Contents

Certificate	ii
Declaration by the Candidate	iii
Copyright Transfer Certificate	iv
Acknowledgements	v
Contents	ix
List of Figures	xii
List of Tables	xviii
Preface	xix
Chapter 1: Introduction: A bibliographic review	23-50
1.1 Introduction	23
1.2 Topological Insulators	23
1.3. Topology in Topological Phase	24
1.4 Preservation of Time Reversal Symmetry (TRS)	26
1.5 Background of Topological Insulator	27
1.5.1 Hall Effect	27
1.5.2 Integer Quantum Hall Effect (IQHE)	28
1.5.3 Quantum Spin Hall Effect (QSHE)	30
1.5.4 Anomalous Hall Effect (AHE) and Topological Hall Effect (THE)	31
1.5.5 The Concept of Berry Phase	33
1.5.6 Shubnikov-de Haas (SdH) Oscillations	34
1.5.7 Weak Localization (WL) and Weak Antilocalization (WAL) Effects	36
1.5.8 Historical Developments of 2D and 3D Topological Insulators	38
1.6 Weyl Semimetal (WSM)	43
1.6.1 Helicity / Chirality	46
1.6.2 The Role of Broken Symmetry	47
1.6.3 Type I and Type II WSMs	48
1.6.4 Motion of Electron Inside These Exotic Materials (WSMs)	48
1.6.5 Experimental Actualization of WSMs	49
Chapter 2: Sample Synthesis and Characterization Tools	51-66
2.1 Introduction	51
2.2 Sample Synthesis of TIs	51
2.3 Sample Synthesis of WSMs	52
2.4 Experimental Characterization Tools	53
2.4.1 X-Ray Diffraction (XRD)	53
2.4.2 Laue Diffraction Pattern	54
2.4.3 Transport Properties Measurements	55
2.4.3.1 Electric Resistivity (ρ_{xx})	55
2.4.3.2 Hall Resistivity (ρ_{xy})	56

Contents

2.4.3.3 Thermoelectric Measurement	57
2.2.4 Magnetic Property Measurement System (MPMS)	58
2.4.5 Photoemission Spectroscopy	60
2.4.5.1 X- Ray Photoemission Spectroscopy (XPS)	62
2.4.5.2 Angle-resolved Photoemission Spectroscopy(ARPES)	63
2.5 Theoretical Band Structure Calculations	65
Chapter 3: Anomalous and Topological Hall effect in Cu doped Sb ₂ Te ₃	
topological insulator	67-82
3.1 Introduction	67
3.2 Experimental Details	68
3.3 Results and Discussion	68
3.3.1 Experimental Study	68
3.3.2 Theoretical Study	77
3.4 Conclusion	81
Chapter 4: Pressure induced superconducting state in ideal topological	
insulator BiSbTe ₃	83-94
4.1 Introduction	83
4.2 Experimental Details	84
4.3 Results and Discussion	84
4.3.1 Experimental Study	84
4.3.2 Theoretical Study	92
4.4 Conclusion	93
Chapter 5: Roles of surface and bulk states in magnetotransport	
properties in antiferromagnetically ordered Bi _{1.9} Dy _{0.1} Te ₃	
topological insulator	95-114
5.1 Introduction	95
5.2 Experimental Details	96
5.3 Results and Discussion	97
5.3.1 Magnetoresistance and Magnetization	97
5.3.2 ARPES Study	102
5.3.3 Hall Effect and Thermoelectric Power	104
5.3.4 Theoretical Analysis	109
5.4 Conclusion	112
Chapter 6: Observation of antiferromagnetic ordering from muon spin	
resonance study and Kondo effect in Dy doped Bi ₂ Se ₃ topological insulator	115-132
6.1 Introduction	115

