
Chapter 6

Dynamics of particle moving in a two

dimensional Lorentz lattice gas

6.1 Introduction

In the previous chapter (chapter 5), we studied the one dimension model of Lorentz lattice

gas. Also, in one dimensional LLG model, we studied both the static and flipping cases. This

this chapter, we study the two dimensional Lorentz lattice gas model without flipping, i.e.,

static LLG model. In [Cohen & Wang (1995b)], the authors have studied a fixed obstacle

model, where the properties of the environment remain unchanged throughout the motion

of the particle, unlike the case of [Kumar & Mishra (2019); Mishra et al. (2016)] where the

environment can change with the motion of the particle. For fixed obstacles, it is found that

the particle forms a closed trajectory asymptotically [Cohen & Wang (1995b)].

In the present study, the obstacles are fixed and are modeled as left and right rotators on a square

lattice, which rotate the direction of particle velocity towards the left or right respectively.

Some of the sites are vacant and the direction of velocity of a particle passing through these
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sites remains unchanged. The configuration of the lattice sites, however, is generated randomly,

which adds stochasticity to the model. The density of vacant sites ρV is one of the key

parameters and the ratio of left/right rotators is kept fixed at one. The present model is the

same as the one introduced by Cohen et al. in 1995 [Cohen & Wang (1995b)]. In the current

study we explore the approach to the asymptotic behaviour in detail for many vacancy densities.

For any ρV ̸= 1, the asymptotic behaviour of the particle is a closed trajectory as reported

in [Cohen & Wang (1995b)]. However, we found that the approach to the asymptotic state

depends on the density of the vacant sites in the lattice. Like the Ruijgrok-Cohen (RC) mirror

model of lattice gas [Ziff et al. (1991)], the presence of vacancies in the rotator model of LLG

causes a significant change in the motion of the particle.

Here we write them briefly. (i) The motion of the particle in a partially vacant LLG can be

separated in two distinct phases of motion. The first phase of the motion of the particle is

anomalously diffusive for all values of vacancy density we have considered. The effective

diffusion coefficient, however, depends on the vacancy density, and increases monotonically

with the density of vacancies. The second phase of the particle’s motion in lattices with

vacancies is subdiffusive, and the subdiffusion appears at increasingly late times as vacancy

density increases.

(ii) The probability of the particle being in an open trajectory decays as a power law with

time in the first phase of motion. The magnitude of the power-law exponent decreases on

increasing the density of vacancies. For lattices with vacancies, the probability of being in an

open trajectory decays exponentially after a period of time, as reported in [Cohen & Wang

(1995b)]. The motion of the particle after that time is described as the second phase of its

motion and the time spent by the particle in the first phase of its motion increases with an

increase in the density of vacancies. As a result of (i) and (ii), particles in lattices with a higher

density of vacancies asymptotically form larger closed trajectories over a longer period of

time, compared to a lattice with a lower, non-zero value of vacancy density. The boundary of
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the trajectory of the particle also becomes increasingly rough as vacancy density increases.

In the rest of the article: in section 6.2 we discuss the model in detail. In section 6.3 we discuss

how the deterministic nature of the lattice leads to periodic trajectories. We then discuss the

results of our model in section 6.4 and finally conclude in section 6.5.

6.2 Model and numerical details

We study the dynamics of a single particle moving along the bonds of a square lattice of unit

lattice spacing. The particle covers the distance of the unit bond length in a unit time step. The

lattice consists of two types of rotators- “left” (L) and “right” (R), randomly distributed over

the lattice with an equal probability which is independent of the rotators present on the other

lattice sites. Some of the sites on the lattice are vacant, and are termed as “vacancies" (V). The

density of vacancies is one of the control parameters of our model. L/R rotators change the

direction of particle velocity to the left/right (by an angle of −π

2 /π

2 ) respectively, whereas the

velocity remains unchanged when it encounters a vacant site. Fig. 6.1(a) shows the cartoon

of a part of the lattice and 6.1(b) shows the interaction of a particle with L/R rotators and

vacancies. The density of “L", “R" and “V" is defined as ρL, ρR and ρV respectively and

ρL +ρR +ρV = 1. For any given value of ρV , ρL and ρR are always equal.

