
Chapter 4

H I Column Density Statistics of the

Cold Neutral Medium from Absorption

Studies1

4.1 Introduction

The structure, physical condition, and dynamical evolution of an ISM is significantly

affected by the turbulence within it (Scalo and Elmegreen, 2004). Turbulence produces

scale-invariant structures in the density and velocity fluctuations of H I in ISM. In Lazarian

and Pogosyan (2000), Lazarian and Pogosyan (2004), and Dutta (2016) different methods

have been proposed (and used) to study these types of fluctuations. Large scale ( ⇠ few

kpcs) structures of the H I are studied with the help of H I-21 cm emission and results for

some external spiral galaxies are presented in Elmegreen et al. (2001), Dutta and Bharadwaj

(2013). On the other hand, studies of the Galactic structures over few parsecs are published

in Crovisier and Dickey (1983) and Green (1993). The small scale structures of H I are

1The work presented in this chapter is derived from the original work published as "H I Column Density
Statistics of the Cold Neutral Medium from Absorption Studies" by Vishwakarma and Dutta (2019).
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probed with the help of the 21-cm absorption studies against the bright background sources,

helping us to probe the cold neutral medium (CNM) phase of the ISM. At scales of few

parsecs and lower, the studies by Faison and Goss (2001) and Brogan et al. (2005) have

shown that there exist scale-invariant structures along a few line of sight in the Galaxy (see

also Stanimirović and Zweibel (2018)). In a study, where using the fast-moving pulsars

as a background source, Galactic optical depth variation along few line of sight at the

scales of 5-100 au have been observed (Frail et al., 1994), on the other hand, another study

by Johnston et al. (2003) and Stanimirović et al. (2003) have not shown any significant

variation in the optical depth (Galactic) along few other lines of sight. Another interesting

way to study the CNM structures is: measuring the two-point correlation function of

optical depth against extended background sources like supernovae remnants or radio

galaxies (Deshpande et al., 2000; Dutta et al., 2014; Roy et al., 2010). It is still unclear

whether these observed small-scale fluctuations represent some physical process or they

are just transient structures observed at a particular line of sight in our Galaxy (Deshpande,

2000). The existence of the coherent, small scale structures signifies the change in the

star formation activity (Krumholz, 2014); on the other hand, if these small scale structures

are just short-lived entities, then their study may shed light on the unstable phase of the

ISM. In this chapter, we study the statistics of the CNM phase of the Galactic ISM by

measuring the two-point correlation function of the opacity (optical depth) fluctuations.

In section 2, we present the visibility based method to calculate the two-point statistics

(correlation function) of optical depth while its relation with column density and spin

temperature statistics is analyzed in section 3. In section 4, we observe the effect of CNM

physical parameters and observables on such an estimator, followed by the discussion and

conclusion of this chapter in section 5.
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Auto-correlation Power spectrum
Continuum xIc(~q) PIc(~U)

Line xI(~q ,n) PI(~U ,n)
Optical depth xt(~q ,n) X(~U ,n)

Table 4.1 Different auto-correlation functions and the corresponding power spectrum of
the observables used in this chapter.

4.2 Two point statistics of the optical depth from observed

visibilities

4.2.1 Specific intensity of 21-cm radiation

The simple solution for the radiative transfer equation towards an extended background

source can be written as (see Draine (2011)),

I(~q ,n) = Ic(~q)e�t(~q ,n), (4.1)

here I(~q ,n) represents the specific intensity in the direction of the background source,

Ic(~q) is the continuum part of the radiation in the same direction, t(~q ,n) is the optical

depth of the intervening cloud in the same direction and ~q represents the direction in sky

relative to center of field of view. We consider Ic(~q) not being a function of frequency, and

model it as mean added by fluctuating component of it over its mean i.e.

