
 

 

 

 

 
 

 

CHAPTER 1 

Introduction: A bibliographic review 
 

 



 

 



Chapter 1 

 

23 

 

1.1 Introduction 

The present thesis is based upon the detail study of transport properties of some 

topological insulators (TIs) and Weyl semimetals (WSMs). In this chapter we have 

discussed some essential and important features of these materials. We have divided this 

chapter in two parts, which provides the brief introduction of TIs and WSMs. The unique 

properties of these materials prepare a good podium for understanding interesting physics 

and can potentially be used in future technological applications. 

1.2 Topological Insulators 

Topological insulators (TIs) have attracted immense interest of the research community 

for their unique physical properties and potential technological applications, such as in 

spintronic devices and quantum computing [1]–[3]. 3D topological insulator crystals host 

bulk band gap with gapless topological protected surface states (SS) by means of strong 

spin-orbit coupling (SOC) and preservation of time-reversal symmetry (TRS) [4]–[6]. The 

amalgamation of strong spin-orbit interaction and TRS makes surface states free from back 

scattering by crystal defects and non-magnetic impurities. Therefore, the electrical 

conduction is robust against backscattering on the surfaces of TIs. Besides this, TIs hold a π 

Berry phase because of spin-moment locking [3]. The realization of TIs has inaugurated a 

gush of research activities with anticipation of marvelous phenomena, including the 

quantum anomalous Hall effect (QAHE), possibility of neutral Majorana Fermions, 

topological superconductivity, novel magnetoelectric quantum states and magnetic 

monopole [1]–[3]. It has been observed that topological surface states (TSS) of a TI exhibit 

a linear energy-momentum (E-k) relation. Therefore, quantum magnetotransport 

phenomenon such as, Aharonov-Bohm oscillations, weak antilocalization effect and 

quantum conductance fluctuations are attributed to these TSS [6]. Moreover, large SOC 
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drives an inversion of the band at the gamma point near the Fermi level (EF), which induces 

very interesting magnetotransport properties in these compounds. 

In condensed matter physics the different phases of matter and transitions between them 

occur by change of temperature, pressure, and chemical potential. These transitions occur 

because of symmetry breaking as explained by Landau in his theory of phase transitions. In 

structural transitions the translational symmetry is broken, while in ferromagnets rotational 

symmetry is broken and in superconductors the gauge symmetry is broken. In 1980, Klaus 

von Klitzing et al. [7] introduced Integer Quantum Hall Effect (IQHE) state transition, the 

basic understating of phase transition could not explain the normal state to IQHE state 

transition on the basis of symmetry breaking alone. Thus, a new classification of phases 

was established by Thouless et al. [8] on the basis of topological properties of the ground 

state. If there is a change in the topological properties of the ground state, a system said to 

undergo the phase transition. To understand a topological phase transition we have to have 

an idea of topology. 

1.3 Topology in Topological Phase  

Topology is a mathematical term which classifies shape of object and deals with the 

properties of object which are invariant under smooth deformation, twisting and stretching. 

For example, two geometrical constructions that can be transformed into one another by 

smooth deformations are said to be topologically equivalent. The topological class is 

defined by the quantity called genus (g) in three dimensional Euclidean space. The genus is 

analogous to number of holes present in the geometry. Those geometries which contain the 

same number of holes are considered topologically equivalent. Therefore, a coffee mug and 

doughnut are topologically equivalent with g = 1, similarly a solid sphere and a solid cube 

are also topologically equivalent with g = 0. However, the solid sphere and the doughnut 
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are topologically non-equivalent as the solid sphere cannot be transformed into the 

doughnut without creating a hole in geometry but a coffee mug can be simply transformed 

into the shape of a doughnut. The topological equivalence between a coffee mug and a 

doughnut, sphere and a cube, and the non-equivalence between the doughnut and a sphere 

is shown in figure 1.1.  

 

Figure 1.1: The sphere and cube on the left hand side are topologically equivalent and 

the coffee mug and the doughnut on the right are also topologically equivalent. The 

sphere and the coffee mug are topologically non-equivalent. 

In other words, any two objects with the same value of genus can be smoothly 

transformed in one another without any change in their topological properties. The Gauss-

Bonnet theorem connects the geometry (curvature) of objects to their topology and relates it 

to genus (g) of an object as, 
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     (1.1) 

Where K is the Gaussian curvature, g is the genus of the surface. 

In a band insulator, such a ‗smooth deformation‘ is similar to the modification in 

Hamiltonian of a many particle system, without shutting the bulk band gap. Two quantum 

states are said to be topologically equivalent only if a smooth transformation could take 

place from one state to the other without shutting the band gap. Hence, Insulators are 

topologically equivalent if they can be continuously transformed into one another without 

closing the energy gap [3]. 

