
Chapter 4

Effect of polydispersity on the dynamics

of active Brownian particles

4.1 Introduction

The dynamics of self-propelled particles perpetually moving by converting energy from the

environment into mechanical motion and collisions represent a non-equilibrium phenomenon.

Such non-equilibrium systems exhibit many interesting properties such as clustering, collective

motion [Gopinath et al. (2012); Peruani et al. (2006)], anomalous density fluctuations [Ra-

maswamy et al. (2003)], strange rheological behavior [Cates et al. (2008); Giomi et al. (2010);

Saintillan (2010)], and activity-dependent phase change [Shen & Wolynes (2004)]. Their size

ranges from few microns, e.g., bacteria [Dombrowski et al. (2004), cells [R. Kemkemer &

Gruler (2000)], cytoskeletal filament [Surrey et al. (2001)], motor proteins [Poul M. Bendix

(2008)], etc., to macroscopic systems like fish school, birds flock, and animal herds [Vicsek &

Zafeiris (2012)], etc.

In 1995 Vicsek and coworkers [Vicsek et al. (1995a)] proposed a swarming model, one of
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the building blocks to study active matter systems [Kumar & Mishra (2020); Singh & Mishra

(2020)]. Colloidal Janus particles [Jiang et al. (2010); Volpe et al. (2011)], which act as an

artificial microswimmer due to its asymmetry of surface chemistry, were considered the model

system for active matter, often called the active particles. Active particles are generally of two

types based on their appearance; elongated rod-like particles are called polar/apolar particles

[Marchetti et al. (2013)], and spherically symmetric particles fall in the category of the active

Brownian particles (ABPs). These micron-sized ABPs move in an environment with a low

Reynolds number, and hence their dynamics, in general, are overdamped [B. ten Hagen (2009);

Howse et al. (2007); Kümmel et al. (2013); ten Hagen et al. (2011)]. The active Brownian

motion appears due to the interplay of self-propulsion and the thermal noise in the system and

verified experimentally by studying the collective behavior of colloids and bacteria [B. ten

Hagen (2009); Bechinger et al. (2016); Howse et al. (2007); Kümmel et al. (2013); Kurzthaler

et al. (2018)].

Recent studies address the dynamics of ABPs on various environmental backgrounds, e.g.,

the motion of ABPs on a periodic substrate, channel-based transport of ABPs [Pattanayak

(2019); de Castro et al. (2021)], and dynamics of ABPs in a confined geometry [Das et al.

(2020b); Mishra & Pattanayak (2017); Reversat et al. (2020)], etc. In these studies, apart

from the different nature of particle-to-particle interaction (for example, hard or soft repulsive

interaction) [Dolai et al. (2018)], particles are, in general, considered to be of the same size,

i.e., monodisperse. But, there are many cellular systems, bacteria, and colloids that possess

size diversity, i.e., all particles do not necessarily have the same radius and can be termed as

polydisperse. The polydispersity of the particles’ size can lead to many interesting properties

in terms of their dynamics.

The self-propelled particle (SPP) model has been described in [Belmonte et al. (2008); Garcia

et al. (2015); Henkes et al. (2011); Sepúlveda et al. (2013); Soumya et al. (2015); Szabó

et al. (2006)] to study such systems. These models are similar to those for inert particulate
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matter where cells (or bacteria etc.) are represented as disks or spheres that interact with an

isotropic soft repulsive potential and electrostatic attraction. SPP models typically exhibit a

glass transition from a diffusive fluid state to an arrested subdiffusive solid that is controlled

by (1) the strength of self-propulsion [Garcia et al. (2015); Henkes et al. (2011); Ni et al.

(2013)] and (2) the packing fraction φ [Berthier (2014); Fily & Marchetti (2012); Fily et al.

(2014); Henkes et al. (2011); Ni et al. (2013)]. Polydispersity also plays a crucial role in these

transitions, and it is important to study the effect of particles’ size diversity on the steady-state

phase of the system. The effect of polydispersity have been seen in the equilibrium systems

[Bommineni et al. (2019); Sampedro Ruiz & Ni (2020); Sampedro Ruiz et al. (2019)], but the

understanding is very limited in the non-equilibrium counterparts. In, [Henkes et al. (2011)]

authors have considered self-propelled particles dynamics with some polydispersity, but they

do not explicitly explain the effect of particles’ size diversity in the system dynamics. In

[Cho et al. (2012)], authors have studied the dynamics of tracers with quenched polydispersed

obstacles where they have addressed the system for a different amount of polydispersity in the

obstacles’ size and its effect on the percolation density.

