
Chapter 6

Phases of passive colloids in activity

driven bath

6.1 Introduction

In the previous chapter.5, we study the properties of polar self-propelled particles along

a thin junction. Inside the junction, particles experience a high noise disorder state, and

outside they are in the ordered state. The model is motivated by the Josephson junction, an

analogous equilibrium system. At the junction, we have found the current orientation rever-

sal for a critical width of the junction, which is a common feature of the Josephson junction.

Further, the particle current at the junction decreases with an increase in the junction width

Systems with self-propelled or active particles are intrinsically nonequilibrium because

each agent consumes energy in order to move or to exert mechanical forces [Bechinger

et al. (2016); Li et al. (2019); Marchetti et al. (2013b); Palacci et al. (2013); Rigato et al.

(2017)]. Interestingly, these systems show various phenomena like, long ranged ordering

in two-dimensions, giant density fluctuations, non-equilibrium order-disorder phase tran-

sition, phase separation, etc. In broad self-propelled particles can be classified into two

types: particles with asymmetric shape, which have tendency to align along their long
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axis, for example, bird, fish, elongated rods, etc. Also, the particles, which are nearly

spherical in shape, includes many artificially designed spherical Janus particles in the

laboratory. The second class of particles do not have tendency to align, but they move

along their direction of polarity. Symmetric self propelled particles, which can move along

their direction of asymmetry, but do not have any preferred direction of alignment, are

called active Brownian particles (ABPs). Recent study of Fily et al. [Solon et al. (2015a)],

finds that collection of ABPs can phase separate at a packing density much lower than the

corresponding phase separation density in an analogous equilibrium system. The activity

or motile nature of the ABPs help them to phase separate at much lower density [Fily &

Marchetti (2012)]. Hence the phenomenon is named as motiltiy induced phase separation

(MIPS) [Buttinoni et al. (2013); Cates & Tailleur (2015); van Damme et al. (2019)].

Recent studies [Dolai et al. (2018); Liu et al. (2020)], also show an effective attraction

between passive Brownian particles or colloids when placed in the medium of ABPs.

The phenomena can lead to depletion induced phase separation as found in asymmetric

binary mixture of colloids in equilibrium [Asakura & Oosawa (1954); Gratale et al. (2016);

Koenderink et al. (1999); Meng et al. (2010); Stradner et al. (2004)]. Surprisingly the

depletion induced attraction in asymmetric equilibrium binary mixture, which is a purely

entropy driven phenomena has been found in the mixture of athermal ABPs and passive

colloids [Dolai et al. (2018)].

In recent years, the dynamics of large passive colloids in a bath of small ABPs is receiving

a lot of attention and it is an area of current interest to the physicists in the context of

nonequilibrium statistical mechanics [Chakraborty & Das (2020); Das et al. (2014); Dolai

et al. (2018)]. A recent study by Leonardo et al. [Bechinger et al. (2016)] show that active

baths are capable of mediating effective interactions between suspended large colloidal

particles [Angelani et al. (2009)]. Nature of the interaction is short-range attractive, which

is similar to the depletion forces in the equilibrium colloidal suspensions [Angelani et al.
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(2009)]. Furthermore, a paper by Cacciuto et al. find that shape of the colloidal particle

plays a crucial role defining the range, strength, and sign of the effective interactions

[Harder et al. (2014)]. Besides model based studies, recent experimental study finds that

passive particles perform super-diffusive dynamics in short times and normal diffusion in

long times when suspended in active bath [Wu & Libchaber (2000)]. However, dynamics

are similar to Brownian motion but the long-time effective diffusivity of the passive par-

ticles shows dependence on their size and concentration of the active particles [Patteson

et al. (2016)].

Two phenomena, motility induced phase separation (MIPS) and active depletion force

induced phase separation motivate us to study a binary system of large colloidal parti-

cles and small ABPs. Although, numerous studies have been done to understand the

phenomenological behavior of the ABPs [Marchetti et al. (2013b)], we still lack detailed

understanding of how dynamics of non-active or passive bodies is affected when suspended

in a collection of ABPs. This is a very important area of colloidal physics where solvent

mediated effective interactions play a crucial role in self-assembly of passive collidal

particles.