1.4 Preservation of Time Reversal Symmetry (TRS) 

Upon breaking of the symmetry we get interesting phase of matter by phase transition, 

i.e. liquid crystals are the examples of translation symmetry breaking phase, similarly 

superconductors are the examples of the gauge symmetry breaking phase of the matter. 

Contrastingly, beauty of topological insulator material is not due to breaking of symmetry 

but due to preservation of symmetry. The topological surface states (TSS) in TI always 

preserve time reversal symmetry (TRS). The TSS of TI are protected by TRS so they are 

robust against the nonmagnetic impurity or imperfection, hence, there is no backscattering 

of electron in these states. Due to large SOC and spin momentum locking, electron can 

move only in forward direction, they cannot move in backward direction without flipping 

there spin direction, because spin direction of the electron is uniquely tied to its momentum 

vector. Thus, there are two opposite paths for electron motion corresponding two opposite 

spins of electrons as shown in the figure 1.2. 



Chapter 1 

 

27 

 

 

Figure 1.2: Schematic picture of electrons motion of two opposite spins with 

preservation of TRS in TSS. 

1.5 Background of Topological Insulator 

1.5.1 Hall Effect 

The early seeds of topological insulator were laid down by Edwin Hall with the 

discovery of Hall effect in 1879 [9]. He measured a transfer voltage in a conducting bar 

perpendicular to the applied current; this voltage arises from the deflected motion of 

charged particles under external electric field and magnetic field. When magnetic field is 

applied in a direction normal to the applied electric current, the charge carriers experience a 

Lorentz force and accumulate on the opposite surfaces of the bar depending on their nature 

of charge. This effect is recognized as the Hall effect and the transfer voltage generated 

across the conductor is called as Hall voltage (VH), the schematic diagram of Hall setup is 

shown in figure 1.3. By studying Hall effect, one can determine the nature of charge 

carriers (i.e. electrons or holes) as well as the density of carriers in the sample by following 

relations. 

   
    

   
 

 

  
      (1.2) 
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Where, RH is the Hall coefficient, Ix is current flows in plane of the conductor, z is the 

thickness of conducting bar, B is the applied magnetic field perpendicular to the plane of 

the bar ,VH is the Hall voltage, n is the density of the charge carriers in the sample and e is 

the electric charge.  

 

Figure 1.3: Electrical schematic of Hall effect geometry. The Current (Ix) flows in plane, 

perpendicular to an applied field B generating a Hall voltage VH by action of the Lorentz 

force. 

1.5.2 Integer Quantum Hall Effect (IQHE) 

IQHE was observed by von Klitzing in 1980 [7] in two dimensional electron gas 

systems (2DEG) at very low temperature with the implementation of strong magnetic field. 

The quantization of the electrons motion in cyclotron orbits gives rise to quantization of 

energy level in form of Landau levels as illustrated in figure 1.4. If ‗N‘ Landau levels are 

filled and the others are empty, then the unoccupied and occupied states are separated by an 

energy gap just like as an insulator. Contrary to an insulator, the Hall resistivity quantized 

as, ρxy = h/Ne
2
, where h is Planck‘s constant, e is the electron charge and N is an integer. 

Interestingly, no symmetry breaking is needed to show this quantum phenomenon, which 
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classifies notable quantum phases of matter in condensed matter physics. The IQHE is a 

quantum mechanical aspect along with a topological one, which promoted the evolution of 

various quantum phases on the notion of topology. 

 

Figure 1.4: (a) Longitudinal (ρxx) and transverse resistivity (ρxy) variation with 

applied magnetic field revealing the integer quantum Hall Effect for InGaAs based 

heterostructure at a very low temperature. (b) Quantization of energy level in 

discrete Landau levels with application of magnetic field, by increasing of magnetic 

field strength, only those Landau levels that lie below the Fermi level (EF) are 

occupied. (Adapted from [10]) 

An important feature of the IQHE state is the presence of edge states that arise due 

to incomplete cyclotron orbit at the edge of a 2DEG sample. Hence they form skipping 

orbits at the edge of 2DEG sample. However, inner electron states get quantized in 

cyclotron orbits as mentioned earlier. 

The conduction along these edge states is unidirectional, according to the direction 

of applied external magnetic field on the system. This is a direct consequence of the 

topological character of gapped band structures. The electrons at one edge travel along 

one direction and the electrons on the other edge travel in the opposite direction in 

skipping orbits as shown in figure 1.5. 
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Figure 1.5: The integer quantum Hall state with skipping orbits forming the edge 

states. 