In this study, we address the consequence of polydispersity and activity on the dynamics

of ABPs. We use overdamped Langevin’s dynamics to study the particles’ motion in two

dimensions. The polydispersity index, ε , characterize the diversity in the particles’ size,

which is the width of a uniform probability distribution of particles’ radius. In contrast, the

self-propulsion speed of the particles characterize the activity. Also, the system is studied

for three different packing densities φ = {0.65, 0.75, 0.85}. We do not exceed φ = 0.85 as

the cut-off packing fraction remains under the shape rigidity limit is 0.85, [Bolton & Weaire

(1990)]. We calculate the steady-state diffusion coefficient De f f and for large activity v, it

follows a scaling function De f f ∼ D0vβ f (εv−α), where α and β are the two exponents. We

find system exhibits four distinct phases. The system is in the jammed and liquid phase for

small and large activities. The jammed phase is characterized by small De f f and, it is of two
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Fig. 4.1 (Color online) Snapshot of the system for a non-zero polydispersity i.e. ε = 0.5. Disks
resembles the active Brownian particles with their radius represented by color bar, and the
arrows shows their velocity direction.

types: solid jammed for small PDI and liquid jammed for large PDI. The liquid phase is again

of two types: MIPS-liquid [Berthier (2014); Cates & Tailleur (2015); Fily & Marchetti (2012);

Gonnella et al. (2014); Ma et al. (2020); Redner et al. (2013); Stenhammar et al. (2013);

Suma et al. (2014); Tailleur & Cates (2008); Wittkowski et al. (2014)] for small PDI with

moderate De f f and pure liquid phase with enhanced diffusivity. The number fluctuation larger

[Ramaswamy et al. (2003); Toner & Tu (1995); Toner et al. (2005)] and smaller [Henkes et al.

(2011)] than the equilibrium limit in liquid and jammed phase respectively.

We divide the rest of the chapter in the following manner. In section 4.2, we discuss the model

used to study the system; in section 4.3 we discuss about the results and finally summarise in

section 4.5.

4.2 Model and numerical details

We distribute the particles randomly on a two-dimensional substrate. Radius, Ri, of particles is

taken from a uniform distribution P(Ri,ε0) ∈ [R0 − ε0
2 , R0 +

ε0
2 ], where R0 is the mean radius
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and ε0 is the width of the distribution. We use over-damped Langevin’s dynamics to study the

particles motion which is given as,

∂

∂ t ri(t) = v0êi +µ ∑
N
j Fi j

(4.1)

∂

∂ t θi(t) =
√

2DRηR
i (t)

(4.2)

Here, ri(t) is the position of ith particle at time t, v0 is the self-propulsion speed which is

same for all the particles and, θi(t) is the orientation angle which defines ê = (cos(θ),sin(θ)).

The interaction force between the particles is, Fi j = −∇U(ri j), where U(ri j) is a harmonic

potential defined as,

U(ri j) =
κ

2 (ri j −σi j)
2Θ(1− ri j

σi j
)

(4.3)

Here, Θ(x) = 1 for x ≥ 0 and; Θ(x) = 0 for x < 0. ri j = |ri − rj| is the separation between

two particles and σi j = Ri +R j. κ is the force constant. µ is the mobility and is inversely

proportional to the friction coefficient such that each particle is driven by a constant force of

magnitude equal to v0
µ

. (µκ)−1 is the elastic time scale. η is the random Gaussian white noise

with ⟨η(r, t)⟩= 0 and ⟨η(r, t)η(r′, t ′)⟩= δ (r−r′)δ (t− t ′), here DR is the rotational diffusion

coefficient. D−1
R is the time scale over which the orientation of an active particle changes.