Contents

6.2 Experimental Details	117	
6.3 Results and Discussion	118	
6.3.1 Experimental Analysis	118	
6.3.2 Theoretical Analysis	128	
6.4 Conclusion	131	
Chapter 7: Observation of large magnetoresistance (LMR) and quantum		
oscillations in Nb _{1-x} Ta _x P (x=0, 0.5, 1) Weyl semimetals	133-152	
7.1 Introduction	133	
7.2 Experimental Details	134	
7.3 Computational Details	136	
7.4 Results and Discussion	136	
7.4.1 Experimental Results	136	
7.4.2 Computational Results	145	
7.5 Conclusion	151	
Chapter 8: Summary and future perspectives	153-156	
8.1 Summary	153	
8.2 Future Perspectives	155	
References	157-174	
List of Publications	175-176	
Schools / Meetings / Workshops / Conference Attended		

Figure 1.1: The sphere and cube on the left hand side are topologically equivalent and the coffee mug and the doughnut on the right are also topologically equivalent. The sphere and the coffee mug are topologically non-equivalent. 25

Figure 1.2: Schematic picture of electrons motion of two opposite spins with
preservation of TRS in TSS.27

Figure 1.3: Electrical schematic of Hall effect geometry. The Current (I_x) flows in plane, perpendicular to an applied field B generating a Hall voltage V_H by action of the Lorentz force. 28

Figure 1.4: (a) Longitudinal (ρ_{xx}) and transverse resistivity (ρ_{xy}) variation with applied magnetic field revealing the integer quantum Hall Effect for InGaAs based heterostructure at a very low temperature. (b) Quantization of energy level in discrete Landau levels with application of magnetic field, by increasing of magnetic field strength, only those Landau levels that lie below the Fermi level (E_F) are occupied. 29

Figure 1.5: The integer quantum Hall state with skipping orbits forming the edge states. 30

Figure 1.6: (a) Two copies of a QHE edge state for an opposite magnetic field. (b) An amalgamation of these two QHE states creates a quantum spin Hall state without a magnetic field. 30

Figure 1.7: The variation of Hall resistivity ρ_{xy} with respect to external magnetic field B. (a) The ordinary Hall effect, (b) The contribution anomalous Hall effect (AHE) (c) The measured hysteresis loop from quantum anomalous Hall effect (QAHE). 31

Figure 1.8: Schematics diagram of the THE due to scattering of spin-down and spin-up electrons from a Skyrmion binding in a ferromagnetic thin film with external applied electric field E. 32

Figure 1.9: (a) The real space picture of electron's orbit (b) Formation of the Dirac cone due to SOC in momentum space (c) Berry phase and change in electron's wave function in its rest frame.

Figure 1.10: (a) The two time-reversed scattering loops without spin- momentum locking exhibiting weak localization in magnetoconductivity (ΔG (B)). (b) The two time-reversed scattering loops with spin- momentum locking exhibiting weak antilocalization in ΔG (B). 37

Figure 1.11: Selected three k-space cuts ARPES spectra of $Bi_{0.9}Sb_{0.1}$ (a) along k_y direction; (b) with approximately 10° from the direction of k_y ; (c) the k_x direction through the L-point of the bulk 3D Brillouin zone. 39

Figure 1.12: Theoretical calculated band structure and ARPES data for (a) Bi_2Se_3 ; (b) Bi_2Te_3 and (c) Sb_2Te_3 TIs. 40

Figure 1.13: (a) Crystal structure of Bi_2Se_3 , the red box shows single quintuple layer (b) shows that three different A, B, and C sites are assigned to triangular lattice in one quintuple layer (c) Se and Bi atoms are arranged in a sequence in quintuple layer. 41

Figure 1.14: Schematic picture of the band inversion of Bi and Se p-orbitals in Bi_2Se_3 at the r-point. Stage I represents the effect of chemical bonding, Stage II represents the crystal field splitting, Stage III represents the effect of SOC. 42

Figure 1.15: Energy with respect to momentum for different values of m (energy gap). The black dashed linear line is for m = 0 with zero energy. If $m \neq 0$, the energy gap = 2m between positive and negative energy bands. 44

Figure 1.16: Schematics diagram of WSM phase, a phases between normal insulator and topological insulator. 45