The particle starts its motion from a point at t = 0 and the configuration of a lattice site is

generated when the particle visits it for the first time, using the uniform probability distribution

which is given by densities ρL, ρR and ρV for left rotators, right rotators and vacancies

respectively. After this, the configuration of the lattice site is stored and it remains unchanged

throughout the motion, i.e. the motion is deterministic. At each time step, the program checks

whether the new position of the particle has been visited earlier. If it has, the velocity of the

particle will be updated according to the configuration of the site generated earlier. In the
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Fig. 6.1 Schematic diagram of two dimensional Lorentz Lattice Gas : (a) Initial configuration
of LLG with left-rotators (filled circles), right-rotators (open circles) and vacancies (empty
sites). (b) State of the particle before (t) and after (t +1) interaction with rotator; the arrow
shows the direction of particle’s velocity.

present model, the particle never experiences a boundary as the lattice is infinite. As time

progresses and the number of visited sites increases, the model needs to use more memory to

store the information about the visited sites and also takes more time to check whether a site

has been visited earlier. However, our approach has the following advantages over saving the

whole lattice at once:

(i) If we were to generate a finite lattice for which the particle is theoretically always trapped

within the boundary, the time required to generate the lattice and the memory required to store

it will be of the order of O(t2
max), where tmax is the total number of time steps.

(ii) If we were to generate a smaller finite lattice than the theoretically required lattice, the

particle could cross the boundary. In such a case, the code has to be stopped and the realisation

has to be excluded when calculating observables.

The position of the particle at any time t is defined as r(t) = x(t)x+ y(t)y, where x(t)

and y(t) are the particle’s position (coordinate) along x−axis and y−axis respectively (two

directions as shown in Fig. 6.1). The position of the particle is updated at each time step as,

x(t +1) = x(t)+ vx(t) and y(t +1) = y(t)+ vy(t); here vi(t) (i = x,y) is the ith component of
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the particle velocity at any time t which is updated (when the particle interacts with a rotator)

according to the following equation:

 vx (t +1)

vy (t +1)

 =

 cosθs sinθs

−sinθs cosθs


 vx (t )

vy (t )


(6.1)

where the value of θs changes according to the type of the rotator that the particle

encounters (for R−rotator, θs = π/2; for L−rotator, θs =−π/2; and for a vacancy, V , θs = 0).

The following quantities are calculated to characterise the properties of the motion of

the particle,

(i) Mean squared displacement (MSD), which is a measure of the magnitude of displacement of

the particle from the origin during its motion. MSD (∆(t)) is defined as ∆(t) = ⟨[r(t)−r(0)]2⟩

where ⟨.....⟩ represents the averaging over many random, independently generated lattice

configurations.

(ii) Po(ρV , t): probability of the particle being in an open (not yet periodic) trajectory at time

t, which is the fraction of realizations that are in open trajectories at time t calculated over

a large number of realisations. The probability of being in a closed trajectory is denoted as

Pc(ρV , t), and is calculated similarly.

To characterise the motion, we extract the exponent β from ∆(t) by assuming ∆(t)∼ tβ

and plotting ∆(t) vs. t on a log-log scale and extracting the slope of the straight line for late

times. If β > 1, the motion is ballistic. If β ≃ 1 the motion is diffusive, and if β < 1, the

motion of the particle is subdiffusive. The system is studied for different values of ρV (0−0.4),

upto 105 time steps, and over 10000 realizations for each value of ρV .
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Fig. 6.2 (a) Variation of MSD ∆(t) with time (t) for different vacancy densities ρV (Main).
Inset plot shows the crossover from diffusion to subdiffusion. (b) Zoomed in image of plot (a)
for t < 1000. (c) Effective diffusion coefficient De f f vs t for different values of ρV . (d) P(r, t)
vs r(t) at different times for a fully occupied lattice.

6.3 Deterministic nature and closed trajectories

The model we defined in section 6.2 is deterministic, and the behaviour of each lattice site will

be consistent throughout the motion of the particle for a given configuration of “L", “R" and

“V", regardless of how many times the particle visits a lattice site. For example, if the lattice

site is occupied by a right rotator for a given configuration, the particle will always turn right

when it visits that lattice site. However, the results are calculated by averaging the observations

across multiple realizations and the random generation of the lattice configuration for different

realizations makes the model partially stochastic. Hence the particle deterministically moves

in a random medium.
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The motion of the particle will not be any different from a random walk on a two-dimensional

square lattice until it comes back to a lattice site it has previously visited, as explained in

[Gunn & Ortuno (1985)]. When it revisits a site, the particle has to repeat the same turn it

had taken when it had visited the site earlier in its motion. At this point, some memory is

introduced in the motion of the particle. The particle will get trapped in a closed trajectory

if it revisits a site with the same velocity. This is because the particle would then leave the

site with the same direction of velocity as it did in the previous case, and thus it will keep

repeating its trajectory, starting from the first point it had revisited. The first such revisited

point would have to be the origin. For all values of ρV (not equal to 1), the deterministic nature

of the model lets the particle get stuck in a closed or periodic trajectory aymptotically.