Hence, lp = v0D−1
R , the persistence length or run length, is the typical distance travelled by

an active particle before it changes direction. We keep the mobility and rotational noise fixed

throughout the whole study i.e., µ = 1.0 and DR = 1.0. Whereas, the system is studied for

v0 ∈ (0.1, 1.0), ε0 ∈ (0.0, 0.25). We study the system for three different packing densities,
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φ = 0.65,0.75 and 0.85, which is defined as φ =
ΣN

i πR2
i

L2 , where L is the size of the system, and

N is the total number of particles. We keep the mean radius fixed, i.e. R0 = 0.3. We redefine

dimensionless activity, v = v0
R0µκ

and the dimensionless polydispersity, ε = ε0
R0

which is termed

as polydispersity index (PDI).

We simulate the system in a square box of L× L with periodic boundary conditions. We

choose L = 20 for most of the simulation data, otherwise mentioned. We start with a random

homogeneous distribution of the particles in the box and with random directions. Fig. 4.1,

shows the snapshot of the system generated from the simulation for a non-zero polydispersity,

ε = 0.5. The Center of the disks show their position, r in the xy-plane, and the arrow on it

implies the velocity direction, ê. Equations (4.1 - 4.3) are updated for all particles and one

simulation step is counted after a single update for all the particles. The steady-state in the

system is achieved after simulation time O(105), the maximum simulation time is 107 and we

take the step size for the times ∆t = 10−3. We use 15 independent realization for averaging

the data.

4.3 Results

We calculate the different physical quantities and based on that we characterise the system

properties under the different conditions for system variables i.e. packing density φ , activity v

and polydispersity, ε .

4.3.1 Enhanced Diffusivity for finite Polydispersity

We characterize the system’s properties by calculating the mean squared displacement of the

particles for different sets of parameter. First, we calculate the mean squared displacement

(MSD) ∆(t) defined as ∆(t) = ⟨ 1
N ∑

N
i |ri(t)− ri(0)|2⟩, where ⟨.....⟩ means the average over
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Fig. 4.2 (Color online) (a) Mean squared displacement, ∆(t) vs. t for different actyivity (v)
and fixed polydispersity index, ε = 8.33× 10−1. (b) ∆(t) vs. t for different ε and fixed
activity, v = 3.33×10−2. (c) Diffusion coefficient, D(t) vs. t for different actyivity (v) and
fixed polydispersity index, ε = 8.33×10−1. (d) D(t) vs. t for different ε and fixed activity,
v = 3.33×10−2.
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Fig. 4.3 (Color online) Effective diffusion coefficient, De f f vs. activity v for different poly-
dispersity index (ε), for φ = 0.65 (a), 0.75 (b), 0.85 (c). Effective diffusion coefficient De f f
vs. polydispersity index, ε for different activity (v). Symbols are from the simulation and the
solid lines are the fit (Eq. 4.4) to the data points. Different plots are for different values of
φ = 0.65,0.75,0.85 (d-f), respectively. Error bars are smaller than the size of the symbols.
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many initial configurations. Fig. 4.2, shows the plot of MSD and diffusion coefficients,

D(t) = ∆(t)
4t , for different activity v and polydispersity index ε for packing density φ = 0.85.

In fig. 4.2(a) we plot the MSD for different activity v and fixed PDI, ε = 8.33×10−1. We

perceive that the system shows essentially two regimes of dynamics; first, it is super-diffusion

for early time (t < 100) where the slope of ∆(t) vs t is greater than 1.0, then starts diffusing later

(t > 100), where the MSD grows linearly with time, i.e., the persistent random walk (PRW).

The super diffusion regime is a signature of active systems. At the start of the simulation,

we witness a plateaus region due to the over-damped dynamics. Further, when we increase

the value of v, ∆(t) shift upward in the positive y-axis i.e. increase in diffusion coefficient

D(t) (4.2(c)). Next, in figure 4.2(b), we see a similar trend for a fixed activity and different

polydispersity, i.e., as we increase PDI (ε), MSD shift upwards. This leads to the diffusion

coefficient increase, shown in D(t) vs. t plot in fig. 4.2(d). We obtain similar pattern of

changes in ∆(t) and D(t) for (v,ε) with packing density φ = 0.65 and 0.75 (data not shown).

We do similar calculation for other parameters and plot the effective diffusion coefficient in fig.

4.3 for different packing fractions. We define the effective diffusion coefficient De f f in steady

state (t > 100) as De f f = limt−→∞ D(t) for different activity v and PDI ε . Fig. 4.3(a-c) shows

the variation of De f f for different activity and for different packing fractions, φ . We found that

the effective diffusivity vs. activity have a slope β ≃ 2.0 for all φ ′s = 0.65, 0.75 and 0.85.

