
Chapter 3

Active nematic gel with quenched

disorder

3.1 Introduction

In the previous chapter (Chapter 2), we have studied the effect of quenched disorder on the

dry active nematics, i.e., dry-RFAN [Kumar & Mishra (2020)], where we have ignored the

effect of the background fluid. But, the effect of the fluid in which apolar active particles are

suspended can not always be neglected; the suspension of microtubules with molecular motors

in oil and colonies of Myxococcus xanthus are some of the examples of wet active nematics or

active nematic gel [Copenhagen et al. (2021); Doostmohammadi et al. (2016a)]. Therefore,

the impact of quenched disorder in wet active nematic can also be interesting, and we will

address the problem in this work.

We use the same approach to study the effect of quenched disorder in active nematics suspended

in an incompressible fluid, as in chapter 2. We write coarse-grained hydrodynamic equations

of motion for the sow variables, density, and the orientation field. To see the effect of fluid, we
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add one more equation for the flow of the fluid, analogous to the Naiver-Stokes equation as

given in [Giomi et al. (2011, 2013)]. The quenched disorder is introduced in the same way

as in [Kumar & Mishra (2020)]. Results from the the numerical simulation suggests that the

finite disorder slows the ordering kinetics and the effect of disorder is almost the same for

both contractile and extensile cases (discussed later). The effect of disorder on the two-point

correlation function is substantial, and the system does not show static scaling; in contrast, it

is minimal on the density correlation function. Further, the system shows dynamics scaling for

the non-zero disorder. We also find that the density growth is faster than the nematic order

parameter, which was not found in the dry RFAN [Kumar & Mishra (2020)].

We organize the work as follows: we introduce the model of our system in Sec. 3.2, then we

discuss the results Sec. 3.3, and summarize the results in Sec. 3.4.

3.2 Model and Numerical details

We write the hydrodynamic equations of motion for active nematic suspended in an incom-

pressible fluid referred as “active nematic gel”. We study the effect of quenched disorder on the

system kinetics. These equations are formulated in terms of local density field ρ , flow field v,

and the nematic order parameter Qi j = S(nin j − 1
2δi j), where n is the director field and i = 1,2

in two dimensions. Qi j is traceless and symmetric and hence have only two independent

components in two dimensions. The disorder in the system is added to the Q equation only.



3.2 Model and Numerical details 65

For simplicity we write the hydrodynamic equation of motion for incompressible fluid, i.e.

∇ ·v = 0. The density equation is given as,

[∂t + vi∂i]ρ = ∂i[(D0δi j +D1Qi j)∂ jρ +α1ρ2∂ jQi j],

(3.1)

the equation for the flow field is,

[∂t + vi∂i]vi = η∂ 2
i vi −∂i p+∂ jτi j,

(3.2)

and finally, the equation for the orientation or the nematic order parameter field is give as,

[∂t + vi∂i]Qi j = λSui j +Qikωk j −ωikQk j + γ−1Hi j +H
′
i j

(3.3)

where, (D0δi j+D1Qi j) is the anisotropic diffusion coefficient term with constant D0 and

D1. η , p and λ are the viscosity, pressure and the nematic alignment parameter respectively.

Here, ui j =
1
2(∂iv j +∂ jvi) and ωi j =

1
2(∂iv j −∂ jvi) are the symmetrized rate of strain tensor

and vorticity, respectively. The molecular field Hi j embodies the relaxational dynamics of

the nematic phase (with γ a rotational viscosity) and can be obtained from the variation of the

Landau-de Gennes free energy of a two-dimensional nematic, Hi j =− δF
δQi j

, with

F
K =

∫
dA[1

4(ρ −ρ0)trQ2 + 1
4ρ(trQ2)2 + 1

2 |∇Q|2]

(3.4)
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where, K is an elastic constant with dimensions of energy, ρ0 is the critical density for

isotropic-nematic transition, so that at an ordered steady state, S =
√

1− ρ0
ρ

. The quenched

disorder is introduced as random field in the free energy density F =−Q : (hh− I
2). Which

further leads to H
′
i j = (hih j −h2

0
1
2δi j), in equation 3.2, in two-dimensions i, j = 1,2 are the

spatial indices for the two components of vectors. Where, hi = h0(cosφ ,sinφ), here h0 is

the disorder strength and φ(r) is a uniform random angle between (0,2π), with mean zero,

quenched in time (no time dependence) and space correlation ⟨φ(r)φ(r′)⟩= δ (r−r′). Finally

the stress tensor σi j = σ r
i j + σa

i j is the sum of the elastic stress due to nematic elasticity,

σ r
i j = −λSHi j +QikHk j −HikQk j, σa

i j = α2ρ2Qi j is the active contribution, further, it

describes contractile or extensile stresses exerted by the active particles in the direction of the

director field. Activity yield a curvature induced active current ja = α1ρ2∇ ·Q in equation 3.1.