In this chapter, we study the phase behavior of the passive colloidal particles when placed

on a two-dimensional substrate in the presence of athermal active particles. All the particles

in our system interact through soft-repulsive force. The ABPs are not subjected to random

translational noise;, hence they are athermal in nature. Although, the phase separation

of active-passive mixture has been discussed in many previous studies [Bechinger et al.

(2016)], still a full phase diagram of the passive colloidal particles in terms of the defining

parameters like size ratio and activity of the depletants (small ABPs) is still lacking. In this

chapter, we discussed in detail how the effective interaction among large colloidal particles

changes with the size ratio and the activity of the depletants. In other words, we analyze

how MIPS phenomenon of the athermal active particles induce effective interaction among
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the passive colloids, and their role in phase behaviour of the pure passive system. Further-

more, using both coarse-grained and microscopic simulations, we find four distinct phases

based on the spatial distributions of the passive colloids: (i) homogeneous-disordered phase

(HDP), (ii) homogeneous crystalline phase (HCP), (iii) disorder-phase separated phase

(DPS), and (iv) phase-separated ordered phase (PSP). We draw a phase diagram in the

plane defined by the size ratio and the activity of the depletants, where the different phases

are characterized by calculating bond-order parameter and cluster size distribution. We

further confirmed the four phases using the full microscopic Langevin dynamic simulation

of active-passive mixture for the same range of activity and size ratio.

In the rest of the chapter, we discuss the details of the binary model system in section.6.2.

Section.6.3.1 discuss the result of effective force between two passive particles in the

presence of small ABPs. In section.6.3.2 we show the effect of the effective force on a pure

passive system and characteristics of four phases are discussed in detail in section.6.3.3.

Finally, we confirmed the four phases using full microscopic study of binary active-passive

system and discuss the results in detail in section.6.5.

6.2 Model

Our system consists of a binary mixture of N1 small active Brownian particles (ABPs) of

radius ra, and N2 passive particles of radius rp moving on a two-dimensional substrate

of dimension Lx ×Ly. We define size-ratio of the particles S = rp/ra. Let us represent

the position vector of the center of the ith ABP and ith passive particle by ra
i (t) and

rp
i (t), respectively at time t. The orientation of ith ABP is represented by a unit vector

ni = (cosθi,sinθi). The dynamics of the active particle is governed by the overdamped

Langevin equation

∂tra
i = vni +µ1 ∑

j ̸=i
Fi j (6.1)
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Fig. 6.1 (color online) Plot shows the model picture of small and big ABPs and passive
system of S = 10 to calculate the effective potential V S,v̄(r) on passive particle separated
by distance ‘r’, exerted by the active depletant. Red particles show the ABPs. Blue and
red particles show passive particles and ABPs. The blue arrow line show the surface to
surface distance ‘r’ between two passive particles. Number of ABPs and passive particles
are N1 = 1000 and N2 = 2

∂tθi = η
r
i (t) (6.2)

∂trp
i = µ2 ∑

j ̸=i
Fi j (6.3)

The first term on the right hand side (RHS) of Eq ∼ 6.1 is due to the activity of the

ABPs with active self-propulsion speed v. The rate of change of the orientation θi

of the ith ABP is given by Eq ∼6.2. The stochastic force ηr
i (t) at time t is defined

as, ⟨ηr
i (t)η

r
j(t

′
)⟩ = 2νrδi jδ (t − t

′
). νr represents the rotational diffusion constant. The

persistent length of the ABPs is defined as l = v/νr, and the corresponding persistent time

τ = 1/νr. We define the dimensionless activity v̄ = v
raνr

. The rotational diffusion constant

is kept fixed at νr = 0.005. The size of the active particles ra = 0.1, The equation of motion
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Fig. 6.2 (color online) Plot shows the potential V S,v̄ on passive particles in the presence of
active depletant for different parameters (S, v̄). Black curve (5,60), green curve(10,40),
blue curve (5,160) and red curve (10,160) respectively. In all cases number of passive
particles N2 = 2 and active particles are N1 = 1000.

