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Abstract

In this thesis, we study the statistics of the H I column density in the cold neutral medium

(CNM) of the interstellar medium (ISM) from absorption studies, magnetohydrodynamic

turbulence in the supernova remnants (SNRs) Cassiopeia-A and H I absorptions towards

the Tycho’s supernova remnants using the radio-interferometric observations. We analyti-

cally study how radio-interferometric observations can be used to measure the two-point

statistics of the optical depth fluctuations. Studies related to the scale-invariant structures

in the CNM of a galaxy constrain the density structures. We investigated how the physical

properties of the CNM, related to the spin temperature and column density can be studied

using the H I absorption studies against extended background sources. We present our

methodology and calculations using some fiducial values of the physical parameters of the

ISM. Our study shows that whatever thermal properties of the CNM clouds would be, we

can estimate the scale-invariant structures of the H I column density using the absorption

studies. However, it alone would not be sufficient to trace much about the amplitudes

of the spin temperature and column density fluctuations and requires multiwavelength

observations for such a study. We proposed a particular model of the anisotropic power

spectrum that counts the effect of the anisotropic fluctuations in H I, on the isotropic

power spectrum of H I. Our model of the anisotropic power spectrum scales such that,

in the case of extreme anisotropy, the maximum modification in the amplitude of the

isotropic power spectrum would be just half. We also concluded that even though the

spin temperature and H I column density in the ISM are completely uncorrelated, par-

tially correlated or completely correlated, they all have a similar effect on the statistics

of the optical depth fluctuations. Our analytical study combined with measurements of

the H I optical depth power spectrum in different directions of the Galaxy can solve the

long-standing puzzle that, if there is a singular turbulence cascade present in the ISM
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producing the scale-invariant structures from mpc to pc length scale?, or it is only due to

the fact that we have only few measurements of the H I column density power spectrum in

different directions of our galaxy? Our analytical study has clarified that to measure the

slope of the H I column density power spectrum in the CNM of galaxies; we can directly

use the slope of the optical depth power spectrum. This analytical study is important since,

at the small scales, determination of the H I column density power spectrum is directly

not accessible as at smaller scales detection of H I column density through emission is

relatively difficult. In this thesis, we also use the radio-interferometric observations to

study the magnetohydrodynamic turbulence in the supernova remnants Cassiopeia-A. We

use the recently developed unbiased method to calculate the magnetic field disturbances

in the vicinity of supernova remnants Cassiopeia-A shocks, using the autocorrelation of

the synchrotron intensities. We found that the magnetic energy spectra in the vicinity

of SNR Cassiopeia-A shocks are of trans-Alfvenic nature i.e., follow the 2/3 power law.

Such statistics were predicted theoretically decades ago but were not explored much in

the observations. We numerically verified our results using the theoretical predictions for

the trans-Alfvenic magnetohydrodynamic turbulence. Our results of the magnetic energy

spectrum can be explained with the help of the magnetic field amplification in the vicinity

of SNR shocks. On the global scale, it is found that MHD conditions in the proximity of

the shocks are compatible with the Alfven Mach number of unity. The radial window of

the magnetic field amplification in the proximity of the shocks is found to be ⇠ 0.11 pc.

Young supernovae remnants like Cassiopeia-A are observed with two shocks, a forward

shock, and a reverse shock. Our results predict the existence of a subshock in the SNR

Cassiopeia-A along with forward and reverse shocks in the SNR Cassiopeia-A. In this

SNR, we found that the radial window of the MHD turbulence present in the proximity of

the shocks spans over the angular width of 7". Almost similar angular width is calculated

from the theoretical predictions under the regime of the advective and convective flow
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of the particles in the proximity of the young SNR shocks. Our measured values of the

power-law index are 2/3 within the uncertainty of 2 sigma and show that the trans-Alfvenic