1.5.3 Quantum Spin Hall Effect (QSHE) 

The QSHE is the basic foundation of 2D topological insulator, which is 

equivalent to the two copies of the IQHE with two spin polarized edge states to 

maintain TRS, proposed by Kane & Mele in 2005 [11]. In QSHE, electrons with spin-

down and spin-up move in opposite directions to form spin-polarized currents on the edge 

states due to the SOC even without application of any external magnetic field, as illustrated 

in figure 1.6. (b). The SOC lifts the spin degeneracy of the edge states, resulting in the 

chiral states at each edge of the sample that correspond to the two spins of the electron. 

 

Figure 1.6: (a) Two copies of a QHE edge state for an opposite magnetic field. (b) An 

amalgamation of these two QHE states creates a quantum spin Hall state without a 

magnetic field. (Adapted from [12]) 

It can be noted that even two opposite channels are now present at the edge of the sample 

but backscattering is still not present because of the formation of the Kramer‘s doublets, 
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which protected by TRS. Therefore, when an up spin right-moving electron backscatters 

from a non-magnetic impurity, it undergoes a phase difference π in this process and turns to 

a left-moving down spin electron. Similarly a left-moving down spin electron becomes an 

up spin right-moving electron after backscattering. These two reflected wave functions 

interfere destructively and permit dissipation less transport. 

In 2006, Bernevig, et al. [13] theoretically calculated that the quantum spin Hall phase 

may be observed in HgTe quantum wells. Soon after this prediction, in 2007 König et al. 

[14] experimentally observed QSHE in HgTe in zero magnetic field. 

1.5.4 Anomalous Hall Effect (AHE) and Topological Hall Effect (THE) 

Soon after the discovery of Hall effect in non-magnetic conductor under the applied 

magnetic field, in 1881, the Hall effect has also been observed in ferromagnetic ordered 

materials without any applied external magnetic field. This measured Hall effect in the zero 

magnetic field originated from the spontaneous magnetization of ferromagnetic materials, 

formally known as anomalous Hall effect (AHE). 

 

Figure 1.7: The variation of Hall resistivity ρxy with respect to external magnetic field B. 

(a) The ordinary Hall effect, (b) The contribution anomalous Hall effect (AHE) (c) The 

measured hysteresis loop from quantum anomalous Hall effect (QAHE). (Adapted from 

[15]) 

It is observed as an additional effect with ordinary Hall effect due to which a large slope 

in Hall resistivity at the low field was found as illustrated in figure 1.7.  
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This nonlinear nature of Hall resistivity (ρxy) is associated to the AHE, which is related 

to the magnetization of the materials (ρxy = R0B + RSM), Similar to the QHE, the quantized 

version of AHE is known as quantum anomalous Hall effect (QAHE) [16]. The 

understanding of QAHE is uniquely important for the evolvement of dissipation less 

spintronic devices.  

Furthermore, the Topological Hall Effect (THE) was also observed in certain material 

with magnetic ordering [17]. The AHE occurs because of the magnetic interaction of 

conduction and localized electrons, while the THE is a distinctive feature of topologically 

nontrivial spin textures. Generally, THE is observed in ferromagnetic materials, but 

recently it has also been observed in antiferromagnetic systems [18]. The THE can be 

understood as, when an electron travels through a spatially varying magnetization of a 

2DEG, if the magnetization is large enough, it will follow the local magnetization direction 

adiabatically.  

 

Figure 1.8: Schematics diagram of the THE due to scattering of spin-down and spin-up 

electrons from a Skyrmion binding in a ferromagnetic thin film with external applied 

electric field E. (Adapted from [19]) 

The electron in its own rest frame will experience a time-dependent magnetic field that 

will grab a Berry phase. The effect of this Berry phase can relate to an effective applied 
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magnetic flux perpendicular to the system. By this relation, the spatially changing 

magnetization and its related Berry phase is induced a Hall effect, which is known as THE. 

Basically, THE depends exclusively on the topology of the magnetic texture in the material. 

Hence, THE is observed in those topological materials, which have magnetic spin texture or 

presence of Skyrmion phase as shown in figure 1.8. 

