TABLE OF CONTENTS

CER	TIFICATE	11
DEC	CLARATION BY THE CANDIDATE	iii
COP	YRIGHT TRANSFER CERTIFICATE	iv
ACK	NOWLEDGEMENT	V
DED	DICATION	vi
TAB	LE OF CONTENTS	vii
LIST	OF FIGURES	xiii
LIST	OF TABLES	xix
LIST	OF ABBREVIATIONS	xxi
LIST	OF SYMBOLS	xxiii
PRE	FACE	xxvii
Сн	APTER 1	1
INTI	RODUCTION	
1.1	Background	2
1.2	Contributions to Knowledge	6
1.3	Thesis Structure	8

CHAPTER 2 LITERATURE REVIEW		11	
2.1	Outlin	e	11
2.2	Transc	duction Methods	13
	2.2.1	Electromagnetic	13
	2.2.2	Electrostatic	14
	2.2.3	Magnetostrictive	15
	2.2.4	Piezoelectric	16
2.3	Taperi	ng Cross-section PVEH	17
	2.3.1	Tapered PVEHs for transverse excitation	17
	2.3.2	Tapered PVEHs for rotational applications	21
2.4	Mathe	matical Modeling of PVEHs and Performance Comparison	22
	2.4.1	Lumped parameter modeling and improvements	23
	2.4.2	Nonlinear modeling of PVEHs	24
		2.4.2.1 Geometrically nonlinear modeling	24
		2.4.2.2 Piezoelectric materially nonlinear modeling	25
	2.4.3	Performance comparison standards	27
2.5	Resear	rch Gaps	30
	2.5.1	Research gaps related to harvester's shape	30

	2.5.2 Research gaps related to mathematical modeling	31
	2.5.3 Research gaps related to experimental methods	32
2.6	Research Aims and Objectives	32
Сна	APTER 3	35
PAR	ABOLIC TAPERING WIDTH PVEH UNDER TRANSVERSE	
EXC	CITATION	
3.1	Outline	35
3.2	Nonlinear Mathematical Modeling	36
	3.2.1 Theoretical framework	37
	3.2.2 Nonlinear electromechanical equations	38
	3.2.3 Galerkin's discretization	41
	3.2.4 Response analysis	43
3.3	Mathematical Model Validation	46
	3.3.1 Validation through earlier models	46
	3.3.2 Validation through experimental method	47
3.4	Effects of the Taper Parameter	51
3.5	Effects of the Piezoelectric Patch Thickness	57
3.6	Summary	62

Сна	APTER	4	65
PARA	ABOLI	C AND EXPONENTIALLY TAPERING PVEHs UNDER	
ROTA	ATION.	AL MOTION	
4.1	Outlin	ne	65
4.2	Mathe	ematical Modeling	66
	4.2.1	Theoretical framework	67
	4.2.2	Electromechanical constitutive relations	68
	4.2.3	Discretization principle and equation of motion	70
4.3	Mode	1 Validation	73
	4.3.1	Validation through FE simulation	74
	4.3.2	Validation through experimental methods	77
	4.3.3	Validation through earlier numerical models	79
4.4	Perfor	rmance Comparison	80
4.5	Summ	nary	83
Сна	APTER	5	85
PARA	AMETR	RIC ANALYSIS OF THE RVEHs	
5.1	Param	netric Analysis of the Parabolic Tapering RVEH	85
	5.1.1	Taper parameter study	86
	5.1.2	Thickness ratio study	88

	5.1.3	Length of piezoelectric coupled beam study	90
	5.1.4	Overall radius of rotation study	91
5.2	Parame	etric Analysis of Exponentially Tapering RVEH	94
	5.2.1	Effect of taper parameter	95
	5.2.2	Effect of the length of the piezoelectric coupled beam	97
	5.2.3	Effect of hub radius	99
5.3	Summ	ary	106
Сна	PTER •	6	109
CONCLUSIONS AND FUTURE SCOPES			
	6.1	Overview	109
	6.2	Conclusions	110
	6.3	Proposals for Future Research	112
	6.4	Publications	113
Appen	Appendix I		115
Appen	ıdix II		118
Appen	dix III		120
Appen	ıdix IV		124
Appen	ıdix V		127
References		129	

