Contents

Certificate	i
Declaration by the Candidate	ii
Certificate by the Supervisors	ii
Copyright Transfer Certificate	iii
Acknowledgement	iv
Contents	vii
List of Figure	xi
List of Table	xx
Preface	xxii
Chapter 1 Introduction	27-74
1.1 Magnetism : Introduction	29
1.1.1 Diamagnetism	29
1.1.2 Paramagnetism	30
1.1.3 Ferromagnetism	31
1.1.4 Antiferromagnetism	31
1.1.5 Ferrimagnetism	32
1.2 Rules define the different types of magnetc ordering	32
1.2.1 Curie-Weiss Law	32
1.2.2 Mean field theory	33
1.2.3 Heisenberg Model	34
1.2.4 Ising Model	35
1.2.5 Landau theory of phase transition	35
1.3 Spin Frustration	36
1.3.1 Geometrical Spin Frustration	36
1.3.1.1 Pyrochlore oxide materials	40
1.3.1.1.1 Long range ordered	44
1.3.1.1.2 Spin Liquid	44
1.3.1.1.3 Spin Ice	44
1.3.1.1.4 Spin Glass	46

1.3.2 Disorder driven Spin Frustration	46
1.3.2.1 Single Perovskite Material	46
1.3.2.2 Double Perovskite Material	47
1.4 Literature survey on A ₂ Ti ₂ O ₇ type Pyrochlore materials	49
1.5 Literature survey on A ₂ CoFeO ₆ type Double Perovskite	55
1.6 Different Physical Phenomena related to our research	60
1.6.1 Spin relaxation or Spin freezing Process	60
1.6.2 Dzyaloshinsky-Moriya (DM) interaction	63
1.6.3 Spin-glass/ Cluster glass phenomenology	64
1.6.4 Exchange Bias (EB) effect	67
1.6.5 Magneto-dielectric coupling	70
1.6.6 Transport Property	71
1.6.6.1 Variable Range Hopping (VRH) Model	71
1.6.6.2 Arrhenius law	71
1.7 Motivation of the thesis	72
Chapter 2 Experimental Procedure	75-97
2.1 Sample Synthesis	77
2.1.1 Solid State Reaction Route	77
2.2 Experimental characterization techniques and their working principles	78
2.2.1 Characterization tools for structural property study	79
2.2.1.1 X-Ray Diffraction (XRD) technique	79
2.2.1.2 Raman Spectroscopy	81
2.2.1.3 Neutron Powder Diffraction (NPD) technique	84
2.2.1.4 X-ray Photoemission Spectroscopy (XPS) technique	87
2.2.1.5 X-ray Absorption Spectroscopy (XAS) technique	90
2.2.2 Characterization tools for magnetic property study	92
2.2.2.1 Magnetic Property Measurement System (MPMS): SQUID-VSM	92
2.2.3 Characterization tools for Dielectric study	95
2.2.3.1 Dielectric analysis	95

2.2	.3.2 N	Magneto-Dielectric Analysis	96
Chapte Propert		Spin freezing and Field induced transition in $(Tb_{1-x}Eu_x)_2Ti_2O_7$ dy	=
3.1	Int	roduction	101
3.2	Ex	periment	103
3.3	RE	SULTS AND DISCUSSION	104
3.3	3.1	Stability Study	104
3.3	3.2	Structural Study	105
3.3	3.3	Raman Study	106
3.3	3.4	DC Magnetic Study	108
3.3	3.5	AC Magnetic Study	112
3.4	Co	nclusion	120
Chapte	er 4	Wasp - Waisted loop and Spin frustration in $Dy_{2-x}Eu_xTi_2O_7$ Pyrochlo	ore121-143
4.1		Introduction	123
4.2	Ex	perimental detail	125
4.3	RE	SULTS AND DISCUSSION	126
4.3	3.1	Stability and Structural Analysis	126
4.3	3.2	Raman Spectroscopy Analysis	128
4.3	3.3	Magnetization Analysis	130
2	4.3.3.	1 DC magnetic Study	130
2	4.3.3.	2 AC magnetic Study	137
4.4	Co	nclusion	143
	ipter 5 tric be	Roles of Re-entrant Cluster glass state and Spin lattice coupling is ehavior of giant dielectric double perovskite La _{1.8} Pr _{0.2} CoFeO ₆	•
5.1	Int	roduction	147
5.2	Ex	periment	148
5.3	Res	sults	149
5.3	3.1	Stability and Structure Study	149
5.3	3.2	XAS Study	150
5.3	3.3	Magnetic Study	151
5.3	3.4	Dielectric Study	156