Further, in fig. 4.3(d-f), we plot De f f vs ε , and fit the data points with the expression for

diffusion coefficient fitted by,

De f f (ε,v) = vβ D0(φ)[1+ exp( ε

εc(v)
)]

(4.4)



4.3 Results 83

0 0.1 0.2 0.3 0.4

εv
- α

250

300

350

400

v
-β

D
ef

f
v=1.33 x 10

-2

v=1.66 x 10
-2

v=2.33 x 10
-2

v=2.66 x 10
-2

v=3.00 x  10
-2

v=3.33 x 10
-2

0 0.1 0.2 0.3 0.4

εv
- α

160

200

240

v
-β

D
ef

f

0 0.1 0.2 0.3 0.4

εv
- α

150

200

250

v
-β

D
ef

f

(a) (b) (c)

Fig. 4.4 (Color online) Scaled diffusivity, De f f /vβ

0 vs. scaled PDI, εv−α for φ =
0.65, 0.75, 0.85 (a-c), respectively; where α =−0.2 and β = 2.0

where, D0(φ) and εc(v), are the two fitting parameters depend on packing fraction

and activity v, respectively. It shows that as we increase the size diversity among the ABPs,

diffusivity of the system increases and the change is high for high activity in the system (which

is explained in more detail in the next paragraph). In Fig. 4.4 (a-c) we plot the scaled diffusivity

De f f /vβ vs. scaled PDI, εv−α , for higher activity v ≥ 1.33× 10−2 and for three different

packing densities φ = 0.65, 0.75 and 0.85, respectively. Interestingly we find a good collapse

of data for all φ ’s and range of activities v ≥ 1.33×10−2. The two exponents α and β have

values −0.2 and 2.0, respectively. The above scaling suggest the form of De f f ∼D0vβ f (εv−α)

and f (x → 0)∼ 2, which is obtained from the proposed form for De f f in Eq. (4.4).

We also calculate the percentage change in the effective diffusion coefficient with respect

to zero polydispersity i.e. ∆De f f (ε) =
De f f (ε)−De f f (0)

De f f (0)
×100. We plot ∆De f f vs. ε as shown in

fig. 4.5. The value of ∆De f f increases as we increase the packing density, as depicted from

fig. 4.5(a, b and c) that show the percentage change in the effective diffusion coefficient for

packing density, φ = 0.65, 0.75 and 0.85, respectively. This feature indicates that the impact

of polydispersity is more prominent in a dens system. Also, the change in De f f goes up to 100

percent for the largest polydispersity, see fig. 4.5(c).
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Fig. 4.5 (Color online) Percentage change in the effective diffusion coefficient, ∆De f f vs. PDI,
ε for different activity (v), for φ = 0.65 (a), 0.75 (b), 0.85 (c).
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Fig. 4.6 (Color online) Snapshots at equal time for ε = 1.66×10−1(a), and ε = 6.66×10−1

(b), for fixed activity, v = 3.33×10−2, and φ = 0.65. Rattlers are represented by blue disks
whereas non-rattlers are in red. Arrows on the disks shows their velocity direction.



4.3 Results 85

0.3 0.35 0.4 0.45
ψ

bs

0

0.2

0.4

0.6

0.8

1

P
(ψ

b
s)

0.4 0.5 0.6 0.7 0.8 0.9 1
ψ

bs

0

0.2

0.4

0.6

0.8

1

0.36 0.38 0.4 0.42 0.44 0.46
ψ

0

0.2

0.4

0.6

0.8

1

P
(ψ

)

v=3.33 x 10
-3

v=6.66 x 10
-3

v=1.33 x 10
-2

v=2.00 x 10
-2

v=2.66 x 10
-2

v=3.33 x 10
-2

0.2 0.25 0.3 0.35 0.4
ψ

0

0.2

0.4

0.6

0.8

1

ε=0.00

ε=1.66 x 10
-1

ε=3.33 x 10
-1

ε=5.00 x 10
-1

ε=6.66 x 10
-1

ε=8.33 x 10
-1

(a) (b)

(c) (d)

Fig. 4.7 (Color online) (a) Probability distribution function, P(ψ) vs ψ for different actyivity
(v) and fixed polydispersity index, ε = 8.33×10−1. (b) P(ψ) vs ψ for different ε and fixed
activity, v = 3.33×10−2. (c) P(ψbs) vs ψbs for different actyivity (v) and fixed polydispersity
index, ε = 8.33×10−1. (d) P(ψbs) vs ψbs for different ε and fixed activity, v = 3.33×10−2.

