Table of contents

List of figures					
List of tables					
Nomenclature					
1	Intr	oduction	1		
	1.1	Classical systems and the thermodynamic averages	2		
	1.2	Active Matter: an out of equilibrium system	3		
	1.3	Details of Active matter	6		
	1.4	Categories of active matter systems	8		
		1.4.1 Polar and Apolar active matter	8		
		1.4.2 Dry and Wet active matter	9		
	1.5	Methods to study active matter	10		
		1.5.1 Agent based models: Vicsek Model	11		
		1.5.2 Agent based model : Langevin's dynamics	13		

		1.5.3 Hydrodynamics equations of motion	14
	1.6	Systems with nematic interactions on a substrate : Active nematics	24
	1.7	Domain growth and the length scale	27
	1.8	Active matter with inhomogeneity	28
	1.9	The Lorentz lattice gas	29
	1.10	Summary of the coming chapters	35
2	Activ	ve nematics with quenched disorder	37
	2.1	Introduction	37
	2.2	Model and Numerical details	40
	2.3	Steady state properties	42
	2.4	Kinetics	46
		2.4.1 Defect dynamics	46
		2.4.2 Growth law and scaling properties	48
		2.4.3 Morphology of ordered domains	49
	2.5	Linearized hydrodynamic calculation of two-point correlation functions	49
	2.6	Snapshots for $\Delta \theta$ and NOP	58
		2.6.1 Snapshots for $\Delta \theta$	58
		2.6.2 Fixed a_0 and varying h_0	58
		2.6.3 Fixed disorder h_0 and varying activity a_0	59
	2.7	Summary	59

3	Acti	ve nematic gel with quenched disorder	63
	3.1	Introduction	63
	3.2	Model and Numerical details	64
	3.3	Results	67
		3.3.1 Sapshots	67
		3.3.2 Kinetics	69
	3.4	Discussions	74
4	Effe	ct of polydispersity on the dynamics of active Brownian particles	75
	4.1	Introduction	75
	4.2	Model and numerical details	78
	4.3	Results	80
		4.3.1 Enhanced Diffusivity for finite Polydispersity	80
		4.3.2 Mobility order parameter	85
		4.3.3 Phase diagram	86
	4.4	System size independence	90
	4.5	Discussion	90
5	Dyn	amics of particle moving in one dimensional Lorentz lattice gas	93
	5.1	Introduction	93
	5.2	Model and numerical details	96
	5.3	Definitions: Ballistic, Anomalous diffusion and Confined motion	99

	5.4	Results	99
		5.4.1 Anomalous diffusion	103
	5.5	Discussion	106
6	Dyn	amics of particle moving in a two dimensional Lorentz lattice gas	109
	6.1	Introduction	109
	6.2	Model and numerical details	111
	6.3	Deterministic nature and closed trajectories	114
	6.4	Results	116
		6.4.1 Mean Square Displacement	116
		6.4.2 Open and closed trajectories	118
		6.4.3 Properties of Open Trajectories	119
	6.5	Discussion	122
7	Sum	mary and future scope	125
	7.1	Summary	125
	7.2	Future prospects	126
Re	feren	ces	127

List of figures

1.1 Schematic diagram of polar and apolar partiles and their ordering states. Arrow shows the direction of motion, double arrow represents the head and tail symmetry.

9

- 1.2 Examples of the three types of configurations considered in [Mishra et al. (2016)] are shown. In (a) a completely random configuration is shown in which r ≈ 1. In (b) and (c), the entire lattice is divided in periodic blocks of size l × l, where l = 3. The configuration in (b) is randomly periodic (RP) in that each block contains a single scatterer that is assigned to be a left rotator (open circle). The configuration in (c) is a completely periodic (CP) configuration, where the single left rotator in the same relative position in each block. In both (b) and (c) the initial ratio of rotators is r = 1/(l × l − 1) = 1/8. 34

- 2.3 (Color online) (a) Snapshots of local NOP 2: upper panel (P:1) is for clean-AN (i.e. h₀ = 0.0) and bottom panel (P:2) is for RFAN (h₀ = 0.075) and the number along the white arrow is the relative separation (Δr(t)) between the + and -1/2 defects. (b) Δr(t) vs. t plot for h₀ = 0.0, 0.075. u is the relative speed of defects defined as u = |d/dt Δr(t)| × 10⁻³ and plotted in the inset of (b).
 (c) Snapshot of density current near the defects for clean-AN, h₀ = 0.0 and (d) RFAN, h₀ = 0.075. Intensity of colors shows the magnitude of the density current. Data is generated for system size N = 512².

- 2.10 (Color online) (a) Relative separation $\Delta(r)$ between +1/2 and -1/2 defects pair vs. time plot and (b) relative speed, $u = |\frac{d}{dt}\Delta r(t)| \times 10^{-3}$, of $\pm 1/2$ defects, for different value of a_0 and fixed $h_0 = 0.1$. *t* is the simulation time. 61

- 4.3 (Color online) Effective diffusion coefficient, D_{eff} vs. activity v for different polydispersity index (ε), for $\phi = 0.65$ (a), 0.75 (b), 0.85 (c). Effective diffusion coefficient D_{eff} vs. polydispersity index, ε for different activity (v). Symbols are from the simulation and the solid lines are the fit (Eq. 4.4) to the data points. Different plots are for different values of $\phi = 0.65, 0.75, 0.85$ (d-f), respectively. Error bars are smaller than the size of the symbols. 81
- 4.5 (Color online) Percentage change in the effective diffusion coefficient, ΔD_{eff} vs. PDI, ε for different activity (v), for $\phi = 0.65$ (a), 0.75 (b), 0.85 (c). 84
- 4.6 (Color online) Snapshots at equal time for ε = 1.66 × 10⁻¹(a), and ε = 6.66 × 10⁻¹ (b), for fixed activity, v = 3.33 × 10⁻², and φ = 0.65. Rattlers are represented by blue disks whereas non-rattlers are in red. Arrows on the disks shows their velocity direction.

- 5.3 Three different trajectory when particle motion is confined (or periodic): (a),
 (b) and (c) shows the trajectory for system parameter set (α, r)=(1.0,0.1),
 (1.0,0.5) and (1.0,0.9) respectively. Figure (d),(e) and (f) shows the RoG of the particle for system parameter set (α, r)=(1.0,0.1), (1.0,0.5) and (1.0,0.9) respectively. Data for R_g = √Δ(t) is averaged over 100 realisations. 100

- 6.1 Schematic diagram of two dimensional Lorentz Lattice Gas : (a) Initial configuration of LLG with left-rotators (filled circles), right-rotators (open circles) and vacancies (empty sites). (b) State of the particle before (t) and after (t + 1) interaction with rotator; the arrow shows the direction of particle's velocity. 112

List of tables

- 5.1 List of the values of D_{eff} and D_{est} for different values of r when $\alpha = 0.5$. . . 105