5.3.5	Resistivity Study	157
5.3.6 Ma	agneto-dielectric Study	158
5.4 Cor	nclusion	162
Chapter 6	Double glassy states and large spontaneous and conventional exc	hange bias effect
in La _{1.5} Ca _{0.5} C	CoFeO ₆ double perovskite	165-191
6.1 Intr	oduction	167
6.2 Exp	perimental details	169
6.3 Res	sults and discussion	170
6.3.1	Stability and Structure Analysis	170
6.3.2	X-ray photoelectron spectroscopy (XPS) Analysis	172
6.3.3	Theoretical Analysis	175
6.3.4	Temperature dependent Neutron diffraction Analysis	177
6.3.5	Magnetic Analysis	180
6.4 Cor	nclusion	190
Chapter 7	Conclusions and Future scopes	193-197
7.1 Cor	nclusion of the thesis	195
7.2 Fut	ure Plans	196
References		198-241
List of public	cations	242-245

List of Figure

Figure 1.1 Schematic representation of spin alignment in diamagnetic and paramagnetic
materials microscopic structures at rest and in the presence of a magnetic field H31
Figure 1.2 Schematic representation of spin alignment in ferromagnetic, antiferromagnetic and
ferrimagnetic materials
Figure 1.3 Temperature variation of inverse magnetic susceptibility for paramagnetic,
ferromagnetic and antiferromagnetic material
Figure 1.4 (a) Variation of free energy with magnetization. (b) Variation of Magnetization as a
function of temperature. [Courtsey: Stephen Blundell, Magnetism in condensed matter; Oxford
master series in condensed matter physics]
Figure 1.5 Direction of Ising spins on the vertices of 2 d triangular lattice illustrates geometrical
spin frustration in which two spins are align antiferromagnetically where as the direction of third
spin is not definite
Figure 1.6 Direction of Ising spins on the vertices of 2 d triangular lattice illustrates geometrical
spin frustration in which two spins are align antiferromagnetically where as the direction of third
spin is not definite
Figure 1.7 Examples of some possible geometrically frustrated magnetic lattices along with their
space groups. The top two examples are of two dimensional frustrating lattice geometries, the
bottom two examples are of two dimensional frustrating lattice geometries39
Figure 1.8 Shows the Conventional unit cell of the corner-sharing tetrahedral $A_2B_2O_7$ pyrochlore
structure with A ³⁺ and B ⁴⁺ sublattices.)

Figure 1.9 Shows the Conventional unit cell of A ₂ B ₂ O ₇ pyrochlore structure with the
arrangement of O and O' ion
Figure 1.10 Shows the pyrochlore lattice posses alternating kagome and triangular planar layers
stacked along [111] direction [4].
Figure 1.11 Shows the structural stability map for A ₂ B ₂ O ₇ Pyrochlore.[4]
Figure 1.12 Showing the 'two-in, two-out' arrangement as A) In water ice between oxygen (large
circle) and Hydrogen atom (black sphere). B) Ice rule follow in a single tetrahedral C) The cubic
unit cell of spin ice pyrochlore lattice in which white sphere directs to spins into a 'downward'
towards tetrahedra, while black sphere directs to spins 'upwards' towards tetrahedral [12]45
Figure 1.13 Show the crystal structure of ABX ₃ perovskite
Figure 1.14 Describe the Double Perovskite unit cell structure formed by two perovskite unit
cell. In this figure, blue sphere denotes A-site ion, violet sphere denotes B-site ion and yellow
sphere presents B'-site ion
Figure 1.15 Shows the ground state spin configuration achieved for Er ₂ Ti ₂ O ₇ [32]49
Figure 1.16 Showing the all in-all out spin arrangement in Sm ₂ Ti ₂ O ₇ 54
Figure 1.17 The frequency varying real and imaginary part of χ . χ_T and χ_S occur at lowest and
highest frequencies respectively. Inset of fig.1.17 demonstrate the phasor diagram of χ . Here, ψ
is the phase difference
Figure 1.18 Shows the DM interaction between two neighboring spins
Figure 1.19 Depicts the spin arrangement in ferromagnetic, antiferromagnetic and spin glass
state65
Figure 1.20 Depicts the arrangement of spins in spin glass state and cluster glass state66
Figure 1.21 Represents the symmetric and asymmetric hysteresis loop in M-H curve