For a given value of ρV , the probability of the particle being in a closed trajectory at time t is

given as Pc(ρV , t), which is calculated by counting the fraction of closed trajectories at time t

for a chosen number of realisations. Similarly, the probability of the particle not having been

trapped in a closed trajectory at time t is given as Po(ρV , t). Naturally, Po(ρV , t)+Pc(ρV , t) = 1.

Although the trajectory of the particle asymptotically becomes a closed trajectory for all values

in the chosen range of vacancy density, the aim of our present study is to understand the

transient dynamics of the particle and how the density of vacancies changes the approach

to such an asymptotic state. Hence our result is divided in two subsections, (i) early time

dynamics of particle (first phase of motion) and (ii) late time dynamics (second phase of

motion).
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6.4 Results

We first investigate the early time dynamics of particle. Before going to the numerical results,

here we briefly describe the motion in a simple manner. When the particle is moving on a lattice

with vacancy density ρV , the effective path length (le f f ) for different values of ρV is given as

leff =
1√

1−ρV
. This is greater than or equal to the lattice spacing for a fully occupied lattice (1)

if ρV > 0, and increases with an increase in the value of ρV ; le f f ≃ 1.054,1.118,1.19,1.29 for

ρV = 0.1,0.2,0.3 and 0.4 respectively. The probability of a particle encountering a scatterer is

effectively 1−ρV , and reduces for a system with a higher density of vacancies, whereas in a

fully occupied lattice, the particle always moves through a homogeneously spaced deterministic

arrangement of scatterers which it encounters at each timestep. While the reduced frequency of

scattering and the larger effective path length before scattering appears to accelerate the motion

of the particle when comparing two lattices with non-zero density of vacancies, the same is

not true when comparing a fully occupied lattice. The consistent spacing and frequency of

scattering allows a particle in a fully occupied lattice to maintain uniform dynamics throughout

its motion. Now we characterise the dynamics of particle by measuring the mean square

displacement.

6.4.1 Mean Square Displacement

Since all the trajectories close asymptotically, at any given time for a given set of parameters

the dynamics of particle can have different characteristics obtained from (i) realizations with

closed trajectories, (ii) realizations with open trajectories and (iii) all the realizations. The

mean-square displacement of the particle can be broken down into the following functional

form:

∆(t) = ∆o(t)Po(ρV , t)+∆c(t)Pc(ρV , t) (6.2)
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Where ∆o(t) is the mean-square displacement of realizations in open trajectories, and ∆c(t) is

the mean-square displacement of realizations in closed trajectories, both at time t. We first

study the dynamics of the particle for different values of ρV and across all realizations (open

as well as closed).

In fig. 6.2(a) and (b), we plot ∆(t) vs. time for different values of ρV . The plot of ∆(t) vs. t

on the log− log scale is shown in Fig. 6.2(a)(main), which shows the linear variation of ∆(t)

(β ≃ 1) with time t ≃ 100−10000 for all ρV . We also observe that, ∆(t) of a particle increases

monotonically with an increase in the value of ρV .

In Fig. 6.2(c) we plot the effective diffusion coefficient Deff(ρV , t) =
∆(t)
4t for different values

of ρV . For a particle in a fully occupied lattice, Deff ≃ 0.25; which is the same value as a

particle performing a two-dimensional random walk[Cohen & Wang (1995b)]. However, due

to the deterministic nature of motion, trajectories close with time and the diffusive motion of

the particle is not conventional. The radial distance of the particle from the origin at any given

time t is denoted as r(t). The probability distribution of radial position P(r, t), does not follow

a Gaussian distribution. The motion is therefore referred to as anomalous diffusion. The plot

of P(r, t) vs. r(t) for ρV = 0 is shown in Fig. 6.2(d) at three times t = 103,104 and 105. At

all times, P(r, t) is a non-Gaussian distribution and the peak of the probability distribution

appears close to the origin (r ≃ 0).

The dynamics of a particle in a lattice with a non-zero vacancy density (ρV ̸= 0) is different

from a fully occupied lattice after a large number of time steps. As shown in Fig. 6.2(a)(inset),

we observe that ∆(t) of a particle traversing a partially vacant lattice starts slowing down after

a large number of time-steps, and begins subdiffusive motion. It is also observed that a particle

traversing a lattice with a lower, but non-zero, value of ρV slows down much earlier in its

motion than a particle in a lattice with a larger value of ρV . We understand this by studying

the characteristics of the particle in closed and open trajectories.
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Fig. 6.3 (a)Variation of probability of being in an open trajectory Po(ρV , t) with time (t) on a
log-log plot for different values of ρV in the first phase, when Po(ρV , t) varies as a power law.
The straight lines represent the fitted power law functions for each value of ρV . (b) Variation
of Po(ρV , t) with time on a semi-log(y) plot during the second phase of motion, when Po(ρV , t)
decays exponentially with time. As the particles transition from the first phase of motion to
the second, Po(ρV , t) decays exponentially with t and deviates from the fitted function.