1.5.5 The Concept of Berry Phase  

The fermions are spin polarized due the presence of SOC in the system which leads to π 

Berry phase which is the peculiar characteristic feature of QSHE states as we have 

discussed in previous section. Basically, the Berry phase is the phase difference that gained 

by a fermion wave function after completing a closed loop in a parametric space. We can 

understand it with the help of the schematic diagram which is illustrated in figure 1.9. Let 

us consider an electron performing a closed loop in real space with position vector r and 

momentum vector k as displaced in figure 1.9 (a). Let the behavior of electron is described 

by a wave function ψ. When an electric field E is applied, then the electron endures an 

effective magnetic field Beff, which interacts to its spin vector. This coupling then elevates 

the spin degeneracy of the spin states, due to elevation of this degeneracy, a Dirac cone is 

formed in the momentum space with two opposite chirality. These spins are revolving with 

one chirality at the one end of the Dirac Cone, and the opposite chirality at the other end of 

the Dirac cone as shown in figure 1.9 (b). However, in electron‘s rest frame, it experiences 

a rotating magnetic field which alters the Berry phase of the wave function as well as spin 

direction θ. For each and every closed cycle completed in real space, the value of θ sweeps 

to 2π, although, the Berry phase changes by π only. In consequence, the wave function ψ 

changes from ψ to -ψ. Therefore, to return to its original value of ψ in real space, the 
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electron must have to complete one more orbit i.e. two full orbits, as displayed in figure 1.9 

(c) [20]. 

 

Figure 1.9: (a) The real space picture of electron's orbit (b) Formation of the Dirac cone 

due to SOC in momentum space (c) Berry phase and change in electron‘s wave function in 

its rest frame. (Adapted from [20]) 

1.5.6 Shubnikov-de Haas (SdH) Oscillations 

The splitting of energy levels into discrete Landau levels in 2DEG subjected to a strong 

magnetic field perpendicular to its plane at low temperature has already discussed in 

previous section (1.5.2). Due to strong magnetic field, these electrons are localized in the 

plane of 2DEG and execute a cyclotron motion with the frequency ωc = eB/m*, where e is 

the charge of electron, m* is the effective mass of the electron and B is applied magnetic 

field. Hence, energy of the discrete Landau levels can be expressed as,  

   (  
 

 
)         (1.3) 

When the Landau level passes over the Fermi level as a consequence of continuous 

increase in applied magnetic field, due to broadening of the Landau level the Fermi level 

stays inside the Landau level for a short time. Therefore, during this time electrons get 
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scattered in that Landau level due to availability of vacant states just above the Fermi level 

and completely filled states just below the Fermi level. If the Fermi level stands somewhere 

in between two Landau levels, there is no scattering of electron inside the Landau levels. 

Hence, the resistivity changes periodically with increase in the applied magnetic field. 

Consequently, we observed oscillations in the longitudinal resistivity (ρxx) (figure 1.4), 

these oscillations are known as Shubnikov-de Haas (SdH) oscillations, whereas, if the 

oscillations observed in magnetization vs magnetic field data, they are called de Haas–van 

Alphen (dHvA) oscillations. In practice, these oscillations can be analyzed either by taking 

the second derivative of resistivity (ρxx) with respect to applied magnetic field or after 

deducting a smooth background from the measured longitudinal resistivity data. 

In TIs, from SdH oscillation analysis, effective mass, carrier lifetime, Dingle 

temperature and quantum mobility can be determined as well as Fermi surface can be 

mapped. Onsager relation gives us the relationship between the frequency (F) of oscillation 

and the Fermi wave vector kF as [21], 

  
 

  
  

 
      (1.4) 

From this relation Fermi wave vector can be evaluated. In addition, SdH oscillations are 

also provide the information about the Berry phase. The value of Berry phase in normal 

metals for quadratic energy dispersion is zero, while in Dirac materials the value of the 

Berry phase for linear energy dispersion is π. The Berry phase from these quantum 

oscillations can be extracted after plotting the Landau fan diagram with the help of 

following relation [22]. 

  (
 

 
 

 

 
  )             (1.5) 
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Thus, the plot between inverse magnetic field B
-1

 and Landau level index N gives a 

straight line, the slop of the linear fit of this plot is correspond to the frequency of 

oscillation (F) and the intercept on the Landau level index (N) axis gives the value of γ. γ = 

0, represents zero Berry phase, whereas γ = 0.5 represents π Berry Phase [22]. 

The quantum oscillations can be expressed by Lifshitz–Kosevich equation [21], which 

is give as  

                ,  (
 

 
 

 

 
  )-   (1.6) 

Where, A0 is a constant, RT is thermal damping factor, RD is the dingle factor and RS is spin 

depending factor. 