Figure 1.22 Shows the schematic explanation of exchange Bias effect	69
Figure 1.23 Shows the $ln\rho$ versus $(1/T)^{0.25}$ curve with VRH fit (blue colour)	1
Figure 1.24 (a) Shows the lnp versus (1/T) curve with Arrhenius fit (green colour). (b) Shows to	the
activation energy and the band gap between valence and conduction bands	72
Figure 2.1 Flow chart showing the steps of solid state reaction method	78
Figure 2.2 Schematic diagram of Bragg's law	80
Figure 2.3 Picture of Rigaku-MiniFlex-II DESKTOP powder X-ray diffractometer	81
Figure 2.4 Energy level diagram of Rayleigh scattering and Raman Scattering	83
Figure 2.5 Renishaw Micro Raman Spectrometer	84
Figure 2.6 Setup of PD-2 (Powder Diffractometer-2) located at Bhabha Atomic Research	ch,
Mumbai, India	87
Figure 2.7 (a) Shows the photoelectric effect. (b) Depicts the schematic representation of XPS	set
up	89
Figure 2.8 Transition between the core levels which rise to XAS edges	91
Figure 2.9 Block diagram of XAS beam line consists of various components	92
Figure 2.10 Quantum Design MPMS 3 magnetometer	95
Figure 2.11 Magneto-dielectric measurement set up	97
Figure 3.1 Powder x-ray diffraction pattern for the $(Tb_{1-x}Eu_x)_2Ti_2O_7$ samples. Inset (i) Diffraction	ion
peak (222) of $(Tb_{1-x}Eu_x)_2Ti_2O_7$ samples. Inset (ii) Rietveld refinement for the $Tb_{1.0}Eu_{1.0}Ti_2$	O ₇
sample	06
Figure 3.2 (a) Raman Spectra of the $(Tb_{1-x}Eu_x)_2Ti_2O_7$ samples at 300 K. (b) Variation of all for	our
active phonon modes as a function of x in $(Tb_{1-x}Eu_x)_2Ti_2O_7$ samples	.08

Figure 3.3 (a) The temperature dependent magnetization (ZFC) of the $(Tb_{1-x}Eu_x)_2Ti_2O_7$ samples.
(b) M(H) at 2 K for all TETO samples. Inset: Variation of effective magnetic moments with Eu
content (x) derived from Curie-Weiss Law at high temperature for TETO sample. (c) The
inverse DC susceptibility of $(Tb_{1-x}Eu_x)_2Ti_2O_7$ samples. (d) High Temperature Series Expansion
$fit \ for \ (Tb_{1-x}Eu_x)_2Ti_2O_7 \ (x=0.90,\ 0.95,\ 1.0) \ samples. \ Inset: Curie-Weiss \ fit \ for \ (Tb_{1-x}Eu_x)_2Ti_2O_7 \ (x=0.90,\ 0.95,\ 1.0) \ samples. \ Inset: Curie-Weiss \ fit \ for \ (Tb_{1-x}Eu_x)_2Ti_2O_7 \ (x=0.90,\ 0.95,\ 1.0) \ samples.$
(x = 0, 0.25, 0.50) samples
Figure 3.4 (a): $\chi'(T)$ of $Tb_2Ti_2O_7$ ($f=300,500,700$ Hz) and YTTO ($f=500$ Hz) at zero applied
DC field. Inset (i) $\chi^{"}(T)$ of $Tb_2Ti_2O_7$. Inset (ii) $\chi^{"}(T)$ of TTO and YTTO compounds at $H=0$ Oe
(500 Hz). (b) $\chi^{"}(f)$ at different temperatures for $Tb_2Ti_2O_7$. Inset: Normalized $\chi^{"}$ as a function of
f/f_{peak} and fitted theoretically (red) by Casimir du pre relations at and near the transition
temperature for Tb ₂ Ti ₂ O ₇
Figure 3.5. (a) $\chi'(T)$ of all TETO compounds measured at H = 0 Oe (f = 500 Hz). Inset: $\chi'(T)$ of
ETO at $H=0$ Oe. (b) $\chi^{"}(T)$ of all TETO compounds measured at $H=0$ Oe (f = 500 Hz). Inset:
$\chi^{"}(T)$ of ETO at H = 0 Oe
Figure 3.6 $\chi'(T)$ (upper panel) and $\chi''(T)$ (lower panel) of TETO compounds at applied field of 10
kOe. (a) $x = 0.0$, (b) $x = 0.5$, (c) $x = 0.95$, (d) $x = 1.0$. The inset in every upper panel: $d\chi'(T)/dT$
with T. Marked by arrow are: Single ion spin freezing peak (T _f) and Single moment saturation
peak (T*)
Figure 3.7(a) The Arrhenius Fit of (T_f) peak for compounds $(Tb_{1-x}Eu_x)_2Ti_2O_7$ (x = 0.25, 0.50,
0.90, 0.95). Inset: Arrhenius Fit of Tb ₂ Ti ₂ O ₇ . (b) Variation of field induced transition
temperature T* with Eu content (x) for TETO samples