Figure 1.17: Pictorial view of Weyl nodes with opposite helicity.46

Figure 1.18: Schematics of Dirac point splitting into separated Weyl points upon breaking TRS and IS. 47

Figure 1.19: Weyl cone in (a) Type I WSM (b) Type II WSM.48

Figure 1.20: Schematic of connection between Weyl points (blue and red dots), specialvalues of electron momentum, and Fermi arc (Yellow line) on the surface.49

Figure 1.21: (a) ARPES measurement (b) Theoretical calculations of Fermi arcs and bulk Weyl points matched very well. (c) (i) Schematics of brillouin zone with Weyl nodes and Fermi arcs (ii) Comparison of Fermi arcs calculated theoretically and measured experimentally by ARPES for NbP, (iii) for TaP (iv) for TaAs. (d) for NbAs. 50

Figure 2.1: (a) Flow chart of synthesis process (b) Photograph of cleaved crystal sample.51

Figure 2.2: (a) Schematic of synthesis process (top) and corresponding optical image of quartz tubes placed in two zone furnace (bottom) (b) Photograph of WSM single crystal sample.

Figure 2.3: (a) Photographic demonstration of Bragg's law (b) Actual photograph of Rigaku Mini Flex II DESKTOP X-ray diffractometer set up. 54

Figure 2.4: Schematic of (a) Transmission Laue diffraction geometry (b) Back-reflection Laue diffraction geometry. 55

Figure 2.5: Schematic of	four-probe measurement geometry.	56
--------------------------	----------------------------------	----

Figure 2.6: Schematic diagram for Hall effect measurement.	57
--	----

Figure 2.7	: Schematic diagram	of sample hold	er for thermoelectric measurement.	58
------------	---------------------	----------------	------------------------------------	----

60

61

Figure 2.8: (a) Schematic diagram of SQUID-VSM detection system (b) Photograph of actual QD-MPMS measurement system.

Figure 2.9: Illustrational of photoemission process.

Figure 2.10: (a) Schematic diagram of XPS (b) Typical XPS spectrum from a cleaved sample surface.

Figure 2.11: (a) Schematic of ARPES measurement setup (b) Shows ARPES spectra of pure Bi_2Se_3TI .

Figure 3.1: (a) XRD pattern for $Sb_{1.90}Cu_{0.10}Te_3$ single crystal sample cleaved along (001) direction. Left Inset: Laue Diffraction pattern, Right Inset: Optical image of the cleaved $Sb_{1.90}Cu_{0.10}Te_3$ single crystal sample. (b) Rietveld refinement of powder XRD for $Sb_{1.90}Cu_{0.10}Te_3$ sample. 69

Figure 3.2: (a) The variation of resistivity as a function of temperature (b) MR as a function of magnetic field (B) at different temperatures, Inset: SdH oscillations from the longitudinal resistance and Landau level indexing (Fan Diagram) with inverse magnetic field and linearly fitted curve (red line).

Figure 3.3: Field dependence of magnetization of $Sb_{1.90}Cu_{0.10}Te_3$ at different temperatures, Insets: temperature dependence of magnetization in ZFC mode at an applied magnetic field of 1000 Oe, Magnified view of M vs B curve at 200 K, dHvA oscillations from the magnetization and Landau level indexing (Fan Diagram) with inverse magnetic field and linearly fitted curve (red line). 70

Figure 3.4: Magnetic field dependence of the Hall resistivity of $Sb_{1.90}Cu_{0.10}Te_3$ at different temperatures. 71

Figure 3.5: (a), (b), (c) and (d) The fitted Hall resistivity (ρ_{xy}) using the relation ρ_{xy} = $R_0B+b\rho_{xx}^2M$ at temperatures 2 K, 10 K, 200 K, 300 K respectively. 73

Figure 3.6: (I) X-ray Photoemission full survey spectrum of Sb_{1.90}Cu_{0.10}Te₃ (II), (III) & (IV): X-ray Photoemission core level spectrum of Sb, Te and Cu in Sb_{1.90}Cu_{0.10}Te₃ sample respectively. 75