Ic(~q) =W (~q)[Īc +DIc(~q)], (4.2)

Here Īc is the total continuum flux of the background source while W (~q) is the window

function following the property
R

d~qW (~q) = 1. DIc(~q) represents zero mean small scale
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fluctuations of the continuum. Similar to the Ic(~q), we also model t(~q ,n) as

t(~q ,n) = t̄(n)+Dt(~q ,n), (4.3)

where t̄(n) is the average (spatially) optical depth in the given frequency n and Dt(~q ,n)

is the fluctuating component of the optical depth over mean. From the above equations,

I(~q ,n) in the form of above models can be written as

I(~q ,n) =W (~q)
h
Īc +DIc(~q)

i
e�[t̄(n)+Dt(~q ,n)] (4.4)

4.2.2 Autocorrelation function of optical depth fluctuations

If we represent the auto-correlation function of the I(~q ,n) by xI(~q ,~q 0,n), then it can be

defined as

xI(~q ,~q 0,n) = hI(~q ,n)I(~q 0,n)i, (4.5)

Here hi stands for the ensemble averaging. Similarly the auto-correlation of the Ic(~q)

also can be written as xIc(~q ,~q 0) = hIc(~q)Ic(~q 0)i. Following the Roy et al. (2010), the

auto-correlation of the I(~q ,n) in term of the optical depth parameters (t̄(n) and st(n))

and xIc(~q ,~q 0) can be written as

xI(~q ,n) = e�2t̄(n)+s2
t (n)xIc(~q) ex t(~q ,n), (4.6)

Here st(n) is the standard deviation of t(~q ,n), measured over the angular directions ~q .

xt represents the two point correlation function of optical depth and can be written as

xt(~q ,n) = hDt(~q ,n)Dt(~q 0,n)i. (4.7)
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Here x is used to represent the two point correlations of the different estimators and are

listed in table 4.1.

4.2.3 Measuring the optical depth autocorrelation from radio-interferometric

observations

Radio-interferometers measure the Fourier transform of the sky brightness distribution in

the form of visibilities V (~U ,n) (Thompson et al., 2017) as

V (~U ,n) =
Z

A(~q)W (~q)I(~q ,n)e�2pi~U .~q d~q , (4.8)

Here A(~q) is the reception pattern of the antenna. To represent the visibility correlation in

the line channel we use the term V2(~U , ~U 0,n) defined as

V2(~U , ~U 0,n) = |W̃ (~U)|2 ⌦ [d2D(~U � ~U 0)PI(~U ,n)], (4.9)

Here ⌦ stands for the convolution symbol and D2D is the 2-dimensional Dirac delta

function. The quantity PI(~U ,n) represents the power spectrum of In (specific intensity),

and it is the Fourier transform of xI(q ,n) i.e.

PI(~U ,n) =
Z

xI(~q ,n) e�2pi~U .~q d~q (4.10)

where W̃ (~U) =
R

A(~q)W (~q)e�2pi~U .~q d~q . For the interferometers like GMRT, VLA whose

field of view is � 450 at 1420 MHz, W̃ (~U) dominates, as our chosen background sources

have maximum size ⇠ 100. If we represent the correlation of the continumm visibilities
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as V2c(~U , ~U 0), then the visibility correlation in the line (H I absorption) channel can be

written as

V2(~U , ~U 0,n) = e�2t̄(n)+s2
t (n)V2c(~U , ~U 0)⌦X(~U ,n), (4.11)

Here term X(~U ,n) keeps the statistical information of xt(~q ,n) and defined as

X(U,n) =
Z

dqext (~q ,n)e�2pi~U .~q . (4.12)

In this work, we focus on the structure of the CNM phase of the ISM at the length scales

of subparsec to few tens of parsec. Our work presented here is limited up to isotropic

fluctuation consideration (i.e. ~U = |U |) rather than anisotropic considerations as discussed

by (Martin et al., 2015), Kalberla et al. (2017), Blagrave et al. (2017),Clark et al. (2019)

for the Galactic structures seen over the length scales of ⇠ pc to few hundreds of pc.

