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4.1.  Introduction 

The complete design, simulation of an S-band MILO and its parametric (both 

electrical and circuit) optimization using 3-D commercial electromagnetic code was 

discussed at length in Chapter 3. The real performance of the MLIO could be realized under 

practical condition, i.e., under hot condition (in the presence of the electron beam) using a 

commercially available advanced 3D PIC codes, like, MAGIC, MAFIA, CST Studio Suite, 

TWO QUICK, QUICK SILVER, KARAT codes etc.  These codes basically provide a 

deeper understanding of the complex beam-wave interaction process in any vacuum 

electron devices.  In Chapter 3, in order to study the reliability and accuracy of “CST PIC 

simulation code” and its efficient use in HPM device like MILO using conventional RF 

interaction circuits, the RF behavior of S-band MILO using a co-axial cylindrical cavity 

type slow-wave structure (SWS) has been presented.  The MAGIC simulation code was 

also used to investigate the RF behavior of MILO [Cousin (2006)]. However, these 

commercial 3D electromagnetic simulation codes do not include inbuilt optimization 

techniques in it algorithm. Therefore, in the present chapter an Artificial Neural Networks 

(ANN) based optimization technique called “Particle Swarm Optimization” (PSO) is used 

for optimizing various electrical and circuit parameters of the present S-band MILO to 

improve its overall efficiency.  The parametric optimization of MILO using 3D 

electromagnetic code, like, MAGIC, CST Particle studio, KARAT code is very complex, 

computationally expensive and time consuming process.  But, the PSO uses simple 

concept, easily programmable, faster in convergence and mostly provides better solution 

comparing with the other algorithms, like, Genetic algorithm (GA), etc.  Further, the PSO 
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has proved its applicability in the design of microwave devices like antenna, filters, etc., for 

high power microwave applications [Chengyang, 2015].  

 This chapter is organized as follows: In section 4.2 different types of Artificial 

Neural Networks (ANN) techniques for optimization are discussed and in section 4.3, the 

Fitness Function for PSO of RF interaction structure is discussed. The design optimization 

of RF interaction structure using PSO algorithm is presented in section 4.4 and the 

performance evaluation of S-band MILO using particle swarm optimized parameters is 

described in section 4.5.  Finally, the conclusion is drawn in Section 4.6. 

 

4.2.  Different Artificial Neural Networks (ANN) Techniques for Optimization 

 There are different Artificial Neural Networks (ANN) techniques for optimization 

of problems related to different practical applications namely Genetic Algorithm, Back 

propagation (BP), Simulated Annealing (SA), Tabu Search (TS) and Particle Swarm 

Optimization (PSO) and about each algorithm is discussed below. 

4.2.1. Genetic Algorithm (GA)  

Genetic algorithm is an effective tool  for solving non-linear function of both constrained 

and unconstrained optimization problems [Dorsey et al. (1994)] [Dorsey and Mayer, 

(1995)].  This technique is based on the process which mimics biological evolution.  An 

objective function is evaluated at different candidate points from a set of randomly selected 

initial population. At each iteration genetic algorithm uses current population as parent and 

genetic offspring candidate points based probability. The new population is randomly 

paired for crossover process by randomly selecting a position in the parameter and 
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swapping.  This crossover aids in retaining the characteristics from parent points. Each 

weight is replaced by realistically resulting in the mutation of the point. This helps in tiding 

over the local optima solution ensuring the robust solution. The population evolves leading 

to an optimal solution on repeated iterations. 

4.2.2. Back-Propagation (BP) 

 Back-propagation, an abbreviation for "backward propagation of errors", is a common 

method of training artificial neural networks used in conjunction with an optimization 

method such as gradient descent. The method calculates the gradient of a loss function with 

respect to all the weights in the network.  The gradient is fed to the optimization method 

which in turn uses it to update the weights, in an attempt to minimize the loss function. 

