
Chapter 4

Bond disorder enhances the

information transfer in the polar flock

4.1 Introduction

In the previous chapter.3, we have studied the effect of bond disorder on the ordered

flock, where we find that bond disorder does not effect the usual long range ordering

and enhances the cohesion among the polar flock. Further, the ordering kinetics and

usual giant number fluctuation remain unaffected. In this chapter, we discuss the effect of

bond disorder on SPPs near to the order-disorder transition. Recently, there is a growing

interest in understanding the effects and advantages of different kinds of inhomogeneity

that are omnipresent in nature. Many studies show that inhomogeneity can destroy the

LRO present in a clean system [Chepizhko et al. (2013); Das et al. (2018); Morin et al.

(2017); Quint & Gopinathan (2015); Reichhardt & Reichhardt (2017); Sándor et al. (2017);

Toner et al. (2018a,b); Yllanes et al. (2017)], whereas a few studies discuss special kinds

of inhomogeneity that enhance the ordering in the system [Das et al. (2020); Pattanayak

et al. (2020)]. Therefore inhomogeneity can be useful for many practical applications, e.g.,

crowd control and faster evacuation, etc. [Beatrici et al. (2017); Bhattacherjee et al. (2015);
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Bishop & Reppy (1978); Bray (1994); Frank & Dorso (2011); Garcimartín et al. (2018);

Kumar & Mishra (2020); Kumar et al. (2017, 2021); Pattanayak et al. (2021); Singh &

Mishra (2020); Wittkowski et al. (2014); Zuriguel et al. (2011, 2016)].

In the Vicsek model, each individual interacts through a short-range alignment interaction,

and the strength of the interaction is the same for all the particles. But in natural systems,

each particle can have a different ability to influence its neighbours based on their individual

intelligence or physical strength, etc. However, scientists have not paid much attention

to understand the effects of different interaction strengths in a polar flock. In a recent

study, Bialek et al. [Bialek et al. (2012)] show that the varying interaction strength of the

SPPs results in maximum entropy. Hence, more information transfer among the particles

[Bialek et al. (2012)][Pattanayak et al. (2020)]. Surprisingly, in this work, we note that

the presence of inhomogeneity in the form of the particles’ different interaction ability,

the system approaches towards a more homogeneous state near to the point of order-

disorder transition. More importantly, the flock’s response is faster for higher disorder

in the interaction strength among the SPPs because each SPP neighbour is updated more

frequently, which leads to faster information transfer within the flock. We also calculate

the systems’ information entropy [Ben-Naim (2015); Cavagna et al. (2014); Pritišanac

et al. (2019); Shannon (1948)] for different disorders and find that the larger the disorder,

the more is the systems’ information entropy.

Further, we have characterised the effect of bond disorder on the nature of disorder-to-order

phase transition in the system. The nature of phase transition in an active system has

been a matter of great interest in many previous studies [Ben-Naim (2015); Nagy et al.

(2007); Pattanayak & Mishra (2018); Singh et al. (2021)]. The effect of random impurities

shows interesting results in many equilibrium systems [Janoschek et al. (2013); Korshunov

(1992); Maucourt & Grempel (1997); Shastry (1982)] as well. In the study, M. Durve et al.

[Durve & Sayeed (2016)] have found a first-order phase transition by tuning particles’ view
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angle in the modified Vicsek model. However, the results observed for phase transitions

are very much model-dependent. Our numerical simulation suggests that the nature of

the disorder-to-order phase transition changes from discontinuous to continuous type by

tuning the strength of bond disorder. Also, the system shows the enhanced ordering near

the transition point for the larger disorder.

The rest of the chapter is organized as follows. In Sec.4.2 , we discuss the model and

simulation details. In Sec.4.3 , the results from the numerical simulations are discussed. In

Sec.4.4 , we conclude the chapter with a summary and discussion on the obtained results.

4.2 Model

We consider a collection of N number of polar self-propelled particles (SPPs) moving on

a two-dimensional substrate. SPPs interact through a short-range alignment interaction

within a small interaction radius RI [Ben-Naim (2015); Grégoire & Chaté (2004); Vicsek

et al. (1995)]. Moreover, the strength of interaction of each SPP with its neighbours is

different, unlike the Vicsek model [Vicsek et al. (1995)] of uniform interaction strength.

