
Chapter 5

Dynamics of particle moving in one

dimensional Lorentz lattice gas

5.1 Introduction

Most natural micro-swimmers usually move in complex environment and encounter soft and

solid walls, obstacles i.e. a heterogeneous environment [Golding & Cox (2006); Moeendarbary

et al. (2013); Parry & Jacobs-Wagner (Parry & Jacobs-Wagner)], which can be realised by

regular or irregular patterns of obstacles, which control their motion depending on background

environment. Their dynamics can vary from confined trajectories, sub-diffusion, diffusion,

super diffusion to propagation [Bechinger et al. (2016); Ghosh et al. (2016)]. How does the

nature of surroundings affect the dynamics is question addressed in many studies [Golding

& Cox (2006); Zeitz & Stark (2017)]. One of the way to model motion of particle in such

complex environment is through Lorentz lattice gas [Binder & Young (1986); Cohen & Wang

(1995b); Ernst & Binder (1988)]. In the past, there have been a number of ways in which a

Lorentz lattice gas (LLG) has been used to model different physical phenomena [Gale (1993);
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Langton (1986)]. Most of these studies are for two and higher dimensions [Meng & Cohen

(1994); Mishra et al. (2016); Webb & Cohen (2015)]. But study in one-dimension is also

interesting which can help us to understand the dynamics of many one dimensional system

like: ant moving on a trail [Fonio et al. (2016)], motion of motors on filament [Shelley (2016)],

transport of proteins along the channel [Bruce Alberts & Walter (Bruce Alberts & Walter)],

etc.. Also one dimensional model have less number of control parameters and hence give more

insight to the system.

In a Lorentz [Langton (1986)] lattice gas (LLG) a single particle moves along the bonds of a

lattice. When it arrives at a lattice site the particle encounters a scatterer, which scatters the

particle according to some fixed rule. In addition to the particle, each scatterer can also have a

number of different orientations, or more generally states, that may also change over time as it

interact with the particle, etc. Hence a Lorentz lattice gas is defined by (i) underlying lattice

(ii) the initial density of scatterer which is called as the LLG’s initial configuration. One of

the main question we ask here is how does the dynamics of particle changes as we change the

density and property of the scatterers.

In our present study we introduce a one dimensional lattice of unit lattice spacing a = 1 on

which two types of scatterers are present, both are randomly distributed. The one is “reflector”

and the another one is “transmitter”. Reflector reverse the direction of particle’s velocity and

transmitter let the particle pass through. The density of scatterers is controlled by a number r

which is defined as r = CR
CL+CR

; where CR and CL are the initial concentration of reflector and

transmitters respectively. Reflectors (R) and transmitters (T ) also flips i.e. R ↔ T and T ↔ R

with a probability α , once the particle pass through. For α = 0 there is always flipping and

for α = 1 there will be no flipping (i.e. fixed), hence dynamics is deterministic. And for

0 < α < 1 the flipping is probabilistic.

Now we will briefly discuss our main results. We study the model for range of α ∈ [0,1] and

density r ∈ [0,1]. For α = 0 (pure flipping) dynamics is always ballistic, and the direction of
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the particle velocity depends on the configuration of scatterers in the system. When r = 0.0

and r = 1.0 (only one kind of scatterers), particle moves in the direction of its initial velocity.

For the case when there are both kind of scatterers in the system (i.e. when r ̸= 0.0 and

r ̸= 1.0) and its first encounter a reflector, followed by a transmitter then the direction of the

motion of particle will be opposite to that of its initial velocity. In other case if the particle

encounter a transmitter at the start of the motion, on average it will continue to move in the

same direction that of it’s initial velocity. Also for the pure flipping case speed of the particle

decreases with increase in r as < v >= 1/r
1/r+2 . For pure fixed case, when α = 1, dynamics

of particle is always confined between two nearest reflectors present in the system and span

of confinement varies with r. In this case the spread of the confined region i.e. radius of

gyration Rg(=
√

∆(t)) linearly varies with 1/r. For the case when α ̸= 0, ̸= 1: the dynamics

of the particle is probabilistic. In fig. 5.8 we plot the the full phase diagram for the asymptotic

behaviour with respect to (α-r). Dynamics is characterised by mean square displacement