to update the position of passive particle is given in Eq ∼6.3 . The force term Fi j in both

equations is due to soft repulsive steric interaction between the particles. The force is

effective when particles start to touch each other and zero otherwise. The force is obtained

from the soft-repulsive pair potential Fi j =−∇U(ri j), where U(ri j) = k(ri j−(rβ i+rβ ′ j))
2

if ri j ≤ (rβ i + rβ ′ j) and rβ , is the radius of active or passive particles for β and β ′ = a or

p respectively. The mobility of both types of particles are kept the same µ1 = µ2 = 1.0

and the force constant k = 1.0; hence (µ1k)−1 = 1.0 defines the elastic time scale in the

system. The volume fraction of the ABPs is φa = N1πr2
a/(Lx ×Ly). The volume fraction

of ABPs is kept fixed at φa = 0.49, whereas volume fraction of passive particles depends
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Fig. 6.3 (color online) Steady-state snapshots for four phases of the passive particles
interacting through the potential obtained with different combinations of activity v̄ and size
ratio S. (a) HDP, for S, v̄ = 5,60 and packing fraction φp = 0.07. (b) HCP for S, v̄ = 10,40
for φp = 0.2. (c) DPS , for S, v̄ = 5,160 for φp = 0.07. (d) OPS for S, v̄ = 10,160 and
packing fraction φp = 0.2. In all cases total number of passive particles are N2 = 400

on the size of passive particles. Periodic boundary condition is used in both directions.

The smallest time step considered is ∆t = 0.001. One simulation step is counted after the

update of all the particles once. Total simulation time is used 106 time steps. The size ratio

S and dimensionless activity (S, v̄) are two control parameters and they are varied from (1

to 10), and (20 to 160).
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6.3 Results

6.3.1 Calculation of depletion force

We first calculate the force between two bigger passive particles in the presence of active

depletant. To calculate this we place two passive particles of radius ra in the sea of ABPs.

System is evolved to reach to the steady state. The effective potential and force between

passive particles are calculated for different radial distances (separation) between them.

The model picture of the part of the system at a fixed separation distance of passive

particles is shown in Fig.6.1. While doing so, we fix the position of passive colloids to a

fixed distance, and active particles are evolving according to the Eqs ∼ 6.1 and 6.2. Once

steady state configuration of system is achieved, then we move the passive particles to

the new position and the same has been repeated. This procedures is repeated starting

from overlapping passive particles to the distance between passive particles 12ra. Once

steady state is reached then with the help of final configuration the force F S,v̄(r) between

two-passive particles and then the potential is calculated by integrating the force over

the distance V S,v̄(r) =
∫

F S,v̄(r)dr. To improve the quality of data, many independent

realisations (200) of the similar sytem is designed

The result of the effective potential between two passive particles V S,v̄(r) is shown in

Fig.6.2 for different size ratio S and activity v̄. We found that potential between two passive

particles very much depends on the system parameters. It can be tuned from weakly

interacting (S, v̄) = (3,160). Mainly repulsion (S, v̄) = (10,40). Small distance repulsion

to moderate distance attraction for (S, v̄) = (7,160) and finally, only large attraction for

(S, v̄) = (10,160) shown in Fig.6.2 . In Fig.6.2 the potential is plotted as a function of

surface to surface scaled r/ra distance between passive particles for the four different types

as discussed above. For all the cases, potential approaches to zero or particles become

non-interacting after the distance r ≥ 40ra.
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6.3.2 Coarse-grained simulation of pure passive system

Now, we understand the effect of the effective potential calculated for different size ratios

and activity on the pure passive system. We start with N2 = 400 number of passive particles

on a two-dimensional substrate with 800ra ×800ra under the effect of potential obtained

in previous section. The position update of passive particles is given by overdamped

Langevin equation

∂trp
i = µ2 ∑

j ̸=i
F S,v̄

i j +
√

2DT η
R
i (t). (6.4)