Each SPP is defined by its position ri(t) with orientation θi(t), and it moves along its

direction vector ni(t) =
(

cos(θi(t)),sin(θi(t))
)

with a fixed speed v0. The two update

equations for the position ri(t) and the direction vector ni(t) are given by,

ri(t +∆t) = ri(t)+ v0ni(t)∆t (4.1)

ni(t +∆t) =
∑ j∈RI J jn j(t)+ηNi(t)ki(t)

wi(t)
(4.2)

The first equation represents the particle’s motion due to its self-propelled nature along

the direction vector ni(t) with fixed speed v0. ∆t = 1.0 is the unit time step. The first term

in Eq ∼(4.2) represents the short-range alignment interaction of the ith particle with its



74 Bond disorder enhances the information transfer in the polar flock

neighbours within the interaction radius (RI), and J j is the interaction strength of the jth

neighbour. The probability distribution of the interaction strength J, P(J) is obtained from

a uniform distribution of range [1− ε

2 : 1+ ε

2 ] [Kumar et al. (2017)], where ε measures the

degree of disorder. ε = 0 corresponds to the uniform interaction strength (Ji = 1, for all the

particles) like the Vicsek model [Vicsek et al. (1995)], whereas ε = 2 corresponds to the

maximum disorder in the system. Furthermore, the second term in Eq ∼(4.2) denotes the

vector noise, which measures the particle’s error while following its neighbours. ki(t) is a

random unit vector where Ni(t) denotes the number of neighbours within the interaction

radius of the ith particle at time t. η represents the strength of the noise and can vary from

0.0 to 1.0. wi(t) is the normalization factor, which reduces the right-hand side of the Eq

∼(4.2) to a unit vector.

For zero self-propulsion speed, the model reduces to the equilibrium random bond XY -

model [Dieny & Barbara (1990); Kumar et al. (2017)]. However, for ε = 0, the model

reduces to the clean polar flock. We numerically update the Eqs ∼(4.1) and (4.2) for all

SPPs sequentially. One simulation step is counted after the update of Eqs ∼(4.1) and (4.2)

once for all the particles. Periodic boundary condition (PBC) is used for the system. All

the lengths are measured in terms of interaction radius RI = 1.0. The size of the system L

is varied from 90 to 200. Here system size L means L times the interaction radius. The

number density of the system is defined as ρN = N
L×L . We fix the density at ρN = 1.0 and

self-propulsion speed v0 = 0.5. Since for the same density for the clean polar flock, the

critical noise is close to η ∼ 0.6. Hence, we limit our study near the critical point, and the

noise strength is varied from η = 0.4 - 0.8 to study the phase transition, and keeping fixed

η = 0.62 to characterise the properties of polar flock near to critical point. We considered

time up to 106 simulation steps and 20 independent realisations for different values of

disorder strength ε . Although the time is taken to reach the steady state depends on the
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disorder strength, but for all disorders, steady-state is obtained by 104 simulation steps,

and the remaining time is used for time averaging.

4.3 Results

4.3.1 Disorder-to-order transition

First, we study the disorder-to-order transition in the system for different disorder strengths

ε . Ordering in the system is characterised by the mean orientation order parameter,

ψ(t) =
1
N
|

N

∑
i=1

ni(t)| (4.3)

In the ordered state, i.e., when most particles are moving in the same direction, then ψ

will be closer to 1.0 and of the order of 1√
N

for a random disordered state. In Fig.4.1(a), we

have shown the variation of ψ(t) with the noise strength η for three different ε = (0, 1 and

2). For ε = 0, the variation of ψ shows a sharp change from ψ ∼ 1.0 to ∼ 0.0. This kind

of change is a common feature of first-order phase transition [Ben-Naim (2015); Bricard

et al. (2013); Chaté et al. (2008); Chepizhko et al. (2013); Pattanayak & Mishra (2018)].