Backpropagation requires a known, desired output for each input value in order to calculate 

the loss function gradient.  It is therefore usually considered to be a supervised learning 

method, although it is also used in some unsupervised networks such as auto encoders.  It is 

a generalization of the delta rule to multi-layered feed forward networks, made possible by 

using the chain rule to iteratively compute gradients for each layer. Back propagation 

requires that the activation function used by the artificial neurons (or "nodes") be 

differentiable.  Backpropagation has been designed as gradient search techniques for local 

search. The best solution has been achieved in the region of their starting point. The starting 

values of fortuitous choice are significant for obtaining a global solution. The optimal 

solution is obtained consistently by known global search techniques. 
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4.2.3. Simulated Annealing (SA)  

 Simulated annealing is a method of solving both constrained and unconstrained 

objective function by imitating the physical process of cooling of hot objects. During the 

annealing process, the physical substances moves from high energy state to low energy 

state based on the cooling rate. In simulated annealing the probability of transition to higher 

energy state decreases during the cooling process. In this method, the search states with 

initial random points and takes step predefined by the user. The user defined parameter T 

(temperature) and RT (temperature reduction factor) is used initially to decide the 

probability for higher value objective function. As T increases the probability of accepting 

the higher value decreases which is similar to annealing process. The probability is 

determined by metropolis criteria. The number of interactions between the temperature 

reductions is decided by the preset parameter NT.  This helps in escaping the local optima 

solutions.  As the search proceeds, the length of the step reduces leading to a final solution. 

In simulated annealing, the performance is driven by the user defined parameters in contrast 

with GA where the parameters are dynamically determined by the algorithm. As the 

performance is affected by the selection of parameters, a range of parameters are to be used 

for T, RT and NT.  

4.2.4.  Tabu Search (TS) 

Tabu search (TS), proposed by [Glover and Laguna, (1997)], is a meta-heuristic method 

that has received widespread attention recently because of its flexible framework and 

several significant successes in solving NP-hard problems [Sexton et al. (1998)]. The 

method of neighbourhood exploration and the use of short-term and long-term memories 

distinguish Tabu search from local search and other heuristic search methods, and result in 
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lower computational cost and better space exploration. TS involves a lot of techniques and 

strategies, such as short-term memories (Tabu list), long-term memories and other prior 

information about the solution can used to improve the intensification and diversification of 

the search.  It can be confirmed that the strategy of intensification and diversification is 

very important at most time, therefore, a novel adaptive search strategy of intensification 

and diversification, proposed in literature [He et al. (2004)] was employed to improve the 

efficiency of TS for neural network optimization.  

4.2.5.  Particle Swarm Optimization (PSO) Algorithm 

 The PSO algorithm is the best suited for optimization of RF interaction parameters of 

MILO due to fast convergence and easy implementation. This algorithm is most effective in 

cases where the search space and the number of iterations are less. In recent years, swarm 

intelligence based algorithms such as particle swarm optimization for the optimization of 

design parameters [Samii and Michielssen, (1999)] [Robinson and Samii, (2004)].  PSO is a 

population based stochastic optimization technique developed by [Eberhart and Kennedy 

(1995)], inspired by social behavior of flocking of birds or fish schooling.  PSO is another 

form of evolutionary computation techniques and is stochastic in nature much like genetic 

algorithm.  Comparing with genetic algorithm (GA), the information sharing mechanism in 

PSO is significantly different. In GA, chromosomes share information with each other. So 

the whole population moves like a one group towards an optimal area. In PSO, only gbest 

(or lbest) gives out the information to others. It is a one way information sharing 

mechanism. The evolution only looks for the best solution. Compared with GA, all the 

particles tend to converge to the best solution quickly even in the local version in most 

cases. 
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 Let us consider the following scenario: a group of birds are randomly searching food in 

an area. There is only one piece of food in the area being searched. All the birds do not 

know where the food is. But they know how far the food is in each iteration. So what's the 

best strategy to find the food?. The effective one is to follow the bird which is nearest to the 

food.  PSO learned from the scenario and used it to solve the optimization problems. In 

PSO, each single solution is a "bird" in the search space. We call it "particle". All of 

particles have fitness values which are evaluated by the fitness function to be optimized, 

and have velocities which direct the flying of the particles. The particles fly through the 

problem space by following the current optimum particles. 