The first term on the right-hand-side (RHS) of Eq ∼6.3 defines the interaction force F S,v̄
i j

between the passive particles pair i and j. The force is given by F S,v̄
i j =−∇V S,v̄

i j (r), where

r is the separation between ith and jth passive particle and V S,v̄ is the depletion potential as

defined in the previous section for the size ratio S and activity v̄ of the depletant ABPs. The

translational noise ηR
i (t) at time t is defined as, ⟨ηR

i (t)η
R
j (t

′
)⟩ = δi jδ (t − t

′
). DT = 1.0

represents the translational diffusion constant. All other parameters are same as defined in

section 6.2. The size of the passive particles are kept as for the corresponding effective

potential. One simulation step is counted after position update of all the passive particles

using Eq ∼6.4. We consider total simulation time steps t = 5× 106. All the physical

quantities calculated here are averaged over 50 realisations.

6.3.3 Four distinct phases

We explore the coarse-grained simulation of pure passive system with the potential obtained

from the previous section 6.3.1. We start with a random position of passive particles, and

the particles are updated using Eq ∼6.4 for the corresponding potentials of different

parameters. We waited for the system to reach to the steady state. In Figs.6.3(a)-(d),

we show the real space snapshots of particles position for different system parameters

(S, v̄) = (5,60),(10,40),(5,160) and (10,160) respectively. Clearly, for the four sets of



110 Phases of passive colloids in activity driven bath

the parameters, the passive particles show completely different structures. We identify

four distinct phases with respect to their size ratio S that characterise the distribution

of the passive particles in the mixture. First, (1) Homogeneous disorder phase (HDP):

(S, v̄) = (5,60): here there is no clustering of passive particles, and they are found to be

homogeneously distributed as shown in Fig.6.3(a). (2) Homogeneous crystalline phase

(HCP): (S, v̄) = (10,40): here, the passive particles do form big interconneted clusters and

arranged periodically on the substrate at a larger distance to the radius of passive particles

as shown in Fig.6.3(b). (3) Disorder phase separated (DPS): (S, v̄) = (5,160): here the

passive particles form big clusters, but the particles are distributed homogeneously within

the cluster (without any specific structure) shown in Fig.6.3 (c), and finally, (4) Ordered

phase separated (OPS): (S, v̄) = (10,160): here the particles are arranged in a periodic

fashion and formed big cluster shown in Fig.6.3(d). We further characterise the four phases

using observables: cluster size distribution (CSD), the mean size of the cluster, bond-order

parameter, the scaled separation between particles. The detailed analysis of four phases

have been discussed in the phase diagram shown in Fig.6.5. Now, we discuss each the

observable to characterise the different phases.

Cluster size distribution (CSD)

A cluster is defined as a set of particles connected by a most probable distance r0 depending

on the size of the particles. A cluster of size n has n−particles cluster. We further calculate

the fraction of cluster of size n or cluster size distribution P(n). The normalised (CSDs) of

passive particles P(n) for different scaled velocities v̄ and size ratio S are plotted in Fig.6.4

for four phases shown in Fig.6.3. In Figs.6.4(a) and (b), we show the CSD for homogeneous

disordered phase (HDP) as shown in Fig.6.3(a) for S=4 with different v̄ = 60,80,100 and

for fixed v̄ = 60 for different S=2,3,4 respectively. We observe that in both plots for given

set of S and v̄, CSD show the small clusters as shown. In Figs.6.4(c) and (d), we plot the
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CSD, P(n) for fixed S=10 with varying activity v̄ = 1,2 and for fixed v̄ = 40 with different

S = 8,9 and 10 for the homogeneous crystal phase (HCP) 6.3(b). P(n) is non-monotonic

for small n and power law decay for large n, hence for small v̄ and big S, we find bigger

interconnected clusters. In Figs.6.4(e) and (f), we show the CSD for disordered phase

separated phase (DPS) keeping fixed S=7 for different v̄ = 120,140,160 and fixed v̄ = 160

for different S=5,6,7 respectively. P(n) is non-monotonic for small n and power law decay

for large n, hence for v̄ > 100 and moderate S, we find bigger interconnected disorder

clusters. Furthermore, in Figs.6.4(g) and (h), we show the CSD for ordered phase separated

(OPS) phase as shown in Fig.6.3(d) for S=10 with different v̄ = 120,140,160 and fixed

v̄ = 160 for different S=8,9,10 respectively. P(n) is non-monotonic for small n and power

law decay for large n, hence for v̄ ≥ 80 and big S ≥ 8, we find bigger interconnected

ordered clusters.