The ρ2 dependence of the active stress and current is appropriate for systems where activity

arises from pair interactions among the filaments via cross-linking motor proteins. The sign

of α2 depends on whether the active particles generate contractile or extensile stresses, with

α2 > 0 for the contractile case and α2 < 0 for extensile systems, while we always keep α1 > 0.

The Eqs. (3.1 - 3.3) written in dimensionless units by rescaling all lengths by the length

of the particle and time by the collision time and are of the same form as derived from the

microscopic rule-based model in [Bertin et al. (2013)], with fluid flow [Giomi et al. (2011,

2013)] and an additional term due to quenched disorder as in the dry case [Kumar & Mishra

(2020)]. The random field introduced in our current model is similar to the random field in

XY-model (RFXY-model) [Imry & Ma (1975)]. Hereafter we refer our model as random field

wet active nematic or RFWAN when h0 ̸= 0, and clean-wet active nematic (clean-WAN) for

h0 = 0.

To perform the numerical integration of Eqs. 3.1 and 3.2 we construct a two-dimensional

K ×K square lattice with periodic boundary condition (PBC) and discretise the space and

time derivatives using Euler scheme (∆x = 1.0 and ∆t = 0.1). Initially, we start with random
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homogeneous density, with mean (ρ0 = 0.75), random orientation and flow field. Coarsening

is studied for K = 1024. Coarsening results are obtained for simulation time t = O(104) and

the average over 10 independent realisations. One simulation time is counted after update

of Eqs. 3.1 - 3.3 for all lattice points. Parameters in Eqs. (3.1-3.3) are α1 = 0.2 |α2|= 2a1,

D0 = 1.0, D1 = 0.5, γ = 1.0, λ = 0.1, η = 2.0.

3.3 Results

3.3.1 Sapshots

We first generate the time evolution of the system. We show the snapshots for the local nematic

order parameter (NOP) field Qi j(r, t), local density field ρ(r, t), and flow field v(r, t) and

plotted in Fig. 3.1 at different simulation time. These snapshots show the time evolution of

different fields throughout the system. Also, we can see the topological defects of two equal

and opposite charges, i.e., ±1/2 defects. These defects attract each other due to the equal and

opposite charge, where the +1/2 defects have an asymmetric comet-like structure and make

it motile. In contrast, the −1/2 defect has threefold symmetry and can only diffuse in the

system. We observe that as time progresses, the defects annihilation leads to the formation of

ordered domains. In the ordered steady state, the system does not have any defect pair, and the

value of local fields will be homogeneous throughout the system. Fig. 3.2 show the snapshots

of local NOP Q(r, t) at different time for different strengths of disorders, h0 and α2 < 0. First

observation from these snapshots is that for a fixed non-zero disorder (h0 = 0.2), the number

of topological defects or the ±1/2 defects pairs are larger, Fig. 3.2(bottom panel) compare to

the zero disorder case (h0 = 0.0) shown in Fig. 3.2(top panel). Further, this scenario remains

unchanged as time evolves. Hence, for a non-zero disorder, the annihilation of ±1/2 defect

pairs is slower than zero disorder.
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Fig. 3.1 Snapshots at different time for α2 < 0 and h0 = 0.0. Different snapshots are for
(NOP) field Q(r, t) (top panel), local density field ρ(r, t) (middle panel), and flow field v(r, t)
(bottom panel).A pair of +1/2-defect and −1/2-defect are indicated by the arrows in the
first picture (top left). The range of color bars for NOP, density and flow fields are in range
(0.0,0.5), (0.0,0.82) and (0.0,0.016), respectively.

Fig. 3.2 Snapshots of NOP Q(r, t) at different time for α2 < 0; for different disorder strengths
h0 = 0.0 (top panel) and h0 = 0.2 (botom panel). Range of the color bars are same as given
for fig. 3.1.
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3.3.2 Kinetics

We calculate the two point correlation functions for orientation and density fields, CQ,ρ ,

defined as, CQ(r, t) = ⟨Q(0, t) : Q(r, t)⟩ and, local density ρ , Cρ(r, t) = ⟨δρ(0, t)δρ(r, t)⟩,

where δρ(r, t) = ρ(r, t)−ρ0 is the deviation of the local density from the mean ρ0. Fig. 3.3

shows the plot for CQ,ρ(r, t) vs. r for different h0 and at fixed t, and find that the correlation

among the particles decreases as we increase the disorder, for both contractile (α2 > 0) and

exensile (α2 < 0) cases. In fig. 3.4 and fig. 3.5, we again plot the correlation function for fixed

disorder and different simulation time and observe increase in CQ,ρ(r, t) as the time evolve for

all disorders.