 PSO is initialized with a group of random particles (solutions) and is an iterative 

process. In every iteration, each particle is updated by following two "best" values. The first 

one is the best solution (fitness) it has achieved so far. (The fitness value is also stored.) 

This value is called p-best. Another "best" value that is tracked by the particle swarm 

optimizer is the best value, obtained so far by any particle in the population. This best value 

is a global best and called g-best. When a particle takes part of the population as its 

topological neighbors, the best value is a local best and is called l-best. 

 The key to PSO is the computation of a particle's new velocity.  Expressed in 

mathematical terms, the velocity and position update equations are given by [Eberhart and 

Kennedy (1995)]: 

           ( 1) ( * ( )) ( 1* 1*( ( ) ( )) ( 2* 2*( ( ) ( ))a

i i i g i
v t w v t c r p t x t c r p t x t      ,                (4.1) 

 and                           
( 1) ( ) ( 1)

i i i
x t x t v t   

,                                                     (4.2) 

where  i – particle index ; t – discrete time index; vi(t) –  Current velocity of i
th

 particle at 

time t ; xi(t)– current position of i
th

 particle at time t ; pi(t) – best position found by i
th
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particle (personal best)  at time t ; Pg(t) – best position found by swarm (global best, best of 

personal bests ) at time t ; r1, r2 – random numbers on the interval [0,1] applied to ith  

particle, but strictly less than 1. ‘c1’ and   ‘c2’ are usually social and cognitive constants 

respectively, ie., c1=c2=2. ‘w
a
’  factor is called the inertia weight which is taken from  0.4 

to 0.9. 

The update process is actually much simpler than these equations suggest.  The equation 

(4.1) updates a particle's velocity.  The term vi(t+1) is the velocity of i
th

 particle at time t+1.  

Notice that v is the velocity which has a vector value and has multiple components rather 

than being a single scalar value.  The new velocity depends on three terms.  The vi(t) is the 

current velocity at time t. 

The second term is c1 * r1 * (pi(t) – xi(t)).  The c1 factor is a constant called the cognitive 

(or personal or local) weight.  The third term in the velocity update equation is (c2 * r2 * 

(pg(t) – xi(t)).  The c2 factor is a constant called the social, or global, weight. Once the new 

velocity, vi(t+1) has been determined, it is used to compute the new particle 

position xi(t+1).  

4.2.6. PSO parameters control 

From the above case, we can learn that there are two key steps when applying PSO to 

optimization problems: the representation of the solution and the fitness function. One of 

the advantages of PSO is that PSO take real numbers as particles. It is not like GA, which 

needs to change to binary encoding, or special genetic operators have to be used.  

There are not many parameter need to be tuned in PSO. Here is a list of the parameters and 

their typical values [Kayarvizhi et al. (2013)]. 
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Number of Particles (N): The number of particles: the typical range is 20–50 but less than 

50. Large population causes more computational efforts, so the population size is kept 

below 50. Generally between  20 to 50 particle population is preferred.  Actually for most 

of the problems 10 particles is large enough to get good results. For some difficult or 

special problems, one can try 100 or 200 particles as well. 

Dimension of particles (D): It is determined by the problem to be optimized.  

Range of particles: It is also determined by the problem to be optimized, you can specify 

different ranges for different dimension of particles. 

Learning factors: c1 and c2 usually equal to 2. However, other settings were also used in 

different papers. But usually c1 equals to c2 and ranges from [0, 4]. 

The stop condition: The maximum number of iterations the PSO execute and the 

minimum error requirement. 