We also calculate the mean cluster size, bond order parameter and the mean scaled separa-

tion between passive particles (defined later). Based on the above four observables, we

characterise the four phases as discussed in 6.3.3. We calculate the mean cluster size by

defining m =
∫

nPp(n)dn as shown in Fig.6.5(b). To calculate the mean scaled separation

we first calculate the most probable distance r0 among the passive nearest neighbour

particles. We define the mean scaled separation r̄−1 =
2rp
r0

. Particles form homogeneous

phase if most probale distance ro > 2rp, and hence scaled separation distance r̄ > 1.0

however, for the clustered phase r0 < 2rp viz; r̄ ≤ 1.0, where r̄ is a measure of surface to

surface scaled distance between two neighbouring particles.

Hence, if we find 1/r̄ ≥ 1.0 it is phase separated phase however if 1/r̄ ≤ 1.0 it is

homogeneousely placed particles as shown in Fig.6.5(c). Further, To characterise the

structural ordering in the system, we calculate the bond order parameter [Eslami et al.

(2018)]. Bond order parameters are used to calculate either global or local average

structures of specified particles relative to its neighbours. The bond parameter for hexagonal
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structure ψ6 in two-dimensions is defined as:

ψm =
1

N2

N

∑
l=1

√√√√ 1
N2

N

∑
j=1

ei6θi (6.5)

such that 0 ≤ ψ6 ≤ 1. For order phase ψ6 ≥ 0.6 and it is ψ6 ≤ 0.5 for disorder phase as

shown in Fig.6.5(a). Now in the next section of result 6.4 we plot the phase diagram in

S− v̄ plane on the basis of three observables ψ6, m, and 1/r̄ results obtain in this section

for four different phases.

6.4 Phase diagram

In this section, we discuss the phase diagram for the four phases. We describe in the

plane of size ratio and activity (S, v̄). In Fig.6.5, we show the color plot of ψ6, m and r̄

in the phase plane. We find that for small S ≤ 4 for all v̄, passive particles are always in

homogeneous disorder phase (HDP) with small ψ6 ≤ 0.2, m < 3 and r̄−1 ≤ 1.0 as shown

by the circles in the phase diagram in Figs6.5(a)-(c). For large S ≥ 8 and small activity

v̄ ≤ 2 we find large ψ6 ≥ 0.6, large m ≥ 9 and large r̄−1 ≤ 1.0. This phase we called as

homogeneous crystalline phase (HCP) shown by triangle. For S ≤ 7 and large v̄ ≥ 100,

particles do show phase separation, with lesser order hence moderate 0.2 ≤ ψ6 ≤ 0.6,

small m ≤ 7 and r̄−1 ≥ 1.0 shown by pentagon and we call this phase as disordered phase

separated (DPS). Further, for large S ≥ 8 and v̄ ≥ 80, particles are distributed uniformaly

on the system with periodic hexagonal structure, hence we find large ψ6 > 0.6, large m ≥ 9

and r̄−1 ≥ 1.0. This phase is called as ordered phase separated (OPS) phase with square

symbol.
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6.5 Discussion

We have studied the steady-state feature of binary mixtures of small active and big passive

athermal particles on a two dimensional substrate, interacting via soft repulsive force with

Langevin’s simulation. The size ratio of passive and active particles, and activity of ABPs

are tuned by S and v̄. The motility of small ABPs induces an effective force between

big passive particles and it is very much depends upon the system parameters viz; S and

v̄. Later on we simulate the pure passive particles in the presence of potential (or force)

obtained from the various system parameters. Depending on the potential, we observe

four distinct phases. For small size ratio and all activity potential or force acting between

passive particles are less interacting; hence we find HDP. Whereas for low activity and big

size ratio, potential is mainly repulsive and hence particles show HCP. For moderate size

ratio and high activity, force is small distance repulsive and large distance attractive, hence

passive systems shows a DPS. Finally, for large activity and size ratio potential is purely

attractive particles form OPS. These four phases are further characterised by CSD, mean

cluster size, mean separation distance, and finally, the structural arrangement is confirmed

by calculating the bond order parameter ψ6 shown in the phase diagram in S-v̄ plane for

three observables ψ6, m and 1/r̄

At the end we confirmed all the four phases using full microscopic simulation of active-

passive mixture as shown in Fig.6.6. The update equations for active-passive are similar to