4.3 Relation of optical depth autocorrelation with statis-

tics of the H I column density and spin temprature

The 21-cm optical depth as a function of ~q and n is given as (see Draine (2011))

t(~q ,n) = 3hc2A21

32pkBn0

Z
dz

nHI(~q ,z)
Ts(~q ,z)

f(~q ,z,n), (4.13)

Here n0, kB and A21 are the rest frequency (21-cm), Boltzmann constant and Einstein’s

A coefficient respectivelly. In the above equation z, nHI and Ts represent the line of sight

direction, H I number density and spin temprature of the medium respectively. f in the

above equation represents the line shape function and follow the property
R

f(n)dn = 1.

Here we have assumed that f is independent of the sky direction (i.e. lines of sight) and

can be treated as a constant at the frequency of our interest. We model nHI and Ts of the
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Fig. 4.1 : Variation of optical depth auto-correlation function xt(q) as a function of q for
different values of aHI . Here g , h and sHI are taken 0, 0.5 and 0.1 respectively.

optical depth as mean (represented by "-") and fluctuating component of it over mean as

nHI(~q ,z) = n̄HI

h
1+dnHI(~q ,z)

i
(4.14)

Ts(~q ,z) = T̄s

h
1+dTs(~q ,z)

i
.

If we assume the above fluctuations to be small in comparison to 1, then using expansion

only up to first-order, t(~q ,n) can be written as

t(~q ,n) = t̄(n)
Z dz

L

h
1+dnHI(~q ,z)�dTs(~q ,z)

i
, (4.15)

where t̄(n) = 3hc2A21
32pkBn0

N̄HI
T̄s

f(n). In the above equation L, represent the characteristic length

scale of the cloud along the line of sight and N̄HI =
R

dzn̄HI is the average (spacially)

column density. Henceforth, we shall consider all relevant quantities for a single frequency

and not use "n" explicitly.
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From equations 4.3 and 4.13, we find that

Dt(~q) = t̄
L

Z
dz

h
dnHI(~q ,z)�dTs(~q ,z)

i
, (4.16)

We assume the fluctuations in number density nHI and spin temperature Ts are homogeneous

and isotropic. Correlating the optical depth fluctuations Dt(~q) at two different ~q we get

xt(q) =
t̄2

L

Z
dz [zHI(q ,z)+zTs(q ,z)�2zHT (q ,z)] , (4.17)

where the cross-correlations and autocorrelations z are defined as

zab(q ,z) = hda(~q1,z1)db(~q2
0
,z02)i. (4.18)

Here q = |q1 � q2| and z = |z1 � z2| gives the separation between the two points along

which the correlation is calculated. Since the fluctuations are assumed to be homogeneous

and isotropic the quantity xt does not depend on the location and direction of the separation

vector between the two points where the correlations zab are calculated. The physical

conditions of the CNM cloud that may exist in the ISM are, (1) CNM clouds may be

in both pressure and thermal equilibrium; in this case, dTs = �dnHI will be followed

i.e. fluctuations in the column density and spin temperature will be correlated, (2) It is

also possible that CNM clouds being in thermal equilibrium behaves like adiabatic gas

with g = 5/3. In such a condition, dTs =�dnHI(1� g) will be followed where g being

the adiabatic gas index, 3) In spite of the above possibilities, it is also possible that, in

CNM nHI and Ts may not be correlated at all. In general a combination of correlated and

uncorrelated gas may co-exist, i.e, dTs =�h(1� g)dnHI +(1�h)⇥ uncorrelated part.

Here h represents the fractional correlation. Hence we get,

xt(q) = t̄2
h
c xHI(q)+(1�h)2sT 2

s

i
, (4.19)
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where c = [1+h(1� g)]2 and xHI(q) is defined as xHI(q) = 1
L
R

dzzHI(q ,z). At q = 0,

above equation reduces to the variance of t and can be written as

s2
t = t̄2

h
c s2

HI +(1�h)2sT 2
s

i
. (4.20)

Using the definition of sT 2
s

from equation (4.20 in 4.20) we get

xt(q) = s2
t �c t̄2s2

HIq aHI . (4.21)

Here we assume that the 2-dimensional power spectrum PHI(U) of the H I column density

fluctuation is a power law with power law index �(2+aHI), i.e, P(U) µ U�(2+aHI). The

quantities t and st can be calculated from the optical depth map ( see Dutta et al. (2014)

and Dutta and Nandakumar (2019)). Hence the function X(~U) posses information about

aHI , g , h and sHI . It is also clear from equation 4.21 that h , g and sHI are degenerate if

we have only xt(q) as a measure.