Figure 3.7: (a) Topological Hall effect (ρ^{TH}) at different temperatures as a function of magnetic field. (b) Linear fit of MR vs. M². 76

Figure 3.8: (a) Calculated projected density of states (PDOS) for Cu, Sb and Te. Right Inset: The crystal structure of Sb₅CuTe₉. The five atoms "quintuple layer leaves" are separated by a van der walls gap equal to 2.76 Å. Different colors of the spheres are marked with corresponding element symbol. Left Inset: First BZ of Sb₅CuTe₉ and along selected path corresponding to dispersion curve. (b) Calculated band structure along M G and K direction for Sb₅CuTe₉, Calculated total density of states (TDOS) for Sb₅CuTe₉. Inset: Magnified view at Gamma point. 80 **Figure 4.1:** (a) Single crystal X-ray diffraction of BiSbTe₃ cleaved along (*001*) direction, Inset: Laue diffraction pattern (b) Le Bail refinement of powder XRD of as grown BiSbTe₃ single crystal sample using Full Prof software. (c) X-ray diffraction-patterns of BiSbTe₃ at various pressures with wavelength 0.7101 Å. The peaks indicated with solid Green Square are the reflections from high pressure phase. 86

Figure 4.2: Experimental photoelectron diffraction patterns obtained for the Bi 4f (a), Sb 4d (b) and Te 4d (c) from the (1 1 1) surface of BiSbTe₃. 87

Figure 4.3: (a) Temperature dependent of resistance at different pressures with a superconducting transition around 8 GPa. Inset: Variation of resistance with respect to temperature at 2, 4 and 6 GPa (b) Variation of superconducting transition temperature with respect to applied pressure of BiSbTe₃. Inset: Close view of temperature dependent resistance at different pressures. (c) Magnetic field dependence of the Hall resistivity at different temperatures. Inset: variation of carrier density and mobility as a function of temperature.

Figure 4.4: Band structure of the BiSbTe₃ single crystal measured at T=20 K ((a) and (b)) and 60 K ((c) and (d)). Inset of figure (a): the EDC curve fitting. (b) The stacked plots of the iso-energy contours of the ARPES spectra at T=20 K. Inset of figure (c): the MDC curve fitting. (d) The stacked plots of the iso-energy contours of the ARPES spectra at T=60 K. 90

Figure 4.5: Electron dispersion E curve of BiSbTe₃ Bulk systems are shown for P=0 and 9.3 Gpa in (a) and (b), whereas, in (c) and (d) electronic dispersions E are shown for 6 quintuple layers at 0 and 9.3 Gpa. Red curve represents the surface states which forms the Dirac points and the Dirac point encircle in the circle at the Γ -point. 92

Figure 5.1: (a) X-ray diffraction pattern of single crystalline $Bi_{1.9}Dy_{0.1}Te_3$, Insets: Laue diffraction pattern, and variation of resistivity with temperature for $Bi_{1.9}Dy_{0.1}Te_3$. 98

Figure 5.2: (a) Magnetoresistance ratio (%) as a function of magnetic field for $Bi_{1,9}Dy_{0,1}Te_3$ at various temperatures, (b) HLN fit on Magnetoconductivity at the low magnetic field (-1.5T to 1.5T), and at different temperatures, (c) Variation of number of conduction channels and coherence length with temperature, (d) The Kohler's plot for magnetoresistance data measured at different temperatures, Top inset: Linear variation of magnetoresistance with mobility, Bottom inset: Kohler's plot on logarithmic scale. 100

Figure 5.3: (a) Variation of magnetic susceptibility (χ) as a function of temperature measured at 100 mT applied magnetic field in zero field cooled (ZFC) condition, Inset: Field dependence of magnetization for Bi_{1.9}Dy_{0.1}Te₃ measured at different temperatures.102