Inertia weight: max

aw  is the  Inertia weight which is generally taken from  0.4 to 0.9. 
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4.2.7. Flow Chart of  PSO Algorithm 
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4.3. Fitness Function for PSO of RF interaction structure 

In the present work, a co-axial vane loaded conventional MILO structure is 

considered. The cylindrical coaxial waveguide structure comprising axial periodic metal 

vanes of finite thickness projecting radially inward as shown in Fig. 4.1, was already field 

analyzed [Dwivedi and Jain, (2012)].   In the analysis, it was assumed that the space 

harmonics of the travelling-wave being generated due to the axial periodicity of the 

structure and the modal harmonics of standing wave caused due to the reflections of 

electromagnetic waves from the metal discs. Therefore, travelling waves are present in the 

structure vane-free region (region I), between the central conductor and the metal vanes, 

and the standing waves in the vane-occupied region (region II) of each unit cell, considered 

between two consecutive vanes of the cylindrical coaxial waveguiding structure [Dwivedi 

and Jain, (2012)].  In this structure as shown in Fig. 4.1, region I occupies the space rc ≤ r ≤ 

ri, 0 ≤ z ≤ ∞ and region II occupies ri ≤ r ≤ ro, 0 ≤ z ≤ (s-w). Here, rc is the cathode radius, ri 

is the inner radius of SWS vane, w is the thickness of SWS vane, s is the circuit periodicity, 

and ro is the outer radius of SWS vane.  

 
Fig. 4.1:   Schematic of  RF interaction structure  of MILO 
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The fitness function (F) (ie., the power transmitted through structure as shown in Fig. 4.1) 

is given by [Dwivedi and Jain (2015)] in terms of  s, rc, ri , ro and w : 
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4.4. Design Optimization of RF interaction Structure using PSO    

      Algorithm 

 

 The PSO algorithm has been used almost in all areas of research.  In the present 

work, the structural parameters of the RF interaction circuit for an S-band MILO has been 

optimized.  A detailed analytical method for computing the design parameters, including 

cathode radius, SWS vane inner radius, circuit periodicity and thickness of SWS vane of 

RF interaction structure of S-band conventional MILO was discussed in Chapter 3. Based 

on that the design parameters of a conventional MILO are shown in Table 4.1, and the same 

has been modeled in CST 3D Particle-in-Cell Studio.   

Table-4.1: Design Parameters of conventional MILO. 

Parameter Specifications 

Frequency (f ) 3.1 GHz 

Beam voltage (V) 500 kV 

Total anode current (It) 47.5 kA 

Anode Radius(ro) 61.4 mm 

Choke vane Radius( rch) 34 mm 

SWS vane inner radius(ri) 39 mm 

Extractor vane radius(rex) 49 mm 

Period between cavities(s) 13 mm 

Thickness of vanes(w) 4 mm 

Collector inner radius 40 mm 

Collector outer radius  44 mm 

Beam dump length 80.5 mm 

 

The simulation predicted an RF peak power of ~ 6 GW at ~ 3.1GHz for the beam voltage of 

500kV and current of 47.5kA with a power conversion efficiency of ~ 25%. In order to 

improve the performance of this particular design, the PSO algorithm has been used.  In 
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this PSO algorithm, the control parameters are c1, c2 and aw  are selected appropriately 

from the literatures as shown in Table 4.2 that plays vital role in convergence, otherwise 

functional evaluation would become complex and time consuming process. Accordingly, 

the control parameters have been chosen as, N=10; c1=c2=1.4, max 0.9aw =  and min 0.4aw = , 

and which were used in the evaluation of fitness function linking PSO algorithm for 

optimizing the structural parameters of the RF interaction circuit of S-band MILO. 

Table 4.2: Control parameters of PSO for Design Optimization. 

Parameters Size 

No . of swarms ( N) 10 

c1 , c2 1.4 

Inertia  factor ( aw )  max 0.9aw = ; min 0.4aw =  

No. of  Iterations 10 

 

4.4.1 Parameters Selection for Design Optimization of RF  interaction structure 

 In this context, we have considered four nominal parameters of RF interaction 

structure including cathode radius (rc),  SWS vane inner radius (ri), circuit periodicity (s) 

and thickness of SWS vane (w)  that play vital role in S-band MILO for generating 

maximum RF output power. The range of design parameters considered for the 

optimization are summarized in Table 4.3. The algorithm was coded in MATLAB by 

linking the fitness function as given through equation (4.3) – (4.9).  In PSO algorithm, the 

particles are flown in multi-dimensional search space (range) as shown in Table 4.3, to get 

the best solution. The algorithm was executed with swarm size of 10 for about 25 iterations 
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in each case. The iterations considered for the design were sufficient for the convergence of 

the swarm.  