(MSD) exponent β , such that at late time MSD, ∆(t) ∝ tβ . For fixed r, decreasing α from 0 to

1., hence going from pure flipping to no flipping, the exponent β decreases from 2 (ballistic)

to 0 (confinement). In general, approach to the asymptotic behaviour happens through mainly

two states with course of time where the motion continues to progress in the same fashion as

the early time behaviour like in the case of ballistic motion, and in other cases the dynamics is

initially faster and then slows down to show normal diffusion. But when α is very close to 0

i.e. 0+δ where δ ≃ 0.001 then the dynamics approaches its asymptotic behaviour mediated

my three regimes which is further explained in the results section 5.4. In our model full range

of dynamics can be seen by tuning the two parameters α and r. Changing the two parameters

system shows a transition from one type of motion to other.

Rest of the article is divided in the following manner. In next section 5.2 we first describe our

model. Section 5.3 we defined the three types of motion and then in section 5.4 we discuss our

results in detail and finally conclude in section 5.5.
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Fig. 5.1 A cartoon of one dimensional Lorentz lattice Gas : filled circles:- reflector, empty
circles:- transmitters. Arrow shows the direction of particle’s velocity. (a) Part of a typical
initial configuration. Interaction of particle with a scatterer and state of scatterer one-step after
interaction when (b) α = 0 i.e. pure flipping and (c) α = 1 i.e. pure fixed.

5.2 Model and numerical details

In our one-dimensional Lorentz lattice gas (LLG) a single particle moves along the bonds

of the lattice of unit lattice spacing a = 1 in unit time step i.e. (∆t = 1). On the lattice the

two types of scatterers: “reflectors” and “transmitters” are randomly distributed. Reflectors

reverse the direction of the particle’s velocity and transmitters let the particle move in the same

direction. The reflectors (R) and transmitters (T ) also flips (after particle pass through) with

probability α ∈ [0,1]. If α = 0 there will be always flipping and if α = 1 there will be no

flipping, and if 0 < α < 1 then flipping will be probabilistic. We vary the initial density of

reflectors R and transmitters T according to a number r, such that if r = 0, initially all the

scatterers are transmitters and if r = 1, all are reflectors, if r = 0.5, scatterers are in equal ratio.

A cartoon picture of part of the model is shown in fig. 5.1.

We start with a random initial distribution of R and T on the lattice. One of typical initial

configuration of R/L is shown in fig. 5.1. A particle start to move along a randomly chosen

direction, forward (+x direction) or backward (−x direction), from the center of the lattice and
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move along the bonds of the lattice. The direction of the particle’s velocity changes according

to the presence of R or T at each node. For example if particle encounters a R/T then its

velocity direction will switch back/remain same (reflected/transmitted). At the same time

R/T will change to T/R with probability α . Hence initial configuration of R/T is going to

change with the dynamics of the particle. Dynamics of the particle is explored for various

choice of initial concentration of R/T i.e. r and flipping probability 1−α . Although initial

condition is generated for fixed lattice size, but particle will never reach the boundary. Hence

boundary plays no role. Properties of the system is characterised by calculating (a) Mean

square displacement, MSD of particle position defined as ∆α,r (t) = < [x(t) − x(0)]2 >,

where < .. > denotes the average over many initial realisation of R/T and for a given choice

of r and α . (b) Number of different visited sites N(t), (c) density of scatterers on the visited

sites rvisited(t) and (d) Probability distribution of particle position P(x, t). Also at long time

when the motion is diffusion N(t) should satisfies the equation given below,

d
dt N(t) = c

N(t)

(5.1)

where the value of c depends on the system parameters α and r.

Now we discuss our results for different values of α and r. We find three different

kinds of motion on the lattice. First we define the three kinds of motion and then discuss

the full phase diagram in the plane of (α,r). The three kinds of motion are characterised by

calculating the MSD. In general, with time, MSD varies as ∆(t)limt→∞
≃ tβ , where we define,

β = limt→∞
ln∆(t)
ln(t) as the MSD exponent.