4.4 Sensitivity of observables on the physical parameters

4.4.1 With isotropic column density fluctuations

Here we discuss how X(~U) is sensitive and dependent on the physical parameters aHI ,

g , h and sHI , under the assumption that H I column density fluctuation is isotropic. As

discussed earlier that t and st can be estimated from the observational measure of the

optical depth map. It also has been shown that at t = 1, bias in the measurements of t

and st is minimum (Dutta et al., 2014), so we will use the fiducial values of these as

1 and 0.1 respectively. The unbaised and scale independent correlation function of the

optical depth can be accessed using the visibility based correlation method and here we

use the same. The two fiducial values of g chosen here are 0 and 5/3. g = 0 corrosponds
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Fig. 4.2 : Variation of X(~U) with baselines (U) is shown for different values of the
parameters aHI , sHI , h and g . In each panel, one of the parameters is varied, keeping the
other fixed (see section 4 of this chapter).

to c = 1 if h = 0 and it (c) have maximum value if h = 1. For g = 5/3, the variation

of c is rather slow for the values of h between 0 and 1. We take the values of h as [0,

0.5, 1] to observe its effect on X(~U), here h = 0.5 will be chosen as its fiducial value. We

choose the values of sHI= [0.01,0.05, 0.20], as study of the strucutures at large scales

through H I emission have shown that H I fluctuations are generally ⇠ 10% over the mean

(Dutta and Bharadwaj, 2013). So, 0.1 is chosen as the fiducial value of the sHI . The

study of the optical depth fluctuation in the direction of Cassiopeia-A have shown that

st = 2(x/4pc)0.34, corrosponding to the 0.68 for aHI , so we choose the values of aHI as

[0.15,0.5, 0.85] where 0.5 will be used as fiducial value for aHI . In figure 4.1, we show the

two-point correlation function of the optical depth in the normalized form (equation 4.21),

for the values of the aHI= [0.15,0.5, 0.85]. The values of the other physical parameters

in the plots were taken as 0, 0.05 and 0.1 (for g , h and sHI respectivelly). In figure 4.2,

we show the variation of X(~U) as a function of these parameters in the baseline range

(0.5-20kl ). In figure 4.2(a) we show X(~U), where it assumes the power-law having index
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of [-2.85,-2.5,-2.15] for the values of aHI [0.85, 0.5, 0.15] respectivelly. For the small

scale fluctuations (over mean) in the optical depth, X(~U) is expected to show the same

functional form as the power spectrum of the optical depth i.e. slope of X(~U) in log-log

scale should be -2-aHI (Lee and Jokipii, 1975). This demonstrates that the power law

index of the scale-invariant fluctuations in the column density of H I can be estimated

directly from opacity scale invarient fluctuation. From the other three subfigures of the

figure number 4.2, it can be seen that amplitude of the X(~U) is dependent on the other three

parameters g , h , and sHI while the slope is independent of these. Here amplitude of X(~U)

is found to be µ s2
HI as expected for small scale fluctuations. In figure 4.2(b) we show

variation of X(~U) for three different values of sHI while fixing other parameters (g = 0).

In figure 4.2(c), we fix all other parameters by their fiducial values and show the variation

of X(~U) with h , and finally, the variation of X(~U) with g is shown in figure 4.2(d), keeping

all other parameters fixed. All of the above discussions it is clear that, to measure any one

of the above three physical parameters (sHI , h and g) other two must be known as only

optical depth observation will not suffice for such an intended measurement.