Eqs ∼6.1,6.2 and 6.3. The packing fraction for active and passive particles keeping fixed

to φa = 0.5 and φp = 0.2 respectively. in Fig.6.6(a) represents the HDP for (S, v̄) = (5,60).

in Fig.6.6(b) shows the HCP for (S, v̄) = (10,40), in Fig.6.6(c) represents DPS for (S, v̄) =

(7,160). Fig.6.6(d) shows the OPS for (S, v̄) = (10,160).

Our study explores new approach to find the effective potential acted among the passive

particles in the presence of activity driven bath and phase behaviour of passive particles.
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Our model can be useful to understand the phase behaviour of real colloidal systems in

active medium.

***********



6.5 Discussion 115

1 10 100n
0.0001

0.01

1

P
(n

)

1 10 100n
0.0001

0.01

1

P
(n

)

1 10 100n
0.0001

0.01

1

P
(n

)

1 10 100n
0.0001

0.01

1
P

(n
)

1 10n
0.0001

0.01

1

P
(n

)

1 10n
0.0001

0.01

1

P
(n

)

1 10 100n
0.0001

0.01

1

P
(n

)

1 10 100n
0.0001

0.01

1

P
(n

)

S=10 V=40(c)

(a)

S=7

(b)

(d)

(e)

(g)

S=4 V=60

S=10 V=160

(f)

(h)

V=160

-3.5-3.5

-2.0 -2.0

-2.0 -2.0

-2.0 -2.0

Fig. 6.4 (color online) We plot cluster size distribution CSD, P(n) vs. mean number of
particles cluster n for four distinct phases. For HDP: (a) show the CSD for fixed S=4 for
different activity v̄ = 60 (black circles), v̄ = 80 (red square), v̄ = 100 (orange diamonds)
and (b) is for fixed v̄ = 60 for different size ratio S=2 (black circle), S=3 (red square) and
S=4 (orange diamond). For HCP:(c) show the CSD for fixed S=10 for different activity
v̄ = 20 (black circles) and v̄ = 40 (red square) and (c) is for fixed v̄ = 40 for different size
ratio S=8 (black circle), S=9 (red square) and S=10 (orange diamond). For DPS:(e) show
the CSD for fixed S=7 for different activity v̄ = 120 (black circles), v̄ = 140 (red square),
v̄ = 160 (orange diamonds) and (f) is for fixed v̄ = 160 for different size ratio S=5 (black
circle), S=6 (red square) and S=8 (orange diamond). Finally, for OPS:(g) show the CSD
for fixed S=10 for different activity v̄ = 120 (black circles), v̄ = 140 (red square), v̄ = 160
(orange diamonds) and (h) is for fixed v̄ = 160 for different size ratio S=8 (black circle),
S=9 (red square) and S=10 (orange diamond). Other details are same as in Fig.6.3. Blue
and pink lines show the slope of 2.0 and 3.5 respectively.
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Fig. 6.5 (color online) In this plot (a),(b), and (c), we show the phase diagram in S-v̄ plane
for ψ6, mean cluster size m, and mean normalise distance r. In all the plots number of
passive particles are 400.

Fig. 6.6 (color online) Plot (a)-(d) show the distinct four phases obtained from microscopic
simulation of ABPs and passive mixture with packing fraction φa = 0.5 and φp = 0.2.
(a) represents the HDP for (S, v̄) = (5,60). (b) shows the HCP for (S, v̄) = (10,40). (c)
represents DPS for (S, v̄) = (7,160). (d) shows the OPS for (S, v̄) = (10,160). Smaller
black particles are ABPs, and bigger are passive one.