LIST OF FIGURES

Figure 1.1	Polarization of a piezoelectric element (a) randomly oriented polar	4
	domains before polarization (b) polarization in DC electric field	
Figure 1.2	Generator actions of a polarized piezoelectric element, (a) after	4
	polarization (b) compressed (c) stretched	
Figure 1.3	Piezoelectric transducer modelled as an electric unit (voltage	5
	generator)	
Figure 3.1	Line diagram of the parabolic tapering width harvester	37
Figure 3.2	Schematics of the parabolic converging width PZT-coupled VEH	38
	with tip mass. The fixed end is at Y-axis and parallel to the Earth's	
	surface (a) Isometric view, (b) front view, and (c) PZT-coupled	
	beam cross-section	
Figure 3.3	Output voltage for 10 g excitation amplitude with $t_p = 0.254$ mm,	49
	$l_e = 80 \text{ mm}, \ \phi = 0.4, \ b_0 = 50 \text{ mm}, \ t_h = 0.5 \text{ mm}, \ M_{LM} = 15.1808$	
	gram considering and neglecting c_2 and c_4	
Figure 3.4	The experimental and numerical output voltage for acceleration	50
	amplitude of 1 g, 4 g, 7 g, and 10 g. (N: Numerical, E:	
	Experimental)	
Figure 3.5	The generated output voltage from the PVEH models with taper	52
	parameters (a) $\phi = 0$, (b) $\phi = 0.2$, (c) $\phi = 0.4$, and (d) $\phi = 0.6$	
Figure 3.6	The output voltage backbone curves for the four different models	53
	(Figures 3.5a-3.5d)	

Figure 3.7	The output voltage backbone curves for the models with identical	54
	first natural frequencies	
Figure 3.8	Comparison of the VPM using linear and nonlinear solutions for	55
	variation in taper parameters and excitation amplitudes	
Figure 3.9	Comparison of the PPM calculated using linear and nonlinear	56
	solutions for variation in taper parameters and excitation	
	amplitudes, across an optimum load resistance 300 $\mathrm{k}\Omega$	
Figure 3.10	The output voltage from the PVEH models with $\phi = 0.2$ and	57
	piezoelectric patch thickness (a) $t_p = 0.15$ mm, (b) $t_p = 0.20$ mm,	
	(c) $t_p = 0.25$ mm, and (d) $t_p = 0.30$ mm	
Figure 3.11	The output voltage backbone curves for the four different models	59
	(Figures $3.8a - 3.8d$)	
Figure 3.12	The output voltage backbone curves for the models with identical	59
	first natural frequencies	
Figure 3.13	Comparison of the linear and nonlinear solutions for variation in	61
	the piezoelectric patch thickness and excitation amplitudes (a)	
	VPM and (b) PPM, across an optimum load resistance 300 $\mathrm{k}\Omega$	
Figure 4.1	Schematics of the proposed parabolic varying cross-section	67
	piezoelectric harvester with tip load. The system is rotating about	
	Y'-axis (a) Isometric view, (b) front view, and (c) left-hand side	
	view	
Figure 4.2	The FE layout of the proposed parabolic tapered RVEH's	75
	components and the thicknesses of the PZT-coupled beam	

Figure 4.3	The voltage coupling to simulate the electrodes over the PZT	76
	surfaces	
Figure 4.4	The FE model of the proposed exponentially tapered RVEH (a)	76
	The components of the RVEH and the thicknesses of the PZT-	
	coupled beam (b) Voltage coupling used to replicate the electrodes	
	on the PZT-surfaces	
Figure 4.5	The peak OC voltage response of the parabolic tapering width	78
	RVEH against driving frequency	
Figure 4.6	The peak open-circuit voltage response of the exponentially	79
	tapered RVEH against driving frequency	
Figure 5.1	Effect of the variation of taper parameter on the RVEH's response,	86
	the peak open-circuit voltage against driving frequency	
Figure 5.2	The VPM of the RVEH against the driving frequency for taper	87
	parameters $0 - 0.8$	
Figure 5.3	Effect of the variation of thickness ratio on the RVEH's response;	88
	the peak open-circuit voltage against driving frequency	
Figure 5.4	The VPM against the driving frequency for thickness ratios 0.363	89
	-0.847	
Figure 5.5	Effect of the variation of piezoelectric coupled beam length on the	90
	RVEH's response; the peak OC voltage against driving frequency	
Figure 5.6	The VPM against the driving frequency for lengths 52 – 92 mm	91
Figure 5.7	Effect of the variation of overall radius of rotation on the RVEH's	92
	response; the peak OC voltage against driving frequency	