1.5.7 Weak Localization (WL) and Weak Antilocalization (WAL) Effects  

The WAL effect in magnetoconductance is associated to the TSS in TIs. It appears at 

very low temperature and small magnetic field when negative conductivity varies as a 

variation of applied magnetic field. It has been realized that large spin-orbit scattering in 

some materials could leads to a change in quantum interference from constructive to 

destructive. Subsequently, the WAL effect appears due to enhancement in negative 

conductivity. On the other hand, in the weak localization (WL) effect, electrons in 

conductors are localized due to constructive interference between two time-reversed paths 

of the electron wave functions, which enhance the probability of electrons localization and 

reduce their ability of current transport. Therefore, application of a magnetic field induces a 

positive magnetoconductance. In the 1980, Hikami, Larkin and Nagaoka (HLN) analyzed 

the WAL and WL effects for 2D systems with the help of equation given as [23] 
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 )    (

 

      
 )]    (1.7) 

Where,   
   

  
 represents the number of conduction channels, ψ is digamma function and 

lφ is the phase coherence length. Like many semiconductors, the lφ in TIs can be order 

nanometers to micrometer at low temperature. When size of the sample is comparable with 

lφ, the quantum interference becomes important in transport and enhances the 

backscattering between two time-reversed scattering paths as shown in the figure 1.10. In 

TIs, due to spin-momentum locking, the spin directions in these two paths are always 

opposite to each other. As already explained in section 1.5.5, π Berry phase is accumulated 

for a closed loop. Thus, these two paths acquire phases of +π/2 and –π/2 and the π Berry 

phase thus leads to destructive interference. The constant term α from the HLN equation is 

then used to detect the type of localization, i.e. for WAL α = -0.5 and for WL α = 1. 

 

Figure 1.10: (a) The two time-reversed scattering loops without spin- momentum locking 

exhibiting weak localization in magnetoconductivity (ΔG (B)). (b) The two time-reversed 

scattering loops with spin- momentum locking exhibiting weak antilocalization in ΔG (B). 

(Adapted from [24]) 
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1.5.8 Historical Developments of 2D and 3D Topological Insulators  

As discussed in previous section 1.5.3 that electrons with dissimilar spins are move in 

opposite directions on the edge states to form spin-polarized currents due to the large SOC 

and preservation of TRS. In the beginning, Graphene was proposed to be the system that 

may show the QSHE, but because of weak SOC of carbon QSHE could not be observed in 

Graphene experimentally [11]. The presence of QSH state in HgTe quantum wells (QW) 

has been predicted by Bernevig et al. in 2006 [13]. A thin layer of HgTe inserted between 

two layers of CdTe to construct 2D QW structures that provide a special route to change the 

electronic structure of the compound. Soon after this theoretical envision, in 2007, König et 

al. [14] confirmed it experimentally by observing QSHE in HgTe at 30 mK in zero 

magnetic field. Therefore, HgTe QW is considered as the first 2D TI. After the 

experimental validation of QSHE in CdTe/HgTe/CdTe QW, it was also predicted that 

QSHE may also exist in type II semiconductor such as InAs/Gasb/AlSb, when Fermi level 

lies in the bulk band gap [25]. 

   The idea of 2D systems may be continued to the 3D systems, with a condition that the 

system should has a strong SOC that generally presents in heavy elements. In 2007, Fu et 

al. predicted that Bi1-xSbx (x = 0.07-0.22) is a 3D TI based on electronic structure 

calculation and the connection between the presence of special conducting surface states 

and bulk topological order. A very next year after theoretical prediction, in 2008, Hsieh et 

al. [26] reported the discovery of the first 3D TI experimentally with the help angle-

resolved photoemission spectroscopy (ARPES) by examining the energy dispersion of 

surface states. Dirac cone and TSS were experimentally observed in Bi0.9Sb0.1 using 

ARPES.  
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Figure 1.11: Selected three k-space cuts ARPES spectra of Bi0.9Sb0.1 (a) along ky direction;  

(b) with approximately 10° from the direction of ky; (c) the kx direction through the L-point 

of the bulk 3D Brillouin zone. (Adapted from [26]) 

Figure 1.11 displays the ARPES data for k-space cuts along the various directions. 

However some in the Bi1-xSbx system shows inherent shortcomings such as the small Sb 

doping range (0.07 < x < 0.22) in which the material could be tuned as a TI, narrow band-

gap (0.03 eV at x = 0.18) and the presence of multiple surface states have subsequently 

made the system least interesting from research point of view. 

Shortly after the experimental discovery of Bi1-xSbx system as a first 3D TI, in 2009, 

based on ab-initio calculations, Bi2Te3, Bi2Se3, Sb2Te3 are certain compounds of the A2B3 

chalcogenides family predicted to realize as 3D TI by Zhang et al. [6]. Calculated bulk band 

gap and non-trivial surface states for Bi2Se3, Bi2Te3 and Sb2Te3 can be seen in figure 1.12. 