Whereas for ε = 2, ψ varies continuously, and the transition has a signature of second-order

phase transition. The variation of ψ for ε = 1 shows the intermediate behaviour. The plot

of order parameter fluctuation or the susceptibility ξ =
√
< ψ2 >−< ψ >2 is shown in

Fig.4.1(b) where < ... > denotes the average over steady-state time. The critical noise ηc is

obtained from the maximum of ξ . The ηc(ε) shifts towards the right on increasing ε = 0,

1 and 2, respectively. To understand further the nature of the phase transition, we plot order

parameter probability distribution function (PDF) P(ψ) vs. ψ in Fig.4.1(c) at the critical

noise ηc(ε) = 0.625, 0.640 and 0.654 for three ε = 0, 1 and 2, respectively. For ε = 0,

there is a clear bimodal nature of P(ψ) which gradually changes to unimodal on increasing
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Fig. 4.1 (color online) (a) The plot of the mean orientation order parameter ψ vs. noise
strength η , inset: zoomed plot shows enhanced ordering on increasing ε . (b) Variation of
susceptibility ξ vs. ε . (c) The probability distribution function of order parameter P(ψ) vs.
ψ at the transition point (ηc(ε) = 0.625, 0.640, and 0.654 for ε = 0, 1 and 2, respectively.
(d) Variation of fourth-order Binder cumulant V vs. η . Different symbols imply different
values of disorder strength ε = 0(◦), 1.0(□), 2.0(△) for the system size L=150 and the
density ρN = 1.0.

ε . To characterise further, the nature of the transition for ε = (0, 1 and 2) in Fig.4.1(d), we

calculate the fourth-order cumulant or the Binder cumulant V = 1− <ψ4>
3<ψ2>2 vs. η . We plot

V (η) vs. η in Fig.4.1(d). It shows strong discontinuity between V = 1/3 (for disordered

state) to V = 2/3 (for ordered state) as we approach critical ηc for ε = 0. However, it goes

smoothly between a disordered state (V = 1/3) to an ordered state (V = 2/3) for ε = 2.

Finite-size analysis:- To characterise further, the nature of the phase transition more pre-

cisely, we perform the finite-size analysis of the system for different strengths of disorder

ε . First, we plot the global orientation order parameter ψ vs. noise strength η for three

disorder strengths ε = 0, 1 and 2 in Fig.4.2 (a)-(c), for four system sizes L = 90, 120, 150
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Fig. 4.2 (color online) Plot (a)-(c) show orientation order parameter ψ vs. η and (d-
f) represent Binder cumulant V vs. η for ε = 0, 1 and 2. In plots (a)-(f) the black ◦,
red □, green △ and blue ⋆ are for system sizes L = 90, 120, 150 and 200, respectively.
(g)-(i) are plots of orientation order parameter distribution P(ψ) keeping system size
L = 120 for three different η values. (g) for ε = 0, η = 0.6245, 0.6260 and 0.6275, (h)
ε = 1, η = 0.6375, 0.6390 and 0.6420, and (i) ε = 2 for η = 0.6490, 0.6520 and 0.6540,
respectively. Symbols with color black ‘+’, red ‘⋆’ and blue ‘△’ show the increase in η

values with their respective ε values. In all the cases system density is fixed ρN = 1.0.

and 200, respectively. In Fig.4.2(a) for ε = 0, with the increase in the system size, clearly,

the value of order parameter ψ , becomes more discontinuous on increasing system size. In

Fig.4.2(b) for ε = 1, ψ becomes more continuous on increasing system size. For ε = 2

as shown in Fig.4.2(c), the ψ curves become more continuous on increasing system size

compared to former ε values. Moreover, to further understand the effect of finite size on

the phase transition, we calculate fourth-order Binder cumulant V for ε = 0, 1 and 2 in

Fig.4.2(d)-(f) for four system sizes L = 90,120, 150 and 200. For ε = 0 in Fig.4.2(d), with



78 Bond disorder enhances the information transfer in the polar flock

5000 10000 15000 20000 25000
0.2

0.3

0.4

0.5

0.6

-2 -1 0 1 2 3

0.01

0.02

0.03

0.04

ψ
(t

)

P
(θ

)

θt

(a) (b)

Fig. 4.3 (color online) (a) Time series of ψ(t) for disorder ε = 1.0 (black line) and ε = 2.0
(magenta line). The two types of quenched impurities with orientations ±π

2 are introduced
at time t = 10,000. (b) PDF for the orieantation distribution P(θ) vs. mean orieantation θ ,
for ε = 1.0 (□) and ε = 2.0 (△). All the plots are for system size L = 100, noise strength
η = 0.62 and the density ρN = 1.0.

the increase in the system size, V changes sharply, showing discontinuous phase transition.