4.3.2 Mobility order parameter

Now we explain the enhanced dynamics due to polydispersity. First, we analyze the effect

of activity on the system’s dynamics, and then we study the impact of polydispersity. In a

self-driven system, particles do not stay static for a long time; instead, they keep moving

throughout the system. The crowding of the environment makes the particles collide among

themselves during motion. Therefore, their instantaneous speed is not the same, but some move

faster and slower. We defined rattlers in the system based on the crowding in the neighborhood

of a particle. We call a particles i is a neighbour of particles j if (|ri − rj|)≤ 21/6(σi +σ j). A

particle with two or less immediate neighbor (s) is called a ‘rattler’, and hence it is more mobile

until it loses the tag. In the d-dimensions, a particle can be a rattler if it has less than d +1

neighbour(s). In fig. 4.6(a-b), we show the snapshots from the simulation for two different

polydispersities, where the particles that are rattlers are in blue, whereas those are non-rattler
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are in red. We see that the rattlers prefer to be at the boundaries of the clusters of non-rattlers.

We calculate the mobility order parameter (MOP) ψ(t) defined as ψ(t) = Nr(t)
N , where N is the

number of particles in the system and Nr is the number of rattlers. Hence, ψ ∈ (0,1), ψ = 1

means that all the particles in the system are rattlers and vice versa. This tells us that the higher

the MOP value, the system will be more dynamical. Further, we refine ψbs(t) =
Nrb(t)
Nrs(t)

, where

Nrb and Nrs are the number of those rattlers whose radius is bigger and smaller than the mean

radius R0 resepctively. In fig. 4.7(a-b) we plot the probability distribution functions P(ψ) vs.

ψ ; and in 4.7(c-d) we plot P(ψbs) vs. ψbs for φ = 0.85 for different system parameters. In fig.

4.7(a), the peaks of P(ψ) shift towards smaller values of ψ as we increase the activity. This

suggests that the number of rattlers in the system decreases with increased activity v, and MSD

should also decrease. But we see the opposite, because for a non-zero PDI, peak of P(ψbs)

also shifted towards smaller values (see fig. 4.7(c) ). This implies that Nrs is higher than the

Nrb, and we know that smaller particles have higher activity (motility) (since vi ∝
v0

Riµκ
) and

hence, for a fixed activity v, the contribution of smaller particles (when Ri ≤ R0) to the MSD

is higher than that for bigger ones (i.e. Ri > R0). Eventually, we see an increase in the MSD,

hence, higher De f f for a higher value of self-propulsion speed.

Similarly, we can explain the increase in De f f if we increase ε . Fig. 4.7(b) shows that the peak

of P(ψ) shifts towards higher values and that of P(ψbs) towards left. This implies that with

an increase in PDI, rattlers are increasing, but small rattlers increase more, which have much

higher motility than bigger ones. Hence the De f f increases with an increase in PDI.

4.3.3 Phase diagram

In the previous paragraph, we discussed the effect of polydispersity on the system dynamics,

where we have calculated the steady-state diffusion coefficient of the system. We characterize

the different phases based on the value of diffusivity, radial distribution function, and number
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Fig. 4.8 (Color online) (a) Plot for the radial distribution function g(r) for different PDI, ε

on semi-log scale (main), inset: plot on linear scale. We keep the activity fixed in this plot.
(b) Number Fluctuation plot for (v,ε) = (3.33× 10−3,1.66× 10−1) circles: solid-jammed
phase, (3.33×10−3,6.66×10−1) squares: liquid-jammed phase, (2.00×10−2,1.66×10−1)
diamonds: MIPS-liquid phase, (3.33× 10−2,0.0) triangle up: MIPS-liquid phase, (3.33×
10−2,8.33×10−1) triangle left: pure liquid phase. The dashed line corresponds to ∆N/