6.4.2 Open and closed trajectories

The subdiffusive behaviour of ∆(t) of particles in partially vacant lattices at late times appears

due to the closing of a larger fraction of trajectories as time progresses. We plot the probability

of being in an open trajectory Po(ρV , t) as a function of time, for different values of ρV , as

shown in Fig. 6.3(a). We observe that for time t ∼ 10000, the probability of being in an open

trajectory decays as a power law for all non-zero values of ρV (not equal to 1). This period is

referred to as the first phase of the particle’s motion. In this period, at any point t, the value of

Po(ρV , t) is higher for higher values of ρV .

The first phase of motion for the particle lasts for a higher number of time-steps when traversing

a partially vacant lattice with a higher value of ρV , but eventually the particle transitions to a

second phase of motion, in which Po(ρV , t) decays exponentially as shown in Fig. 6.3(b).

We use the form Po(ρV , t)∼ t−γ(ρV ), and extract the decay exponent γ(ρV ) for different values

of ρV for the first phase of the particle’s motion. The value of γ(ρV ) decreases with increasing

ρV . The plot of γ(ρV ) for different vacancy densities ρV in the range (0,0.4) is shown in Fig.
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6.4. It is observed that γ(0)≃ 1/7 and then shows a jump to the value ≃ 0.1 and remains flat

up to ρV ⩽ 0.1, and then decreases sharply.

6.4.3 Properties of Open Trajectories

In Fig. 6.5(a) we plot the mean-square displacement of particle in open trajectories(∆o(t))

as a function of time t. The mean-square displacement in open trajectories is larger in a

fully occupied lattice than a partially vacant lattice. We also characterise the nature of the

boundary of the trajectory of the particle. The fractal dimension d f of the particle’s motion in

the trajectory can be calculated using the asymptotic relation between the distance between

two points on a trajectory R(s) and the number of steps separating them (s), which is given as:

< R2(s)>∼ s2/d f (6.3)

By fixing one of the points to be the origin, the mean-square displacement of the particle

on sufficiently large open trajectories (greater than 1000 steps) in the first phase of motion was

used to characterise the fractal dimension of the trajectories as follows:

∆o(t)∼ t2/d f (6.4)

The variation of d f for different values of ρV is given in Fig. 6.5(b). Its value is 7/4 for

motion in a fully occupied lattice, similar to that of a percolating cluster in two-dimensions,

and jumps to 2 for lattices with vacancies. The fractal dimension increases due to the increased

crossing of trajectories for increasing vacancy density.

The mean-square displacement of closed trajectories after a large number of time steps is



120 Dynamics of particle moving in a two dimensional Lorentz lattice gas

0 0.1 0.2 0.3 0.4
ρ

V

0.04

0.06

0.08

0.1

0.12

0.14

0.16

γ
(ρ

V
)

Fig. 6.4 Exponent γ vs ρV plot. Value of γ is extracted by fitting power law to P0(ρV , t) vs t
plot in diffusive regime i.e. simulation time O(104).

0 0.1 0.2 0.3 0.4
ρ

V

0.85

0.9

0.95

1

1.05

2
/d

f-γ

0 0.1 0.2 0.3 0.4
ρ

V

1.7

1.8

1.9

2

2.1

d
f

100 1000 10000 1e+05
100

1000

10000

1e+05

∆
O

(t
)

ρ
V

=0 

ρ
V

=0.1

ρ
V

=0.2

ρ
V

=0.3

ρ
V

=0.4

(a) (b) (c)

Fig. 6.5 Variation of ∆o(t) with time for different values of ρV . The dashed line represents a
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much smaller than the number of time steps. Thus the second term on the RHS in equation

(6.2) has a negligible contribution to the mean-square displacement of the particle after a large

number of time-steps. Thus, the mean-square displacement of the particle eventually becomes

a product of the probability of being in an open trajectory, and the mean-square displacement

of particle in open trajectories. In the first phase of the particle’s motion, both these terms vary

as a power law with t, and therefore, their product also varies as a power-law with t as follows:

∆o(t)Po(ρV , t)∼ t2/d f−γ (6.5)

For a fully occupied lattice, ∆o(t) is superdiffusive and ∆o(t) ∼ tα with α ≃ 1.14, and for

particles in lattices with vacancies, ∆o(t)∼ t. However, the probability of being in an open

trajectory is also lower for a particle in a fully occupied lattice compared to a particle in a

partially vacant lattice which is in the first phase of its motion for the same number of time

steps. The product of the two factors leads to diffusive motion in the first phase of the particle’s

motion.