MHD is almost achieved in the vicinity of this SNR. We also found that the location of our

predicted subshock in the radio frequency observation matches the location of the reverse

shock measured in the X-ray observations. We suggest that reverse shock in the X-ray

observation must affect the electrons responsible for the synchrotron emission in the radio

frequency observations from the background to produce the fluctuations being reflected in

our statistics. Such findings are important to test the validity of the theoretical predictions

of the MHD turbulence and diffusive phenomenon in the vicinity of the SNR shocks. We

calculate the Alfven-Mach number by using the surveys of the number density of ions

and electrons as well as the amplified magnetic field in this SNR. Our calculations show

that the range of the Alfven Mach number, which is effective in this SNR at this stage,

is 1.3-3.3, which is almost capable of producing the trans-Alfvenic like MHD condition.

Theoretically, the value of the amplified magnetic field is found to be responsible for such a

large value of the Alfven Mach number in the vicinity of the shocks. Using our results and

theoretical predictions, we investigated that if such SNRs will be capable of accelerating

the Cosmic-Rays up to a very high energy limit (⇠ PeV), under the Quasilinear theory

of turbulence as studied numerically. By combining our results and the measured energy

of the Cosmic-Rays in this SNR, we found that such SNRs would not be capable of

accelerating Cosmic-Rays with energy larger than the TeV order, at least at the present

stage. On the one side, where our results of the found trans-Alfvenic MHD turbulence in

the SNR Cassiopeia-A validated many theoretical predictions made about it, at the same

time, it also rejects other theoretical predictions that claimed that high energy Cosmic-Rays

in the Galactic ISM might be sourced from these young SNRs. We will carry out such

more measurements in the near future. This is required to fully understand the nature of

magnetic field disturbances in the SNR and testify the more theoretical predictions about
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MHD turbulence in the SNRs. Finally, using the radio-interferometric observations toward

another Galactic SNR, called Tycho’s SNR, we also carry out the H I absorption studies

towards it and a point source close to its line of sight. We study the H I absorption features

across the face of Tycho’s SNR and point source to analyze the H I cloud distributions

in these directions. We also studied the correlation between the optical depth spectra of

point source and Tycho’s SNR using the similarity index method and Spearman’s rank

correlation method. Our study found that the velocity range of the absorption found in the

direction of Tycho’s SNR, produced by the Local arm, is much wider than other nearby

Galactic supernovae remnants, and it spans a wide range of -23.73 to 10 km/s in the LSR

velocity. Such an observation is opposite to what is earlier observed in the direction of

nearby SNR Cassiopeia-A. The absorption seen in the direction of the point source shows

more absorption windows than seen in Tycho’s SNR direction. The maximum absorption

seen in the direction of Tycho’s SNR is at -48.55 km/s while it is at -60.66km/s in the

direction of the point source. We use the most accurate distance of the companion of the

Tycho’s SNR to find the excess velocity observed in the direction of these sources. The

distance of the absorption produced at -60.66 km/s in the direction of the point source

is found to be ⇠ 2.9 kpc. These studies reveal that there is inhomogeneity in the H I

cloud distribution in the direction of the eastern and western edge of Tycho’s SNR at LSR

velocity of ⇠ -48.5 km/s. We found that the H I absorption spectra in these directions have

an excess velocity of ⇠ -23 km/s. We propose a model of the extended cloud that could

explain the observed absorptions towards the Tycho’s SNR and point source. Based on our

calculations, we show that the length of the associated cloud must extend beyond one kpc.

We also reveal that the location of Tycho’s SNR is not favorable in the depth of H I clouds

in Perseus arm, but it must be somewhere behind the Local arm and at the near edge of the

Perseus arm. Such studies are essential to understand the environment around young SNRs

and its effects on their evolutions. This study can be used to map the spin temperature and
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H I distribution in the CNM phase of the ISM around Tycho’s SNR.

Key words : Interstellar Medium (ISM), Turbulence, MHD, Auto-correlation Function,

Shock Waves.
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