√
N =

1. Both the plots are for φ = 0.85 and the system size L = 40.

fluctuation. First, to understand the structure of the particles’ cluster we calculate the radial

distribution function (RDF) g(r). Where, g(r) is a measure of the probability of finding a

particle at r2 given a particle at r1 ; r = |r1 − r2|. In two dimensions ⟨n⟩g(r)d2r gives the

number of particles in d2r, where < n > is the mean number of particle in unit area. We plot

g(r) vs. normalise radial distance r
R0

in fig. 4.8(a), and see that with an increase in PDI, not

only the height of the peak of g(r) decreases, but also the distribution loses its periodicity

since the number of distinct peaks (m) reduces. This means the structure of the distribution of

the particles in the system shifted to the less ordered liquid-like structure, for bigger ε , from

the more ordered solid one, or ε = 0. Also, if there are at least three peaks in the g(r) vs. r/R0

plot, this represents a near to hexagonal closed pack (HCP) structure (fig. 4.6a), and we call

it a solid-like structure, whereas when it has less than three peaks, we call it as a liquid-like

structure (far away from HCP) (Fig. 4.6b).

Second, we calculate the number fluctuation, defined as ∆N =
√
< N2 >−< N >2,

where ∆N is the standard deviation in the number of particles in different size subcells and
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Fig. 4.9 (Color online) Phase diagram for φ = 0.65 (a), φ = 0.75 (b) and φ = 0.85 (c): circles,
squares, triangles and diamonds represents the solid-jammed phase, liquid-jammed phase,
MIPS-liquid phase and pure liquid phase, respectively. Color bar shows the value of De f f for
a given (ε,v).

⟨..⟩ is the the represents the average over many snapshots. Further, ∆N ∼< N >γ , it has been

found that γ > 0.5 for the ABP undergoing MIPS [Berthier (2014); Fily & Marchetti (2012);

Gonnella et al. (2014); Redner et al. (2013); Stenhammar et al. (2013); Suma et al. (2014);

Tailleur & Cates (2008); Wittkowski et al. (2014)]. It suggests a large number-fluctuation in

the active system undergoing dynamical phase separation. Whereas in an equilibrium system,

γ ≤ 0.5. Further, the systems is in the frozen or jammed state when γ < 0.5 [Henkes et al.

(2011)]. In fig. 4.8(b), we show the plot of ∆N/
√

N vs. < N > for some chosen sets of

(v,ε), and observe that for small activity, v (= 3.33×10−3 in the plot), system shows small

number fluctuation with the curve is below the horizontal line, which is the reference line

for an equilibrium system, and giant number fluctuation for higher activity, v (= 2.0×10−2

and 3.33× 10−2 in the plot), where the curve is above the horizontal line. Therefore we

characterize the different phases in the system based on the values of De f f , number of distinct

peaks in RDF and γ for a given set of (v,ε). Now, we explicitly discuss the different phases in

the system and show the phase diagram in fig. 4.9.

Jammed phases: We call the system in the jammed state when De f f ≤ 0.05 and the

number fluctuation exponent, γ < 0.5 for small activity. Which means that the particles in
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the system are almost stationary or jammed. Further, we call it the solid-jammed state, when

RDF have three or more than three peaks observed for ε ≤ 3.33×10−1 and the liquid-jammed

phase when RDF have less than three peaks observed for ε ≥ 0.5.

Liquid Phases: We call the system in the liquid phase when De f f ≥ 0.25 and the number

fluctuation exponent, γ > 0.5 for high activity. This implies that the particles in the system

are highly motile for high activity and behave like the free-flowing liquid. Further, we call it

motility induced phase separation (MIPS)-liquid phase since the particles move collectively

forming closed packed structure, which is observed for ε ≤ 3.33×10−1 and v ≥ 0.01. The

closed packed structure is evident from fig. 4.8(a), where RDF has three or more than three

peaks. For large activity, enhanced motion of ABPs lead to faster accumulation near a cluster

as shown in [Buttinoni et al. (2013)]. This phase is analogous the the MIPS phase reported

for a mono-disperse active Brownian particles [Berthier (2014); Fily & Marchetti (2012);

Gonnella et al. (2014); Redner et al. (2013); Stenhammar et al. (2013); Suma et al. (2014);

Tailleur & Cates (2008); Wittkowski et al. (2014)]. We call the system in a pure liquid phase

when RDF have less than three peaks and the activity v ≥ 0.01. In this case the particles in a

dense cluster do not form an ordered pattern as it is evident from the plot of RDF g(r), fig.

