na_{0.5+x}Bi_{0.5-x}TiO_{3-\delta}$ (x = -0.02, -0.01, 0.0, 0.01 and 0.02 compositions	113
Table 4.2	Area of the peaks obtained from XPS peak fitting	118
Table 4.3	δ obtained from TGA and XPS	121
Table 4.4	Lattice parameters, atomic positions and goodness of fitting parameters of the studied $Na_{0.5+x}Bi_{0.5-x}TiO_{3-\delta}$ (x = -0.01, 0.0, 0.01) compositions after reducing	125
Table 4.5	Lattice parameters, atomic positions and goodness of fitting parameters of the sample dipped in propanol for 48h	125
Chapter V	Investigation of Oxide Ion Migration in Bi-deficient Mg ²⁺ Doped Sodium Bismuth Titanate	
Table 5.1	Position coordinates and Rietveld fitting parameters and for all the studied samples	140
Table 5.2	Average crystallite size, micro-strain and density of the investigated compositions	141
Table 5.3	Oxygen vacancy estimated from TGA data and electrical conductivity	148

Table 5.4	BET surface area, pore size and pore volume of all investigated compositions	152
Chapter VI	Oxide-ion conduction in alkaline earth metal doped Y ₃ GaO ₆ : Substitution on A site	
Table 6.1	Rietveld refined lattice parameters, volume, density and porosity of the studied compositions	163
Table 6.2	Value of grain, grain-boundary capacitance, total conductivity at 600 °C, and activation energy of studied compositions	170
Table 6.3	Bonding strength with the oxygen of di-valent A-site dopant	173
Table 6.4	TEC of the measured sample between room temperature and 1000 $^\circ\mathrm{C}$	182
Table 6.5	Crystallite size, lattice strain, density and FWHM of the studied samples	188
Table 6.6	Energy band gap	191
Table 6.7	Comparison of grain, grain-boundary conductivity and activation energy of Ca doped samples	194