Figure 5.4: (a) Electronic spectra for $Bi_{1.9}Dy_{0.1}Te_3$ taken along K- Γ -K direction (raw) (b) second derivative (c) Energy distribution curve's (EDC's) with S-polarized light, (d) Electronic spectra for $Bi_{1.9}Dy_{0.1}Te_3$ taken along K- Γ -K direction (raw) (e) second derivative (f) Energy distribution curve's (EDC's) with P-polarized light, (g) - (o) The plots of the isoenergy contours of the ARPES spectra at different energies. 103 **Figure 5.5:** (a) Magnetic field dependence of the Hall resistivity for $Bi_{1.9}Dy_{0.1}Te_3$. (b) The variation of carrier concentration and carrier mobility as a function of temperature, (c) Anomalous Hall contribution (ρ^{AHE}) *vs.* magnetic field at different temperature. (d) Variation of Seebeck coefficient (*S*) with temperature. 105

Figure 5.6: (a) The optimized crystal structure of $2 \times 2 \times 1$ hexagonal supercell of $Dy_2Bi_{22}Te_{36}$ shows Dy (blue), Bi (magenta) and Te (green) atoms by filled solid sphere. (b) Band structure of $Dy_2Bi_{22}Te_{36}$ for bulk (red) (c) Band structure of $Dy_2Bi_{22}Te_{36}$ for surface states (green). The calculated projected density of states of Dy doped Bi_2Te_3 are presented for (d) bulk (red), and (e) surface states (green). 110

Figure 6.1: X-ray diffraction of $Bi_{1,9}Dy_{0,1}Se_3$ Single crystal sample cleaved along (00l) direction, Right Inset: Laue diffraction pattern, Left Inset: Rietveld refinement of powder XRD of $Bi_{1,9}Dy_{0,1}Se_3$ single crystal sample. 118

Figure 6.2: (a) Variation of magnetization (M) with magnetic field (B) for $Bi_{1.9}Dy_{0.1}Se_3$ at different temperatures, Top left Inset: AC magnetic susceptibility (χ'_{AC}) as a function of temperature at different frequencies (10 Hz and 100 Hz), Bottom right Inset: Field dependence of magnetization at 2 K. (b) Magnetic susceptibility (χ) as a function of temperature measured at 100 Oe applied magnetic field in zero field cooled (ZFC) condition and its inverse curve at right axis. 119

Figure 6.3: (a) Electronic band structure and (b) the EDC curve fit at 6.5 K, (c) Electronic band structure and (d) the EDC curve fit at 18 K for $Bi_{1.9}Dy_{0.1}Se_3$ single crystal sample.121

Figure 6.4: (a) Resistance vs temperature variation of $Bi_{1.9}Dy_{0.1}Se_3$, fitted with Kondo model, Inset: Variation of resistivity with respect to temperature, (b) Magnetoconductivity fitted with HLN equation at the low magnetic field (-1.5 T to 1.5 T), and at different temperatures, Inset: MR ratio (%) variation as a function of magnetic field for $Bi_{1.9}Dy_{0.1}Se_3$ at various temperatures. (c) Represents the change in phase coherence length with temperature, fitted with equation (4), Inset: Shows change in the value of prefactor (α) with temperature. (d) Field dependence of the Hall resistivity for $Bi_{1.9}Dy_{0.1}Se_3$. Inset: The variation of carrier concentration and carrier mobility as a function of temperature. 122

Figure 6.5: (a,b) μ -SR time spectra in zero field at 1.6 K. (a) shows a zoom into the first 200 ns of (b). (c) μ -SR time spectra at 1.6 K in a weak transverse field of 5 mT. The different colors represent different sets of opposite detectors. The solid black lines show fits to the data. (d) Depolarization rate in wTF as a function of temperature. (e) Oscillating fraction as a function of temperature, compared to a calibration measurement on Ag. 127

Figure 6.6: (a) Predicted lowest energy configuration for two Dy doped Bi_2Se_3 . The color code followed for Bi: Magenta, Se: light green and Dy: blue. Calculated band structure along with projected density of states for bulk (b,c) and surface (d,e) states, respectively.