All the measurements are done in the asymptotic state when β approaches a constant value

at late time. But in general we can define the initial transient state in the system. For all set
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Fig. 5.2 (Color online) MSD (∆(τ)) vs. time (τ) (upto 104 before the asymptotic behaviour
observed) Plot: r = 0.0 (a), r = 0.15 (b), r = 0.5 (c) and r = 1.0 (d) for α = 0.0 (circle), 0.1
(square), 0.2 (diamond), 0.3 (triangle up), 0.4 (triangle left), 0.5 (triangle down), 0.6 (triangle
right), 0.7 (plus), 0.8 (x), 0.9 (star), 1.0 (open circle). Black and Red dotted lines have slope =
1 and 2 respectively. Data is averaged over 1000 ensembles.
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of parameters (α,r), system shows a transition from early time transient state to late time

steady state. Near to the phase boundary transition from early time transient state to late time

asymptotic state take very long time and it is almost impossible to achieve in the present

available computational facility.

5.3 Definitions: Ballistic, Anomalous diffusion and Con-

fined motion

We calculate the MSD i.e ∆(t) vs. t and extract the exponent β for late time. MSD vs time plot

is shown in fig. 5.2 for some choice of values of r(= 0.0,0.15,0.5,1.0) and α ∈ [0,1]. The

dynamics of particle is ballistic if β = 2, hence particle on average moves in one direction with

certain speed v(t) =
√

∆(t)/t. Maximum possible speed particle can have is v(t) = a
∆t = 1,

when it always move in one direction. But in general particle can spend some of its time

moving forward and backward. But on average moving in one direction. In that situations

speed v(t) is less than 1. A ballistic motion of the particle happens when particle do not scatter

frequently but moves smoothly i.e. have negligible resistance in the system. Or we can say that

the reflectors in the system favours the motion of the particle to be in one direction. We call the

dynamics of particle is diffusive type if the exponent of MSD i.e. β ≃ 1. We call the dynamics

of particle is confined if the exponent β approaches zero in long time. Trajectories for such

kind of motion is shown in fig. 5.3 for different set of (α,r) = (1.0,0.1),(1.0,0.5),(1.0,0.9).

5.4 Results

Now we discuss our results in detail: First we explain the trivial cases in our model
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Fig. 5.3 Three different trajectory when particle motion is confined (or periodic): (a), (b)
and (c) shows the trajectory for system parameter set (α , r)=(1.0,0.1), (1.0,0.5) and (1.0,0.9)
respectively. Figure (d),(e) and (f) shows the RoG of the particle for system parameter set (α ,
r)=(1.0,0.1), (1.0,0.5) and (1.0,0.9) respectively. Data for Rg =

√
∆(t) is averaged over 100

realisations.
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Case I: Pure transmitter r = 0:- Initial condition when all obstacles are transmitter

type, then whatever is the value of flipping probability 1−α particle will always move in a

straight line in the direction of its initial velocity with its maximum speed v0 = 1. This is very

trivial because in that situation when all of the obstacles are transmitter particle will always

pass through and never come back and hence value of α will be irrelevant. Hence β = 2 and

v(t) = 1.0.

Case 2: Pure fixed:- When α = 1, or obstacles never change their characteristic then the

dynamics of the particle will always be confined between two nearest reflectors. Hence

statistically when averaged over large number of initial realisation for a given r, average

distance between two nearby reflector is 1/r. Mean square displacement of the particle

trajectory saturates to some finite value after initial transient state. Square root of the of

the MSD at late time: i.e. in the stationary state will determined the extend of the particle

trajectory or also called as radius of gyration (ROG) Rg =
√

∆(t) for large t, fig. 5.3(d, e and

f). This result suggest that in confined motion particle explore different amount of space for

different value of r.

Case 3: Pure flipping:-When α = 0, i.e when properties of obstacles are pure flipping type,

then dynamics of particle is always ballistic in the direction of initially chosen velocity

direction. But this case is very different from case 1, (r = 0), and speed of the particle will

depend on the concentration of r on the lattice. It is very trivial exercise to check on a piece of

paper that for this case particle will move on average 1/r distance in 1/r+2 time steps. Hence

speed of the particle can be estimated to be v(r) = 1/r
(1/r)+2 . As r → 0, speed v(t) approaches 1

(case 1) and as r → 1.0, speed v(t) = 1/3.