                   Table 4.3: Design parameters and ranges for design optimization. 

Parameters    Ranges 

Cathode radius(rc)  20 to 27 mm 

SWS  vane inner radius (ri)  39 to 41mm 

Circuit Periodicity (s)   12 to 15 mm 

Thickness of SWS vane (w)  2 to 6 mm 

 

4.4.2 Effect of Parameter Variation 

After selecting the parameters range as given in Table 4.3, the effects of variation of 

these parameters on the performance of RF interaction of S-band MILO have been 

investigated. The PSO algorithm solves fitness function, representing the power 

transmission through the RF interaction circuit of MILO, for maximum convergence. The 

power transmission through the structure depends on four significant parameters including 

cathode radius (rc), SWS vane inner radius (ri), thickness of the SWS vane (w) and the 

periodicity (s) of the circuit. Therefore, the fitness function is solved for maximum 

convergence by varying one design parameter at a time and keeping other parameters 

remains constant to maximize the power output. 

Figure 4.2 shows the optimization of cathode radius (rc) for the maximum power 

output of S-band MILO using PSO technique. The PSO algorithm searches the best 

solution (maximum power output) in the range of cathode radius from 20 mm to 27 mm, 

while keeping other three parameters are constant as per the design value. The search in the 
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given range converged at the cathode radius of 26.85mm; hence the maximum RF power 

output was obtained as ~ 4.6 GW as shown in Fig 4.2. Similarly, Fig. 4.3 shows the 

optimization of SWS vane inner radius (ri) for maximum power output of S-band MILO. In 

this case, the SWS inner radius ranged from 39 mm to 41 mm and the convergence was 

observed while keeping other three parameters remains constant. The maximum RF power 

output has been obtained ~ 6.92 GW for the converged SWS vane inner radius of 40.94 mm 

as shown in Fig. 4.3.      . 

Further, the same technique was adopted for maximizing the RF output power by 

varying the thickness (w) of SWS vanes. The range of the vane thickness chosen from 2 

mm to 6 mm and obtained the maximum power as ~ 2.44 GW for the converged vane 

thickness of 2.77 mm  as shown in Fig. 4.4. The fourth parameter, periodicity of the circuit 

range defined from 12 mm to 15 mm and the algorithm converged at 12.46 mm for the 

maximum RF output power of ~ 2.43 GW as shown in Fig. 4.5. The convergence of these 

four parameter concludes that the RF output power is more sensitive to the cathode radius 

(rc) and the SWS vane inner radius (ri), which are critical in maximizing the power in 

MILO. The comparison between the designed and particle swarm optimized parameters of 

the proposed RF interaction structure is shown in Table 4.4. 
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Fig. 4.2:  Cathode radius versus output power. 

 

 

 

 

Fig. 4.3: SWS vane inner radius versus output power. 
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Fig. 4.4: Thickness of SWS vane versus output power. 

 

 

 

 

 
Fig. 4.5: Circuit periodicity versus output power. 
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       Table 4.4:  Comparison of optimized parameters of RF interaction structure              

                         of  S-band MILO using parametric technique and PSO algorithm. 