To understand the effect of quenched disorder on the ordering kinetics, we calculate the

correlation length for density (Lρ(t)) and order parameter fields (LQ(t)) and plot it for different

strength of disorders, h0. Fig. 3.6, shows the plots of correlation lengths, LQ,ρ(t) vs. time t for

different strengths of disorder, h0. We observe that the correlation length (or the size of ordered

domain), decreases as we increase the disorder in the system. The impact of disorder is similar

for both contractile (α2 > 0) and extensile (α2 < 0) cases. Further, in fig. 3.7, we plot LQ,ρ(t)

vs. time with logarithmic correction t/ln(t) on log− log scale, and find that the correlation

length grows as LQ,ρ(t)∼ [t ln(t)]1/z , where z is called as the growth exponent [Bray (1994)].

We observe that the value of z−1 decreases gradually as we increase the disorder strength h0.

We study the scaling properties of the two point correlation functions CQ,ρ(r/LQ,ρ(t)) where

the distance r is scaled as r/LQ,ρ(t)), in fig. 3.8, 3.9 and 3.10. From these plots we observe

that the system shows good dynamics scaling as the data collapse to a single curve for different

time and fixed h0, see fig. 3.9 and 3.10. Further, the system failed to show static scaling for

different disorder and fixed t, see fig. 3.8.
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Fig. 3.3 Two point correlation function, CQ vs. r (top-left and top-right) and Cρ vs. r (
bottom-left and bottom-right ) for different h0. All the data shown are at fixed simulation time
t = 50000. Plot in left panel plots are for contractile case with α2 = 0.4, whereas right panel
shows the plots for extensile case with α2 =−0.4.
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Fig. 3.4 Two point correlation function, CQ vs. r for h0 = 0.05 (top-left and top-right), and
h0 = 0.2 ( bottom-left and bottom-right ) for different t. Plot in left panel plots are for
contractile case with α2 = 0.4, whereas right panel shows the plots for extensile case with
α2 =−0.4.
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Fig. 3.5 Two point correlation function, Cρ vs. r for h0 = 0.05 (top-left and top-right), and
h0 = 0.2 ( bottom-left and bottom-right ) for different t. Plot in left panel plots are for
contractile case with α2 = 0.4, whereas right panel shows the plots for extensile case with
α2 =−0.4.
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Fig. 3.6 Correlation length, LQ vs. t (top-left and top-right) and Lρ vs. t ( bottom-left and
bottom-right ) for different h0. Plot in left panel plots are for contractile case with α2 = 0.4,
whereas right panel shows the plots for extensile case with α2 =−0.4.
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Fig. 3.7 Correlation length, LQ vs. t/ln(t) (top-left and top-right) and Lρ vs. t ( bottom-left
and bottom-right ) for different h0 (log-log scale). Plot in left panel plots are for contractile
case with α2 = 0.4, whereas right panel shows the plots for extensile case with α2 = −0.4.
Dashed line corresponds to correlation length in equilibrium xy−model
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Fig. 3.8 Scaled two point correlation function, CQ vs. r (top-left and top-right) and Cρ vs. r (
bottom-left and bottom-right ) for different h0. x-axis is scaled as r → r/LQ,ρ(t). All the data
shown are at fixed simulation time t = 50000. Plot in left panel plots are for contractile case
with α2 = 0.4, whereas right panel shows the plots for extensile case with α2 =−0.4.
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Fig. 3.9 Scaled two point correlation function, CQ vs. r for h0 = 0.05 (top-left and top-right),
and h0 = 0.2 ( bottom-left and bottom-right ) for different t. x-axis is scaled as r → r/LQ,ρ(t).
Plot in left panel plots are for contractile case with α2 = 0.4, whereas right panel shows the
plots for extensile case with α2 =−0.4.
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Fig. 3.10 Scaled two point correlation function, Cρ vs. r for h0 = 0.05 (top-left and top-right),
and h0 = 0.2 ( bottom-left and bottom-right ) for different t. x-axis is scaled as r → r/LQ,ρ(t).
Plot in left panel plots are for contractile case with α2 = 0.4, whereas right panel shows the
plots for extensile case with α2 =−0.4.
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3.4 Discussions

We write the hydrodynamic equations of motion for active nematics suspended in an incom-

pressible fluid called “active nematic gel”. We study the effect of quenched disorder on the

system kinetics and call it the random field wet active nematics or RFWAN. Results from the

numerical simulation suggest that in RFWAN, finite disorder slows the defect annihilation

kinetics that results in slow coarsening in the system. The effect of disorder is almost the same

for both the contractile and extensile cases. The growth of the density field is faster compare

to the nematic order parameter field. This is different from what we observed for dry-RFAN

[Kumar & Mishra (2020)]. Further, the calculation of correlation length for a different amount

of disorder suggests that the change in density growth is small compare to the growth of the

nematic order parameter System shows good dynamics scaling for fixed disorder strength

and both the contractile and extensile cases. Still, it does not show static scaling for different

disorder strengths at a fixed time.