The experimental validation of calculated band structure was done by three different 

groups in same year after theoretical prediction by using ARPES. Y. Xia et al. [4] verified 

topological nature of Bi2Se3 with bulk band gap ~0.3 eV, Dirac Point (DP) and surface 

states in Bi2Te3 discovered by Chen et al. [27] with bulk band gap ~0.1 eV and in Sb2Te3 by 

Hsieh et al. [28] with bulk band gap ~0.26 eV as illustrated in figure 1.12. The DP was 
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predicted to stay in the bulk band gap for Bi2Se3 and near the bulk valence band for Bi2Te3 

and Sb2Te3. 

 

Figure 1.12: Theoretical calculated band structure [6] and ARPES data for (a) Bi2Se3 [4]; 

(b) Bi2Te3 [27] and (c) Sb2Te3 TIs [28].  

 Bi2Se3, Bi2Te3 and Sb2Te3 are the materials possess similar types of layered 

rhombohedral crystal structure with R ̅m space group. We have considered Bi2Se3 as an 

example; the structure consists five atoms in a unit cell arranged in Se1-Bi1-Se2-Bi1‘-Se1‘ 

layered sequence along the ‗c‘ axis known as quintuple layers. Each layer of atom forms a 

triangle lattice. For every layer, there are three possible sequential places A, B and C along 

the z direction. The triangle layers are arranged in the order A-B-C-A-B-C across the z-

axis. The Se2 site acts as an inversion center, hence Bi1 is changed to Bi1‘ and Se1 is 

changed to Se1‘ under an inversion operation. The crystal structure of Bi2Se3 is shown in 

figure 1.13, where t1, t2 and t3 are lattice primitive vectors of rhombohedral unit cell. 



Chapter 1 

 

41 

 

 

Figure 1.13: (a) Crystal structure of Bi2Se3, the red box shows single quintuple layer (b) 

shows that three different A, B, and C sites are assigned to triangular lattice in one 

quintuple layer (c) Se and Bi atoms are arranged in a sequence in quintuple layer. (Adapted 

from [6]) 

The strong SOC drives a band inversion at the ᴦ point in the Brillouin zone. figure 1.14 

displays the schematic change in the atomic energy levels of Bi2Se3 and the effect of crystal 

field splitting and SOC on the energy eigenvalues at the ᴦ-point as calculated by Zhang et 

al. [6]. The outermost configuration of Bi and Se atoms are 6S
2
 6p

3
 and 4S

2
 4p

4
 

respectively. Since a unit cell consists two Bi and three Se, and the outermost cell of each 

atoms contain three p-orbitals px, py and pz, so there are total fifteen p-orbitals in a unit cell 

of Bi2Se3. In stage I, Bi energy levels are pushed up and Se levels are pushed down because 

of chemical bonding. In stage II, due to crystal field splitting Bi energy level splits in to two 
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levels with different parity i.e. one odd, one even denoted as      
 ,      

 , respectively, 

whereas Se energy levels split in to three states with different parity i.e. two odd, one even 

denoted as      
        

  and      
  respectively. In stage III, after taken SOC into 

consideration the energy level which is below the EF moves to upside and the level which is 

above the EF moves downward. Therefore, Strong SOC leads to band inversion in Bi2Se3 

system. 

 

Figure 1.14: Schematic picture of the band inversion of Bi and Se p-orbitals in Bi2Se3 at 

the ᴦ-point. Stage I represents the effect of chemical bonding, Stage II represents the crystal 

field splitting, Stage III represents the effect of SOC. (Adapted from [6]) 

When a magnetic impurity is doped in a TI then unusual magnetotransport effects are 

noticed in these magnetically doped TIs due to broken of TRS. Various 3d-transition metal 

elements doped magnetic TIs have been investigated theoretically and experimentally [29], 

[30]. Mn doped Bi2Te3 [31] clearly exhibited the ferromagnetic ordering at 12 K for doping 

concentration up to 9%. On the other hand, Fe and Mn doped Bi2Se3 do not show the 
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ferromagnetic ordering, however a small surface state gap opened at the DP as confirmed 

from the ARPES measurement [30]. Therefore, it is necessary to investigate various 

magnetic topological insulators for better understanding and technological applications.  

Moreover, superconductivity can also be induced in TIs by creating either internal 

chemical pressure on doping or by applying external pressure. However, only few 

topological superconductor systems have been discovered so far. Cu-intercalated Bi2Se3 is 

an example of internal chemical pressure induced topological superconductor systems [32]. 