Further, the motion of a particle travelling in a fully occupied lattice can be mapped to the bond-

percolation problem in two-dimensions [Cohen & Wang (1995b); Ziff et al. (1991)]. While the

motion in a partially occupied lattice cannot be mapped physically to bond-percolation because

of the possibility of the particle crossing over its own trajectory, the power-law exponent

associated with Po(ρV , t) in the first phase of motion is numerically analogous to the value

(τ −2), where τ is the critical exponent in the bond percolation problem, such that:

Po(ρV , t)∼ t−γ ≡ t2−τ (6.6)



122 Dynamics of particle moving in a two dimensional Lorentz lattice gas

In a system of bond percolation [Cohen & Wang (1995b)], the critical exponent τ and

fractal dimension d f are related by a hyper scaling relation, which confirms that the trajectories

are closed asymptotically. The hyperscaling relation is

(τ −1)d f = 2 (6.7)

Using the relation γ ≡ τ −2, the condition can be rewritten for this model as:

2/d f − γ = 1 (6.8)

The expression on the LHS is the power law exponent for the contribution of open

trajectories to the mean-square displacement of the particle. The physical significance of this

condition being satisfied in our model would be the presence of diffusive motion. As seen

in Fig. 6.5(c), a fully occupied lattice exactly satisfies this condition and as a result, shows

anomalously diffusive behaviour throughout its motion. However, we see a deviation from this

condition for systems having a partially vacant lattice. For the values of ρV considered in this

paper, the deviation is maximal near ρV = 0.1 and then reduces as we increase the density of

vacancies. The deviation from the exact value, even before the exponential decay of Po(ρV , t),

is also responsible for the slowing of the growth of ∆(t) (as shown in Fig. 6.2(a)) in partially

vacant lattices, after a large number of time steps.

6.5 Discussion

We studied the dynamics of a single particle moving on a two-dimensional Lorentz-lattice

gas. The lattice is occupied by right/left rotators and some of the sites are left vacant. The

particle moves along the bond of the lattice and turns left/right if it encounters a left/right
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rotator, or continues its motion if it passes through a vacancy. The dynamics of particle motion

is explored for various vacancy densities. Although the probability of the particle being in an

open trajectory, Po(ρV , t), eventually decays to zero if the system is allowed to run for a large

number of time steps (t → ∞) for all values of ρV (not equal to 1), the transient state dynamics

are different for a fully occupied lattice (ρV = 0), and lattices with a non-zero vacancy density.

For a fully occupied lattice, the dynamics are anomalously diffusive throughout its motion;

the mean square displacement varies linearly with time, but the probability distribution of the

particle’s radial distance is non-Gaussian. The probability of being in an open trajectory at

time t also decays as a power law throughout the motion of the particle. However, for any

lattice with a non-zero vacancy density, the motion of the particle is described by two phases.

In the first phase of its motion, the motion of the particle is similar to the motion of a particle

in a fully occupied lattice; the mean square displacement grows linearly with time and the

probability of the particle being in an open trajectory decays as a power law with time. The

particle considerably slows down in the second phase of its motion.

The second phase of the particle’s motion is characterised by an exponential decay of Po(ρV , t)

[Cohen & Wang (1995b)], which now vanishes at a much faster rate than the first phase. The

mean-square displacement of realizations with particles in open trajectories continues to grow

linearly with time, and the product of the two factors will eventually become a monotonically

decreasing function. As Po(ρV , t) → 0, the motion of the particle is only characterised by

oscillating, periodic closed trajectories. Thus, the value of the ∆(t) for particles in partially

vacant lattices will eventually oscillate about a constant value.

Further, the boundary of trajectory of the particle, displays a fractal motion with fractal dimen-

sion ∼ 7/4 when traversing a fully occupied lattice. However, the value of its fractal dimension

shows a jump when it goes to a partially vacant lattice and asymptotically approaches the

value 2.

In the current study, we focused on the dynamics of a single particle. A system involving
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multiple particles, with interactions between the particles, may dramatically change the results

of the study. Also, our present study is limited to isotropic bond lengths, it would be interesting

to study the dynamics on an anisotropic model [Gunn & Ortuno (1985)].