4.4.2 Effect of anisotropic fluctuations

In the previous section, we accessed the isotropic estimator of the H I column density

fluctuation with the help of optical depth fluctuations. In work by Goldreich and Sridhar

(1995), the magnetized part of ISM has been modeled to have anisotropic fluctuations. In

such a case, turbulence is expected to show scale-independent structures with anisotropic

characteristics governed by Alfven Mach number (Burkhart et al., 2014; Esquivel and

Lazarian, 2011). In the recent efforts, it has been worked out to define the anisotropic

structures of the ISM with the help of the multipole moments incorporated in the structure-

function (Kandel et al., 2017). Observations of the anisotropic structures in the Magellanic

bridge and Galaxy (associated with H I distribution) also have been studied and are
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presented in Muller et al. (2004), Kalberla and Kerp (2016) and Kalberla et al. (2017). The

above studies concluded that the anisotropic structures associated with H I distribution are

almost scale independent. They use the ratio Q = P(U,f = 0)/P(U,f = p/2) to define

the power associated with anisotropy where azimuthal angel f . Where f = 0 corresponds

to the direction of maximum power. We here study that how in the anisotropic case,

the amplitude of our isotropic estimator X(~U) (or power spectra ) scales. We model the

scale-independent power spectra associated with anisotropic optical depth at 21 cm as

Pt(U,f) = A F(f) U�2�aHI , where (4.22)

F(f) =


fa cos2 f +1

fa +1

�
.

Here f is the azimuthal angle as introduced earlier in this section. In this model, slope

�2�aHI of the spectra remains same as for the isotropic case, while amplitude A carries

information about anisotropic power through function F(f). Here fa in F(f) represents

the anisotropy parameter. In the litrature fa is related to Q as Q = fa+1 i.e. fa = 0(Q = 1)

is equivalanet to the isotropic fluctuation. In figure 4.3 we show the variation of F(f) with

f for diffrent fa. If we use P(U) as a representative of the isotropic power spectrum for

the optical depth fluctuations then

P(U) =
1

2 p

Z 2p

0
P(U,f) df (4.23)

= A R( fa) U�2�aHI , where

R( fa) =
fa +2

2( fa +1)
.
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Fig. 4.3 : Variation of F as a function of azimuthal angle f in the baseline plane for
different values of the anisotropy parameter fa.

Fig. 4.4 : Variation of R with anisotropy parameter fa. The asymptotic value of R (0.5) is
represented by dashed gray line.
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We find that only the amplitude scaling (through R( fa)) of the isotropic power spec-

trum takes place if we want to use it to describe an anisotropic (scale independent)

scale-invariant H I structure. The thing which has to be noted here is that the scaling

depends upon our considered model F(f). In figure 4.4 we show the variation of R( fa)

with fa for our considered model. In this model, for large value of fa, the anisotropic

power R( fa) approaches 1/2.

4.5 Discussion and Conclusion

In this chapter, we studied the possible physical conditions of the CNM and further

discussed the possibility of estimating the physical parameters associated with the CNM

with the help of the optical depth autocorrelation function. The scale-invariant fluctuations

of the H I column density in the ISM is expected to be the result of the compressible

fluid turbulence. Our results found that only measurements of the statistics of the optical

depth fluctuations do not suffice to trace much about its amplitude and dependence on the

physical parameters. The amplitude of the optical depth autocorrelation function has the

same behavior, whether spin temperature and column density in the CNM are correlated to

each other or not (or even partially correlated). However, a multiwavelength study like

Wakker et al. (2011) at the same line of sight may shed more light on such a study; on the

other hand, different spectral line observations (along the same line of sight) may help to

study the spin temperature fluctuations too, if the condition of thermal equilibrium hold.

The main outcome that we found from the studies in this chapter follows that H I column

density fluctuation can be studied with the help of the radio interferometric observations of

the optical depth fluctuations at the subparsec scales.