Whereas, The external pressure induced superconductivity has been observed in pure 

Bi2Te3 with Tc of ∼3 K when external pressure applied in between 3 to 6 GPa [33]. 

1.6 Weyl Semimetal (WSM) 

WSM is a topological phase of matter regarded as an intermediate state between metal 

and insulator, which can be considered as 3D analogous of Graphene by breaking either 

TRS or inversion symmetry (IS). In WSM, the valence band and conduction band touches 

each other in the bulk at certain points, these linear-dispersive band-crossing points in bulk 

are called Weyl nodes. Weyl nodes act as a magnetic monopole in momentum space and 

always produce in pairs. The charge of Weyl node is associated to the Berry flux in the 

momentum space. It has been manifested that the charge associated to Berry curvature in a 

band structure must be zero, hence total number of Weyl nodes must be even. The 

projection of the Weyl nodes on the surface Brillouin zone is connected by an open line 

surface states called Fermi arc [34], [35]. The low-energy bulk excitations of Weyl 

semimetal are Weyl fermions. The transport by such types of excitations in the materials is 

fascinating due to its unique properties and potential applications. 
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The Weyl fermion was first introduced by Hermann Weyl in 1929 [36], one year after 

Dirac introduced equation for relativistic particles [37]. Dirac solved the Schrodinger 

equation for relativistic particles and depicted free electrons and positrons. A Dirac fermion 

is an outcome of the Dirac equation Hψ = Eψ with Dirac Hamiltonian, 

                        (1.8) 

Where,       and    are three momentum components, m is the mass of the fermion and 

         and β are anticommuting 4 4 matrices with β
2
 = 1. If we considered above 

Hamiltonian in solids, one would have energy band as 

   √  
    

    
           (1.9) 

The mass term m will play the role of an energy gap in the band structure as shown in 

figure 1.15. 

 

Figure 1.15: Energy with respect to momentum for different values of m (energy gap).The 

black dashed linear line is for m = 0 with zero energy. If m   , the energy gap = 2m 

between positive and negative energy bands. 
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Hermann Weyl solved the Schrodinger equation for relativistic particles by considering 

if the particles are massless. At present, these massless fermions are known as Weyl 

fermions which can be described by a two component matrices instead of four component 

Dirac matrices. They are the outcome of Weyl equation Hψ = Eψ with following Weyl 

Hamiltonian and energy,  

                    (1.10) 

   √  
    

    
        (1.11) 

Where, σx, σy and σz are 2 2 Pauli matrices.  Since σx, σy and σz are already coupled to px, 

py and pz respectively, so there is no room for mass term. This means that a gap cannot be 

open; hence the bands touching points are stable. Such a 3D phase of matter which has the 

linear energy dispersion and certain gapless points in bulk is conventionally called WSM. 

 

Figure 1.16: Schematics diagram of WSM phase, a phases between normal insulator and 

topological insulator. 

It could be suitable to introduce Weyl semimetals in the context of topological phases. 

Unlike to normal insulators, topological insulators are insulator in their bulk but conductive 

at the surface of the material. In band structure terminology this means that there is a gap 

inside the material and gapless modes on its surface. Therefore, a natural question can be 

asked within this framework, is whether there are topological gapless phases with gapless 

edge states? We can say yes, WSM are believed to be a 3D realization of this kind of phase, 
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which allows the propagation of electron waves that behave as Weyl quasiparticles in the 

bulk at Weyl nodes and have arc like surface states on surface Brillouin zone which 

connects surface projection of Weyl nodes as illustrated in figure 1.16. 

1.6.1 Helicity / Chirality 

The massless particles are characterized by one important quantity known as Helicity. It 

is determined as projection of spin vector (s) on particle momentum direction. This is given 

as 

  
   

| || |
         (1.12) 

Where s =  σ/2 and    is the helicity operator. The helicity operator has the eigenvalues  1, 

if spin vector aligned along the momentum direction then the eigenvalue of helicity 

operator is +1 and if spin vector aligned opposite to the momentum direction then the 

eigenvalue is -1. This leads to a picture where a Weyl node resembles to a magnetic 

monopole in momentum space. The Weyl nodes with spin vectors oriented toward the 

momentum or in the opposite direction are shown in figure 1.17. 

 

Figure 1.17: Pictorial view of Weyl nodes with opposite helicity. 
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1.6.2 The Role of Broken Symmetry 

Breaking of symmetry is necessary for a transition from a Dirac semimetal to a WSM. 