Case 4: Stationary state:- When r = 0.5 i.e both types of scatterers are in equal ratio then the

motion is always diffusion for all values of α except when α = 0 or1.0. In this case particle

have equal chance to go left and right and this is the case similer to the one dimensional

random walk. Also this is the case when the system remains in staionary state irrespective
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of the time particle have spent in the system. Therefor for other value of r, asymptotically,

system approches to its stationary state in which rvisited = 0.5. To understand this consider

the situation that the particle sits on a new site i, visited for the first time. The probability

that it will return to this site is either unity or less, say ρ . In the latter case the walker has

to move ballistically in either direction, in 1 out of (1−ρ)−1 newly visited sites the process

renews itself, it never returns to the last site it came from. In the former case the walker will

keep returning forever (and the environment of a given site becomes more diffusive and less

ballistic with every return). After a number of visits of order 1
α

the neighbourhood of site i

becomes equilibrated, implying r = 1
2 .

When α is close to its boundary values particle takes much longer time to achieve an asymptotic

behaviour than that of in the case of other values of α . The asymptotic behaviour shows that

particle perform diffusive motion for all values of α except when α = 0 and α = 1.0, in these

cases particle motion is ballistic and confined respectively. When α ≃ 0.001 and r > 0.5

particle first move ballistically for early simulation time then it shows much slower dynamics

for significantly large time (say T ) and seems like the motion of particle is sub-diffusion but

when we wait further longer then the dynamics again becomes faster comparable to that in

the case of normal diffusion where MSD vs. time exponent converges to 1.0 as shown in fig.

5.4(a). Value of T increase as we decrease the value of r i.e particle will take longer time

to show asymptotic behaviour for smaller r < 0.5 than that of r > 0.5. We explain this with

the case when initially all the rotators are of reflector type and no transmitter (r = 1.0). In

this case we know if rotators have pure flipping character δ = 0, then particle will propagate

with speed v(t) = 1/3. Now if we have finite small δ , rotators have small tendency to retain

their character (non-flipping). In general particle is moving on the lattice with speed 1/3. As

soon as it encounter a non-flipping rotator then it get diverted from its propagation direction

and will move backward direction with speed 1/3 to all the previously visited site. Unless it

again encounter a non-flipping scatterer and start moving in forward direction it started, with
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the speed 1/3. Hence this cycle keeps on and although particle move in propagating mode

for some intermediate times but due to small non-flipping character whenever it encounter

a non-flipping scatterers, it has to go large distance in backward direction and dynamics is

slower but it is never confined. Now if we tune δ to moderate value, then it feels more random

kicks from its velocity direction and motion tends to become more random and hence the MSD

exponent β increases and approaches to 1 (diffusive type). But during this process the particle

also randomize the background lattice such that the value of r on the visited site approaches to

0.5 for α ̸= 0 ̸= 1 i.e rvisited = 0.5 as shown in fig. 5.6. Also the rate of increase of number

of newly visited site N(t) converses to zero therefore at long enough time i.e asymptotically

system approaches to its stationary state where r = 0.5. This means that at long enough time

the motion of the particle will be diffusive i.e the asymptotic behaviour is normal diffusion.

We claim this behaviour as asymptotic since the rate of increase of newly visited site converges

to zero and the background lattice is being randomize by the particle motion during the total

simulation time available and the system reaches to the stationary state. Asymptotic behaviour

for α ≃ 0.999 and r < 0.5 can be understood in the similar way. We have also seen that the

number of different site visited N(t) agrees well with equation (5.1) which have the solution

N(t) ∝
√

t which is the case of random walk in one dimension. Plots are given in fig. 5.5

for different sets of parameters (α,r) where F(t) = d
dt N(t) and G(t) = 1

N(t) . Looking at these

plots what we observe that the time derivative of number of different sites visited d
dt N(t) and

reciprocal of N(t) converges to zero at long time and also satisfy the equation (5.1) well.