Numerical simulations study of the specific intensity of 13CO by Burkhart et al. (2014)

has shown that the power-law index of the specific intensity fluctuations for the optically

thick medium saturates at -3.0, same as expected by Lazarian and Pogosyan (2004). For
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such a study, the index for the optically thin medium is expected to be shallower. Recently

Bournaud et al. (2010) studied the Galactic ISM using simulations, where he found that

gas surface density to have power-law index -2.8 to -3.0 at the large scales (100 pc or

lower), depending upon the Galactic dynamics. A similar study by Grisdale et al. (2016)

found that galaxies of the Milky-Way size show a power spectrum of H I column density of

power-law index -2.5, when stellar feedback effect consideration is taken into account. The

H I structures at the scales of pc and higher are studied with the help of the H I emission

observations, from where the power spectrum of H I column density fluctuations can be

measured directly. At the scales lower than pc, H I structures are studied with the help of

absorption measurements of the H I against background sources.

The power spectrum of the H I intensity fluctuations along the Galactic plane is measured

to be -2.0 to -3.0 (Crovisier and Dickey, 1983). In a similar study performed by Green

(1993), it was found that the power spectrum of the Galactic H I has a power-law index

between -2.2 to -3.0. A study of the opacity fluctuation power spectrum by Roy et al. (2010)

has shown the power spectrum of the optical depth has slope -2.86 for the Galactic ISM in

the direction of the Cassiopeia-A. Deshpande et al. (2000) found that the H I optical depth

power spectrum has a slope of -2.75 for the Perseus arm towards Cassiopeia-A,whereas,

they find the slope to be -2.5 for the local arm toward Cygnus. Power spectra of the H I

column density for 16 spiral Galaxies (taken from THINGS, see Walter et al. (2008))

have shown the power-law index in the range of -1.5 to -1.8 at the scales of kpc and are

found to be originating from the 2D structures of H I (Dutta and Bharadwaj, 2013). In a

similar study, Dutta et al. (2009) found that the power-law index has values from -2.5 to

-2.8 at the subparsec scales. Power spectra measurement of Galactic opacity fluctuations

at the au scales also has shown to have the slope of -2.81 (Dutta et al., 2014; Roy et al.,

2012). Such a measurement from the dust emission in the direction of the Cirrus has shown

to follow a power-law with an index -2.9 below 0.01 pc. These studies of the spectral
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slope measurements raise two basic questions, 1) Do the singular turbulence cascade exist

from the kpc to mpc scales, or 2) it is because we are mapping power spectra only in few

directions in the Galaxy. To answer such a question, we identified Galatic supernovae

remnants as a background source to map the optical depth power spectrum in our Galaxy

in the 15 directions. As these supernovae remnants are located in the different parts of the

Galaxy and are extended sources, they are suitable for our scientific purpose. The optical

depth fluctuation along the direction of Cassiopeia-A is already measured, as discussed

earlier in the same section.

In this chapter, we also studied the model for the scale-independent anisotropic fluctuation

power spectrum that is found to scale the amplitude of the isotropic power spectrum

of optical depth, but not the slope. The maximum power of anisotropy measured by

Kalberla et al. (2017) and Kalberla and Kerp (2016) is ⇠ 10, translating to 0.5 for R in our

anisotropic model. This shows that the amplitude of the opacity fluctuation power spectrum

also suffers from anisotropic degeneracy. But this can be lifted if the statistical nature of

anisotropy is studied through observations, and it may help to understand the statistical

nature of the Galactic ISM deeply. In our study, even we have taken the CNM cloud to be

of three-dimensional geometry, we still have not studied the effect of the velocity channel

averaging in our estimator, as discussed in Lazarian and Pogosyan (2000). The assumption

of uniform line shape function breaks down if we consider the thick velocity channel

analysis (VCA) (Lazarian and Pogosyan, 2004) and energetics of the CNM turbulence

can be studied, but this requires extended study and is beyond the scope of this work. To

summarize, the study in this chapter describes how the measurements of the optical depth

autocorrelation function can be used to measure the autocorrelation function of the H I

column density using the radio interferometric measurements.