130

Figure 7.1: (a) Resistivity variation with respect to temperature for NbP (Black), TaP (Green) and Nb_{0.5}Ta_{0.5}P (Blue) fitted with power law (Red), Inset: optical image of single crystals (b) Rietveld refinement of power XRD for all grown single crystal samples. 135

Figure 7.2: (a) The variation of MR% as a function of magnetic field at different temperatures (b) SdH oscillations at various temperatures (c) Landau levels fan diagram at 2 K (d) FFT corresponds to SdH oscillations (e) Lifshitz-Kosevich (LK) fitting on temperature dependent amplitude of the SdH oscillation at 6.498 T field and (f) Dingle damping plot with respect to inverse magnetic field for NbP compound. 138

Figure 7.3: (a) Kohler's plot at different temperatures (b) Variation of Hall resistivity with respect to magnetic field at various temperatures (c) Temperature dependence of Hall coefficient and (d) The variation of carrier density and mobility of charge carrier as a function of temperature for NbP compound. 139

Figure 7.4: (a) The variation of MR% as a function of magnetic field at different temperatures (b) SdH oscillations at various temperatures (c) Landau levels fan diagram at 2 K (d) FFT corresponds to SdH oscillations (e) Lifshitz-Kosevich (LK) fitting on temperature dependent amplitude of the SdH oscillation at 6.341 T field and (f) Dingle damping plot with respect to inverse magnetic field for Nb_{0.5}Ta_{0.5}P compound. 140

Figure 7.5: (a) Kohler's plot at different temperatures (b) Variation of Hall resistivity with respect to magnetic field at various temperatures (c) Temperature dependence of Hall coefficient and (d) The variation of carrier density and mobility of charge carrier as a function of temperature for $Nb_{0.5}Ta_{0.5}P$ compound. 141

Figure 7.6: (a) The variation of MR% as a function of magnetic field at different temperatures (b) SdH oscillations at various temperatures (c) Landau levels fan diagram at 2 K (d) FFT corresponds to SdH oscillations (e) Lifshitz-Kosevich (LK) fitting on temperature dependent amplitude of the SdH oscillation at 6.665 T field and (f) Dingle damping plot with respect to inverse magnetic field for TaP compound. 142

Figure 7.7: (a) Kohler's plot at different temperatures (b) Variation of Hall resistivity with respect to magnetic field at various temperatures (c) Temperature dependence of Hall coefficient and (d) The variation of carrier density and mobility of charge carrier as a function of temperature for TaP compound. 144

Figure 7.8: Shows (a) total density of states, and (b) partial density of states for NbP. 145

Figure 7.9: Shows (a) total density of states, and (b) partial density of states for TaP. 147

Figure 7.10: Shows (a) total density of states and (b, c, d) partial density of states for $Nb_{0.5}Ta_{0.5}P$. 148

Figure 7.11: Shows band dispersion of NbP (a) without SOC, and (b) with SOC. 149

Figure 7.12: Shows band dispersion of TaP (a) without SOC, and (b) with SOC. 149

Figure 7.13: Shows band dispersion of Nb_{0.5}Ta_{0.5}P (a) without SOC, and (b) with SOC.150

Table 5.1: Two Bi atoms are replaced by dopant (Dy) atoms at site i (=0) and j (j=1,2,3,4) in $2x^2x^1$ supercell of Bi₂Te₃. The magnetic coupling strength [(E_{AFM} - E_{FM})/2] (in meV) between two substitutional atoms with different distances (d) in Å are also presented below. We have ignored higher neighboring configuration whose distances are greater than ~7.9 Å. 112

Table 6.1: Considered configurations for doping of Dy into Bi_2Se_3 , distance (d) betweentwo Dy atoms, and energy of magnetic ordering.131

Table 7.1: Various parameters evaluated from SdH oscillation analysis for all threecompounds.151