4.8(a). We observe the enhanced diffusivity essentially in the pure liquid phase, observed for

large PDI that introduces a large number of small ABPs with high motility responsible for

enhanced diffusion, shown in the De f f vs. ε plot in fig. 4.3.

In fig. 4.9, we show the phase diagram for different packing fractions. Different symbols

imply the type of the phase for the given parameter set, and the color bar shows the value of

De f f for the same. We also observe that for φ = 0.65 and 0.75, system show jammed phase

for v ≤ 1.0×10−2 whereas it is jammed for v ≤ 1.33×10−2 for φ = 0.85. This shift is due to

the particles’ high packing density, which makes the system highly crowded; hence, it needs

higher activity to be in the liquid phase.
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We find that the phases in the system are independent of the size of the system. We confirm

this by plotting the De f f vs. ε for different activity and the phase diagram for L = 30 and

φ = 0.85 (see the Sec. 4.4) and find an identical phase diagram to that of fig. 4.9 (c).

4.4 System size independence

This section shows the data for bigger system size, L = 30, and packing density φ = 0.85. We

see that the system’s response is almost identical to what is shown for a relatively smaller

system size (L = 20) in the main text. Fig. 4.10(a-b) shows the plot for effective diffusion

coefficient De f f vs ε and fig. 4.10(c) shows the phase diagram in the plane of PDI and

the activity. In the De f f vs. ε plot, we observe that the values of De f f is almost the same

with minimal changes (within the error bars) for the chosen set of system parameters. This

confirms our claim that the impact of polydispersity in a system of active Brownian particles

is independent of the size of the system.

4.5 Discussion

We study the dynamics and the phases of self-propelled disk-shaped particles of different sizes

with soft repulsive potential in two dimensions. Properties of the system are characterized for

different activity, (v), which is controlled by the self-propulsion speed of the particles, and the

polydispersity index, ε , which is the width of the uniform distribution of the particle’s radius.

We use over-damped Langevin’s dynamics to study the particles’ motion. We observe enhanced

dynamics for large size diversity among the particles. We calculate the steady-state diffusion

coefficient De f f and for high activity v, it follows a scaling relation De f f ∼ D0vβ f (εv−α),
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Fig. 4.10 (Color online) (a) Effective diffusion coefficient De f f vs. polydispersity ε for
different v. (b) Scaled diffusivity, De f f /vβ

0 vs. scaled PDI, εv−α , where α = −0.2 and
β = 2.0. Error bars are of the size of the symbols. (c) Phase diagram: circles, squares,
triangles and diamonds represents the solid-jammed phase, liquid-jammed phase, MIPS-liquid
phase and pure liquid phase, respectively. Color bar shows the value of De f f for a given (ε,v).
All the data are generated for φ = 0.85 and system size L = 30.
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α = −0.2 and β ≃ 2.0. The mobility order parameter, ψ and ψbs, explains the enhanced

dynamics for a non-zero polydispersity. We find that the dynamics of smaller particles, for

large polydispersity, lead to enhanced diffusivity. We find system exhibits four distinct phases.

The system is in solid jammed and liquid jammed phase for small and large PDI, for small

activity. Jammed phase characterized by small De f f . Whereas for larger activity, it forms

MIPS-liquid for small PDI, when De f f is moderate and results match with previous MIPS in

ABP. And for large PDI, we find enhanced diffusivity and no periodic structure, and the system

is defined as pure liquid phase. Further, the enhanced diffusivity observed for pure liquid

phase. The number fluctuation is larger and smaller than the equilibrium limit in the liquid

and jammed phases. We study the system for three different packing densities of the particles

and observe almost the same trend.

One can also get enhanced diffusion by putting the variable speed with identical size particles

similar to the work in [Singh & Mishra (2020)]. Still, in experiments, designing the polydis-

persity in speed is much more challenging compared to the polydispersity in the size.

Our analysis can help understand the behavior of cells of various sizes in a tissue, artificial

self-driven granular particles, or living organisms of different sizes in a dense environment.

Also, one can design a similar system and obtain the results we have brought in this work.