 

  Parameters Optimized dimensions 

using Parametric 

Technique 

Optimized 

dimensions using 

PSO algorithm 

Cathode radius(rc) 25.0 mm 26.85 mm 

Inner radius of the SWS vane (ri) 39.0 mm 40.94 mm 

Circuit periodicity (s)  13.0 mm 12.46 mm 

Thickness of the SWS vane (w) 4.0 mm 2.77mm 

 

4.5.  Performance Evaluation of S-band MILO using Particle Swarm     

        Optimized Parameters  

 

Device structure modelling and beam-wave interaction study of a conventional S-

band MILO uisng “CST Particle Studio” was explained in detail in the previous chapter, 

Chapter 3. Further, the conventioanl MILO results discussed  in the previous Section 4.4  is 

considered here again for its performnace improvement. The particle swarm optimized 

parameters shown in Table 4.4 are used to study its beam-wave interaction behaviour of the 

MILO discussed in section 4.4.  The beam voltage of  500kV with the rise time of 1ns as 

shown Fig. 4.6 was applied between cathode and anode at the input port and  hence the 

current due to electrons emitted by the high explosive emission from the surface of a 

cylindrical velvet cathode is shown in Fig.  4.7.  Due to the self-generated magnetic field, 

electron beams are confined between the SWS vanes and cathode.  The genertaed RF 

power at the fundamental mode was extracted at the output port. The RF output power 

(square of the E-field amplitude) of ~7.2 GW  as shown in Fig. 4.8 at 3.1 GHz in TM01 with 

a power conversion efficiency of ~29 % have been achieved by employing the beam 
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voltage  500 kV, and the current of 50 kA.  The Fourier transform of the E-field amplitude 

shows the desired frequency of operation, i. e., 3.1 GHz as shown in Fig 4.9.  Further, 

Table 4.5 shows comparison of simulated results of optimization using parametric 

technique and optimization using PSO for the beam voltage of 500kV. 

 

Fig.  4.6:  Build-up of voltage with time. 

 

 

 

 

Fig.  4.7:  Build-up of current with time. 
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Fig.  4.8:  Peak output power of optimized S-band MILO using PSO. 

 

 

Fig.  4.9 :  Fourier transform of the electric field at the output port. 

 

Table 4.5:     Comparison of simulated results (S-band MILO) of optimization using    

                      Parametric technique and PSO algorithm for the beam voltage of 500kV. 
 

 

Parameters 

Simulated Results 

Optimization using 

Parametric technique 

[Nallasamy et al. 

(2016 )] 

Optimization 

using PSO 

algorithm 

RF output power 6.0 GW 7.2 GW 

Power conversion efficiency 25.0 % 29.0 % 

Frequency 3.1GHz 3.1GHz 
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4.6.  Conclusion 

In this chapter, the Particle Swarm Optimization (PSO) technique has been explored for 

the optimization of structural parameters with an aim of getting maximum output power and 

power conversion efficiency in fundamental mode of operation of MILO. The effect of various 

parameters including  the inner radius of SWS vane (ri), cathode radius (rc), thickness of  SWS 

vane (w) and circuit periodicity (s) have been studied by solving the fitness function using PSO 

technique.  A typical S-band MILO design has been chosen for the optimization purpose and 

the effect of these parameters on RF output power of MILO has been investigated using PSO. 

After optimization of structural parameters of  RF interaction structure using PSO algorithm, a 

S-band MILO has been simulated and RF output power of ~ 7.2 GW at 3.1 GHz in fundamental 

TM01 mode with a power conversion efficiency of ~29%, while applying the beam voltage of 

500 kV has been obtained.  The present simulated results of S-band MILO using PSO 

optimized parameters have been compared with the results obtained through parametric 

optimization technique as discussed in Chapter 3 and found  both are in close agreement.  The 

efficiency of the device has been enhanced by ~4% through the PSO technique.  Because of 

optimization of design parameters using PSO, the total length of MILO device and the 

projection of cathode inside beam dump have been reduced significantly.   It has also been 

observed from the literature that increasing the number of swarms more than 50  leads to 

degradation of the performance and the control parameters namely c1, c2 and 
aw  plays vital 

role for the convergence of the algorithm and have to be chosen very optimistically.  All 

optimizations on fitness function were carried out with the swarm size of 10. Yet, an improved 

performance can be obtained by using swarm size of greater than 10 , but it would also increase 

number of fitness function evaluations.  