Figure 5.8	The VPM against the driving frequency for overall radiuses 77 –	93
	87 mm	
Figure 5.9	The calculated VPM of the harvester and the respective fitting	94
	curves against (a) ϕ , (b) $t_{\rm r}$, (c) l , and (d) $r_{\rm o}$	
Figure 5.10	For various taper parameters with $t_p = 0.15$ mm, $r = 20$ mm, $l =$	96
	60 mm, $b_0 = 50$ mm, and $t_h = 0.45$ mm; the calculated resonant	
	frequency against the rotational driving frequency	
Figure 5.11	For various taper parameters with $t_p = 0.15$ mm, $r = 20$ mm, $l =$	97
	60 mm, $b_0 = 50$ mm, and $t_h = 0.45$ mm; the output voltage	
	response of the RVEH against the rotational driving frequency	
Figure 5.12	For various piezoelectric coupled beam lengths with $t_p = 0.15$ mm,	98
	$r = 20$ mm, $\phi = 10$, $b_0 = 50$ mm, and $t_h = 0.45$ mm; the calculated	
	resonant frequency against the rotational driving frequency	
Figure 5.13	For various piezoelectric coupled beam lengths with $t_p = 0.15$ mm,	99
	$r = 20 \text{ mm}, \ \phi = 10, \ b_0 = 50 \text{ mm}, \text{ and } t_h = 0.45 \text{ mm}; \text{ the output}$	
	voltage response of the RVEH against the rotational driving	
	frequency	
Figure 5.14	For various hub radiuses with $t_p = 0.15$ mm, $l = 60$ mm, $\phi = 10$,	100
	$b_0 = 50$ mm, and $t_h = 0.45$ mm; the calculated resonant frequency	
	against the rotational driving frequency	

Figure 5.15	For various hub radiuses with $t_p = 0.15$ mm, $l = 60$ mm, $\phi = 10$,	101
	$b_0 = 50$ mm, and $t_h = 0.45$ mm; the generated voltage response of	
	the RVEH against the rotational driving frequency	
Figure 5.16	The VPM of the harvester against the driving rotational frequency	102
	for various values of ϕ , l , and r	
Figure 5.17	Comparison of the calculated matched frequencies of the RVEH	103
	and the simulated frequencies of the peak output voltage against	
	(a) ϕ (b) r (c) l	
Figure 5.18	The (a) exponential taper parameter, (b) effective length of the	104
	PZT-coupled beam, and (c) hub radius, with driving frequency	
	under the achieved frequency matching	
Figure 5.19	Comparison of the generated power of the RVEH versus resistance	105
	R, functioning at its measured resonant frequencies related with	
	hub radiuses equal to 20, 30, 40, and 50 mm with $t_p = 0.15$ mm,	
	$l = 60 \text{ mm}, \ \phi = 10, \ b_0 = 50 \text{ mm}, \text{ and } t_h = 0.45 \text{ mm}$	
Figure III.1	Experimental setup used to test the PVEH and validate the	120
	mathematical model	
Figure III.2	Shaker arrangement with a fixture to mount the harvester	121
Figure III.3	The parabolic tapering width (a) brass host beam (b) harvester	122
	with surface bonded PZT 5H patch and (c) various load masses	
Figure III.4	For 10 g acceleration, the signal from the DSO under (a) 15.43 Hz	122
	and (b) 20.08 Hz excitation frequency	

Figure IV.1	Experimental setup used to test the RVEH and validate the	125
	mathematical model	
Figure IV.2	Rotating shaft arrangement with a cross hub to mount the	125
	harvester	
Figure IV.3	Exponentially tapering width PZT-coupled beam of the RVEH	126

LIST OF TABLES

Table 1.1	Physical properties of commonly used piezoelectric materials	3
Table 2.1	A comparison of the performance of some tapering cross-section	20
	PVEHs under transverse excitation	
Table 2.2	A comparison of the performance of some tapering cross-section	22
	PVEHs for rotational motion	
Table 3.1	Comparison of the output voltage from the VEH using different	47
	nonlinear formulations for 1g, 4g, 7g, and 10g base excitation	
	amplitudes	
Table 3.2	Physical properties of the PVEH's components	48
Table 3.3	Numerical values of the coefficients	49
Table 3.4	Comparison of the linear and nonlinear VPM of the PVEH for 7 g	56
	and 10 g base excitation amplitudes	
Table 3.5	Comparison of the linear and nonlinear VPM of the PVEH for 4 g, 7	61
	g, and 10 g base excitation amplitudes	
Table 4.1	The element types used for various components of the RVEH	75
Table 4.2	Verification of the present model against the past reported	80
	rectangular harvesters	
Table 4.3	Performance comparison of the proposed parabolic and	82
	exponentially tapered RVEHs with some other reported models	