Figure 4.1 The lattice constant (Cubic Structure) of Dy _{2-x} Eu _x Ti ₂ O ₇ as a function of x value. Inset
(i): X-ray powder diffraction pattern for the $Dy_{2-x}Eu_xTi_2O_7$ samples. Inset (ii): Rietveld
refinement for the $Dy_{1.0}Eu_{1.0}Ti_2O_7$ sample
Figure 4.2. Raman spectra of the Dy _{2-x} Eu _x Ti ₂ O ₇ samples at 300 K. Inset: Variation of four active
phonon modes as a function of x in $Dy_{2-x}Eu_xTi_2O_7$ samples along with the straight horizontal
dashed lines for reference. 129
Figure 4.3. The temperature dependent DC magnetic susceptibility (ZFC) with standard Curie-
Weiss fit of the $x = 0.0$, 0.5, 1.0 samples. Inset (i): The temperature dependent DC magnetic
susceptibility (ZFC) with standard Curie-Weiss fit of the $x = 1.5, 1.8, 1.9$ samples. Inset (ii): χ
vs. T curve of $x = 2.0$ sample with standard CW fit. (b): Inverse DC susceptibility vs. T curve of
$Dy_{2-x}Eu_xTi_2O_7$ compounds with inverse CW fit at (100-300 K). (c): High temperature series
expansion fit for $Dy_{2-x}Eu_xTi_2O_7$ (x = 1.5, 1.8, 1.9, 2.0) samples. (d): Variation of derived CW
temperature with x value of $Dy_{2-x}Eu_xTi_2O_7$ series from (2-20 K) CW fit. Inset: Variation of
calculated effective magnetic moments with Eu content (x) derived from inverse CW fit at high
temperature (100-300 K) for DETO samples
Figure 4.4 Zoom part of M-H curve for $x = 1.5$, 1.8, 1.9 samples at 2 K. Inset: M-H curves at 2
K for all DETO samples. (b): Variation of $d^2\delta M/dH^2$ curve with applied H at 2 K for $x=1.5$
sample. {Zoom part of 4.4(b)} - $d^2\delta M/dH^2$ curve with applied H (0.4-1.0 T) at 2 K for x = 1.5
sample. Inset: δM between ascending and descending portions of M-H curve for $x=1.5$ sample.
{Zoom part of inset 4.4(b)}- δM of M-H curve for $x = 1.5$ sample from 0.25-0.75 T. (c):
Variation of $d^2\delta M/dH^2$ curve with applied H at 2 K for x = 1.8, 1.9 samples. Inset: δM between
ascending and descending portions of M-H curves for $x = 1.8$, 1.9 samples. (d): Descending first