5.4.1 Anomalous diffusion

We have calculated the probability distribution of particles position for some chosen value of

α and r when the particle’s dynamics is diffusive i.e. β = 1.0 (diffusive type). Fig. 5.7 shows

the plot of probability distribution of particle position P(x) , calculated for 2000 trajectories,
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Fig. 5.4 MSD (∆(τ)) vs. time (τ) plot when (a) α = 0.003 and r = 0.9 and 0.6, (b) α = 0.999
and r = 0.3, (c) different set of α and r.
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Fig. 5.5 F(t) = d
dt N(t) vs. G(t) = 1

N(t) plot when (a)α = 0.3 and r = 0.3 , (b) α = 0.003 and
r = 0.6, (c)α = 0.003 and r = 0.9 . Data (black solid line) is fitted linearly (red dashed line)
which give sthe slope c.
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Table 5.1 List of the values of De f f and Dest for different values of r when α = 0.5.

r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
De f f 12.142 3.434 1.592 0.770 0.467 0.335 0.268 0.212 0.172 0.123
Dest 12.500 3.125 1.389 0.781 0.500 0.347 0.255 0.195 0.154 0.125
β 01.003 1.067 1.087 1.003 1.022 1.029 1.060 0.960 0.984 1.004

for certain value of parameters (r,α) = (0.5,0.5),(0.5,0.9),(0.9,0.5),(0.9,0.9), when the

exponent β = 1. Bars are the data from the simulation and lines are fit to the Gaussian. Data

fits well with the Gaussian. P(x) is calculated by collecting particle’s position at few random

times for each 2000 trajectories.

We also calculate the effective diffusion coefficient De f f using,

De f f = lim
t→∞

∆(t)
2t

in the numerical simulation and also estimate it as follows: consider the case when α = 0

(pure flipping case 3) typical path length of straight motion is 1/r, hence 1/r is like mean free

path for pure flipping case. Now when we deviate α from 0 (α > 0.0), the average mean free

path will decrease and typical speed of the particle when it moves in straight is V ≃ (1−α

r )1
τ

where the rate τ at which particle changes its trajectory is 1
1−α

. Hence estimated diffusion

coefficient can be given by Dest ≃ V 2

τ
= (1−α)2

r2 α . In table 5.1 we list the value of effective

diffusivity De f f from simulation and estimated Dest for α = 0.5. Numerical data matches very

well with estimated Dest . The same argument do not hold as we go away from α = 0.5 values

because randomness decreases. For r = 0.5, De f f approaches 0.5, which is the value for one

dimensional random walk. Now as we tune r, it can be tuned to larger values (for small r) and

diverges for r → 0 and to smaller values (for large r) and approaches 0 for r = 1.

Phase Diagram:- We have calculated the phase diagram for the asymptotic behaviour

from numerical simulation as well as analytical estimation in the plane of α − r. Phase
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Fig. 5.7 Probability distribution of particles position (bars) and fitted with Gaussian distribution
(solid line) when (a) r = 0.5 and α = 0.5, (b) r = 0.5 and α = 0.9, (c) r = 0.9 and α = 0.5,
(d) r = 0.9 and α = 0.9.

boundaries between ballistic motion and diffusion have been drawn in the phase diagram

shown in fig. 5.8.

5.5 Discussion

We have studied the dynamics of a single particle moving on a one-dimensional lattice-gas

with randomly distributed reflectors and transmitters. Particle moves along the bonds of the

lattice of unit spacing. Reflectors reflect the direction of particle velocity and transmitters

leave it unchanged. Scatterers also change their character after interaction with particle with

probability 1−α . Hence for α = 1, nature of scatterers remain unchanged and for α = 0,

they always flip. Otherwise for α ̸= 0 ̸= 1, flipping is probabilistic. Hence initial density of

right/left scatterers and probability (r,α) are the two control parameters in our model.

For α = 0 and 1, dynamics of particle is pure deterministic: and it is completely confined
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Fig. 5.8 Phase diagram in the plane of (r,α). Data points shows the asymptotic phases of the
system, based on the values of MSD exponent (β ) for different set of (r,α), when the system
reaches the steady state.

or periodic for α = 1 and ballistic for α = 0 for all r. Region of confinement and speed of

propagation depends on initial r. For α ∈ (0,1), dynamics of particle shows a crossover from

initial transient feature to late time steady state behaviour and asymptotically shows diffusive

motion. Approach to the steady state behaviour in general is quick and happens through a

short transient state. But when the parameters α and r are close to 0 or 1.0, particle take a

much longer time to reach its steady state and show asymptotic behaviour.