Each Dirac node divides into two isolated Weyl nodes upon breaking of TRS with opposite 

momenta  k0 and opposite chirality. Because preservation of IS needs Weyl points at 

opposite momentum -k and k that must carry opposite topological charge. 

 

Figure 1.18: Schematics of Dirac point splitting into separated Weyl points upon breaking 

TRS and IS. 

The breaking of IS enforces individual Dirac node to break into two pairs of isolated 

Weyl nodes at momentum  k0 with same chirality. This arises because, if a Weyl node 

comes at a momentum k, then another Weyl node must come at opposite momentum -k 

with identical topological charge to preserve TRS. Because, overall topological charge 

linked to the entire Fermi surface must be zero. Hence, there must be two more Weyl nodes 

of opposite topological charge at -k0 and k0 as shown in figure 1.18. Breaking both TRS and 

IS creates Weyl nodes at any k with different energies which is hard to probe 

experimentally. 
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1.6.3 Type I and Type II WSMs 

WSMs have been classified into two category, type I and type II, those respect Lorentz 

symmetry and possess point like Fermi surface at Weyl point are categorized as type I 

WSMs. While those do not respect Lorentz symmetry and Fermi surface lies at the 

boundary between electron and hole pockets are categorized as type II WSMs as illustrated 

in figure 1.19. 

 

Figure 1.19: Weyl cone in (a) Type I WSM (b) Type II WSM. (Adapted from [34]) 

TaAs and NbP families evince ideal Weyl cones and fit in type-I WSM category [34]. 

MoTe2 [38] and its sister compound WTe2 [39] exhibits tilted Weyl cone so electron pocket 

and hole pocket touches at Fermi level. Hence, those WSMs are the member of Type-II 

category and they are anticipated to manifest different features from type-I WSMs. 

1.6.4 Motion of Electron Inside These Exotic Materials (WSMs) 

Researchers at Princeton University have noticed an odd behavior of electrons during 

the study of TaAs WSM material and suggested that the surface moving electrons sink into 

the bulk when they acquire a certain momentum called the Weyl momentum and appears on 

the opposite surface. It is like an electron on the surface of the crystal, and it is moving on 

it, as it gets unique value of momentum equal to Weyl point, it will sink into the crystal 
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through these conducting channels (Weyl points) and will come out on the opposite surface. 

Weyl nodes can be considered as a portal where the electrons may leave from one surface 

and may appear on the other surface. As Weyl nodes are come in pairs, so that a leaving 

electron could revert back through their partner point as shown in figure 1.20. 

 

Figure 1.20: Schematic of connection between Weyl points (blue and red dots), special 

values of electron momentum, and Fermi arc (Yellow line) on the surface. (Adapted from 

https://blogs.princeton.edu/research/wpcontent/uploads/sites/56/2016/03/2016_03_10_Yazd

ani_Surface-bulk.jpg) 

1.6.5 Experimental Actualization of WSMs 

As discussed in previous section, either TRS or IS have to be broken in order to obtain a 

WSM state for experimental realization. TRS breaking can be acquired by magnetic doping. 

Therefore, the early assumptions to get WSMs were concentrated on magnetic materials, 

like R2Ir2O7 and HgCr2Se4, which inherently breaks TRS. Although, because of the intricate 

magnetic domain structure of the samples, the experimental confirmation of these materials 

still remains a challenge [39]. Moreover, IS breaking phase of non-centrosymmetric 

transition metals such as TaAs, TaP NbAs and NbP has gained innumerable attention, 
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which have been propounded as promising WSM candidates. These compounds naturally 

break the IS because of their geometrical structure [40]. Hence, they are widely studied 

WSMs compounds. The surface Fermi arcs and bulk Weyl points predicted theoretically 

and observed experimentally by ARPES is shown in the figure 1.21, which assured 

topological nature of these WSM compounds. 

 

Figure 1.21: (a) ARPES measurement (b) Theoretical calculations of Fermi arcs and bulk 

Weyl points matched very well. (c) (i) Schematics of brillouin zone with Weyl nodes and 

Fermi arcs (ii) Comparison of Fermi arcs calculated theoretically and measured 

experimentally by ARPES for NbP, (iii) for TaP (iv) for TaAs. (d) for NbAs. (Adapted 

from [34], [41]) 

The 3D Fermi surfaces of WSMs family compounds have been reassembled by 

sensitive angle-dependent Shubnikov-de Haas (SdH) oscillations with theoretical band 

structure calculations. Very large magnetoresistance (MR) and ultrahigh carrier mobility 

has also been observed in these compounds as a consequence of electron-hole 

compensation. Hence, WSMs are the emerging materials over the last few years due to 

notable potential application in technologies.  