quadrant M-H curve for $x = 1.5$, 1.8, 1.9 samples with LA fit above 1
T134
Figure 4.5 $\chi'(T)$ of $x = 0.0$, 0.5, 1.0 for $f = 500$ Hz at zero applied DC field. Inset (i): $\chi'(T)$ of $x = 0.0$
1.5, 1.8, 1.9 for $f = 500$ Hz at zero applied DC field. Inset (ii): $\chi'(T)$ of $x = 2.0$ for $f = 500$ Hz at
zero applied DC field. (b): $\chi''(T)$ of $x = 0.0, 0.5, 1.0$ for $f = 500$ Hz at zero applied DC field. Inset
(i): $\chi''(T)$ of $x = 1.5$, 1.8, 1.9 for $f = 500$ Hz at zero applied DC field. Inset (ii): $\chi''(T)$ of $x = 2.0$ for
f = 500 Hz at zero applied DC field
Figure 4.6 $\chi^{'}(T)$ (upper panel) and $\chi^{''}(T)$ (lower panel) of $Dy_{2-x}Eu_xTi_2O_7$ compounds at applied
$field\ of\ 2\ T.\ (a):\ Dy_{1.5}Eu_{0.5}Ti_2O_7,\ (b):\ Dy_{1.0}Eu_{1.0}Ti_2O_7,\ (c):\ Dy_{0.5}Eu_{1.5}Ti_2O_7,\ (d):\ Dy_{0.2}Eu_{1.8}Ti_2O_7,\ (d):\ Dy_{$
(e): Dy _{0.1} Eu _{1.9} Ti ₂ O ₇ . Marked by arrow are: Single ion spin freezing peak of Dy ³⁺ ions (T _f) and
Single ion spin freezing peak of Eu ³⁺ ions (T _s)
Figure 4.7 The Arrhenius Fit of (T_f) peak for $(x = 0.5, 1.0, 1.5, 1.8, 1.9)$ compounds and
Arrhenius Fit of (T_s) peak for $(x = 1.5, 1.8, 1.9)$ compounds.(b): Variation of derived E_a values of
T_f and T_s peaks with x value of $Dy_{2-x}Eu_xTi_2O_7$.(c): Variation of T_f and T_s peaks with x value of
$Dy_{2-x}Eu_xTi_2O_7.$ 141
Figure 5.1. The XRD pattern along with the Rietveld refinement of LPCFO at 300 K
Figure 5.2. XAS spectra of (a) Co edge (b) Fe edge recorded at 300K151
Figure 5.3. (a) The temperature dependent ZFC and FC Curve of LPCFO at different magnetic
fields. (b) The isothermal (M-H) curves of LPCFO at different temperatures. Inset: dM/dT as a
function of temperature
Figure 5.4. The temperature dependent real χ' (T) (a) and imaginary χ'' (T) (b) part of AC
susceptibility of LPCFO at zero field. (c) Dynamic Scaling fit of log f Vs log (T _f /T _{SG} -1). Inset:

Vogel-Fulcher fit of $\ln f \ Vs \ 1/(T_f-T_o)$ curve. (d): TRM data at 25 K fitted with KWW equation.
Figure 5.5 (a) Temperature dependent dielectric constant (ϵ) of LPCFO. Inset: Arrhenius fit of
dielectric relaxation of LPCFO. (b) Temperature dependent dielectric tangent loss ($tan\delta$) of
LPCFO. Inset: a comparative plot of $tan\delta(T)$ and imaginary part of dielectric function ϵ "(T) at
10 kHz frequency. 156
Figure 5.6 (a) Temperature dependent resistivity $\rho(T)$ curve of LPCFO at zero magnetic field.
(b) 3-d VRH fit of ρ (T) at 120 – 190 K temperature range. (c) SPH fit of ρ (T) at 240 – 300 K
temperature range
Figure 5.7 (a): Magneto dielectric (%) as a function of magnetic field for LPCFO at different
temperatures. Inset: Raw pictorial diagram of Magneto dielectric (%) Vs. temperature at 1.3 T
magnetic field. (b) Raman scattering intensity of LPCFO at different temperatures (80-330 K) as
a function of Raman shift. (c) Temperature dependence of the phonon positions of two typical
modes $(A_g \text{ and } B_g)$ observed for LPCFO. Brown vertical dotted lines represent anomalies. (d)
Temperature dependence of the Raman line widths (FWHM) of $A_{\rm g}$ and $B_{\rm g}$ modes. Blue dotted
line shows the different slopes. Brown vertical dotted lines represent anomalies
Figure 6.1 (a) The XRD pattern along with the Rietveld refinement of LCCFO at 300 K. (b) The
Crystal structure of LCCFO sample using VESTA
Figure 6.2 (a): The full XPS surface scan survey of LCCFO sample. Deconvoluted XPS Spectra
of LCCFO (b) La 3d level, (c) Ca 2p level, (d) Co 2p level, (e) Fe 2p level and (f) O1s level.
175

Figure 6.3. (a): TDOS of LCCFO system. (b): Spin resolved PDOS for La-f, Ca-d, Co-d, Fe-d,
and O-p orbitals inset (i) PDOS of Co-d state. (ii) PDOS of Fe-d state176
Figure 6.4. (a): Rietveld refined neutron diffraction patterns at various temperatures of LCCFO
system. The oval marked area indicates the purely magnetic (011) Bragg peak. (b): Magnetic
structure of LCCFO from 6 K NPD data
Figure 6.5 (a): ZFC and FC curve of LCCFO sample at 100 Oe magnetic field. Inset:
Temperature dependence of dM/dT for FC data at 100 Oe magnetic field. (b) Temperature
dependence of the magnetization under ZFC protocol at $H = 100$ Oe, 1000 Oe and 10000 Oe. (c):
Power-law fitting to the log-log plot of " $1/\chi$ Vs ($(T-T_C^R)/T_C^R$) at 100 Oe ZFC data. Inset : Inverse
susceptibility Vs temperature curve at 1000 Oe magnetic field with Curie-Weiss law fit. (d):
M(H) curves of LCCFO at different temperature. 183
Figure 6.6 Temperature dependence of the AC susceptibility of LCCFO at zero magnetic field.
(a)Upper panel : The real part χ' and lower panel : The imaginary part χ'' from $T=140\text{-}180$ K.
(b)Upper panel : The real part χ' and lower panel : The imaginary part χ'' from $T=2\text{-}50$ K. T_1
and T_s are the cluster glass temperature. (c) Dynamic Scaling fit of log f Vs log (T_f/T_{SG} -1) curve.
Inset : Vogel-fulcher fit ln f Vs $1/(T_f\text{-}T_o)$ data in the T_1 RCG region. (d) Dynamic Scaling fit of
$log \ f \ Vs \ log \ (T_{f'}T_{SG} \ \text{-}1) \ curve. \ Inset : Vogel-fulcher \ fit \ of \ ln \ f \ Vs \ 1/(T_{f^-}T_o) \ data \ in \ the \ T_S \ RCG$
region
Figure 6.7 (a) ZFC $M(H)$ isotherms in the range ± 70 kOe at 5 K. (b) The $M(H)$ isotherms
measured at 5 K after cooling the sample under +50 kOe (green curve) and -50 kOe (orange
curve). (c): ZFC M(H) isotherms in the range \pm 20 kOe at 10 K, 20 K, 30 K and 40 K. Inset :
ZFC M(H) isotherms in the range \pm 20 kOe at 50 K (d): ZFC M(H) isotherms in the range \pm 20
kOe at 60 K, 70 K, 80 K, 90 K and 100 K. (e): Variation of H _{EB} (left Y –axis) and H _C (right Y-

axis)	with	the	temperatur	e (10 -	– 90 i	K). (1	f):	Variation	of	M_{SEB}	(left	Y	–axis)	and	$M_{\rm C}$ (right	Y
axis)	with	the t	temperature	e (10 –	90 K)										1	89

List of Table

Table 1.1 Shows the crystallographic positions of cubic A ₂ B ₂ O ₆ O' Pyrochlore oxide having
$Fd\overline{3}m$ space group symmetry
Table 1.2 Shows the characteristics of different A ₂ Co/Mn/NiO ₆ type double perovskite materials
Table 3.1 The ionic radius ratio of TETO series compounds
Table 3.2 Lattice parameters obtained from rietveld refinement of all TETO compositions with
Space Group Fd-3m
Table 3.3 Curie–Weiss temperature, theoretical and calculated magnetic moment of $(x = 0.00,$
0.25, 0.50) samples obtained from Curie–Weiss fit (25-300 K)
Table 3.4 Theoretical and calculated magnetic moment of $(x = 0.90, 0.95)$ samples obtained
from Curie–Weiss (150-300 K) fit
Table 3.5 Curie-Weiss temperature, classical exchange energy, dipolar interaction energy and
calculated magnetic moment of $(x = 0.90, 0.95, 1.0)$ samples obtained from the fitting of the
High Temperature Series Expansion [2-5 K]
Table 4.1 The ionic radius ratio of DETO series compounds
Table 4.2 Extracted Curie-Weiss temperature, classical exchange energy, dipolar interaction
energy and calculated magnetic moment of $(x = 1.5, 1.8, 1.9, 2.0)$ samples by high temperature
series expansion fit [2-5 K]
Table 4.3 Extracted anisotropy constant (K_I) values of x = 1.5, 1.8, 1.9 samples
Table 6.1 Structural parameters obtained by Rietveld profile refinement of the powder XRD
pattern for La _{1.5} Ca _{0.5} CoFeO ₆ at 300K. (Monoclinic – P2 ₁ /n)

Table 6.2 The magnetic moment values of Co and Fe sublattices evaluated by NPD data	ı at
different temperatures	.80
Table 6.3 Fitted parameters obtained by dynamic scaling law and Vogel fulcher fit at T ₁ and	T_{S}
temperatures1	185