While for ε = 1 in Fig.4.2(e), V shows a smooth crossover. Further, in Fig.4.2(f) for ε = 2,

we get a clear crossing of V at a single point with respect to different system sizes. This is

one of the clear signatures of continuous transition. Finally, we calculate the orientation

order parameter probability distribution function (PDF) P(ψ) for ε = 0, 1 and 2 in Fig.

4.2(g)-(i), keeping system size 120 for three different η’s. In Fig.4.2(g), for ε = 0, there

is a clear bimodal signature for three η = 0.6245, 0.6260 and 0.6275. In Fig.4.2(h) for

ε = 1 for three η = 0.6375, 0.6390 and 0.6420. Here we again find unimodal nature, but

with a large tail. Further, in Fig.4.2(i) for ε = 2, P(ψ) for three η = 0.6490, 0.6520 and

0.6540. Here it is very clear that P(ψ) shifts towards the left slowly (continuous manner)

with increased η , which confirms there is a clear continuous nature of the phase transition.

Hence the above finite-size analysis and behaviour of PDF near critical point suggest the

change in the nature of the phase transition from discontinuous type to the continuous type

on the increasing strength of disorder ε . Further, we characterise the enhanced ordering

near to the critical values of η and shift of ηc(ε) towards higher values for ε = 0, 1 and 2

as shown in the inset of Fig.4.1 (a).
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Fig. 4.4 (color online) Plot (a), (b) and (c) are the real space snapshots for three ε = 0, 1
and 2, respectively. The color bar shows the number of particles in the subshells. All the
parameters are the same as in Fig.4.3.

Enhanced ordering :- To understand the enhanced ordering mechanism, we perform a

small perturbative study on the system. Since we find enhanced ordering near η ∼ 0.6, the

perturbation is imposed at η = 0.62 for finite disorder ε = 1 and 2.

In the perturbative study, the system is awaited to reach the steady-state (t = 104) and

once the steady-state is reached; we randomly choose 5% of the particles and out of which

the direction of 2.5% particles with J > 1 quench to the direction π

2 and remaining 2.5%

with J < 1 are quenched to the direction −π

2 . Once this perturbation is applied, the system

will respond to it and mean order parameter ψ(t) shows a dip and then relaxes to a new

steady-state with a relatively lower value of ψ(t) as shown in Fig.4.3(a). Very clearly,

before perturbation, ψ is lower for ε = 2, hence a more ordered state for the lower disorder.

But after perturbation, which is selectively for particles with higher and lower J values, the

response is different for ε = 1 and 2. For ε = 2, after perturbation ψ is larger compared

to ε = 1. Hence more ordered state for the larger disorder. In the plot of Fig.4.3(b), we

plot the orientation probability distribution function (PDF) P(θ) of the orientation of the

particles θ . For ε = 1, the P(θ) shows two distinct peaks for θ = ±π/2, but the peak

for π/2 or response to higher J is more. For ε = 2, the mean of the P(θ) shifts towards

the non-zero θ , hence the system’s response happens globally, and the whole system is
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polarised in the direction of quenched particles with larger J values.

Now, we further study the consequence of such enhanced ordering for larger disorder

on the polar flock. Moreover, this dominated alignment is responsible for the shifting of

transition point ηc towards higher values.

4.3.2 Properties of the polar flock
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Fig. 4.5 (color online) (a) Plot of density phase separation order parameter δφ vs. ε with
blue squares. The blue dotted line shows the linear decay of δφ . (b) P(n) vs. n for ε = 0,
0.5, 1, 1.5 and 2. Different colors with lines black, red, green, blue and magenta are for
ε = 0, 0.5, 1.0, 1.5 and 2.0. The inset of Fig.(b) shows the mean number of particles Nc vs.
ε where the blue dotted line shows linear decay of Nc. (c) and (d) show the zoom plot of
(b) near to the head and tail where the tail parts are fitted with exponential function with
dotted lines. Symbols with black (circles), red (squares), green (diamonds), blue(triangles
up) and magenta (triangles left) colors are for ε = 0, 0.5, 1.0, 1.5 and 2.0 in (c) and (d).
Also, (b), (c) and (d) are in semi-log y-axis. All the parameters are the same as in Fig.4.3.
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How does disorder affect the density fluctuations in the system? We plot real space

snapshots of the local density (calculated in a small region of unit size square sub-shell)

in Fig.4.4(a)-(c) for three values of ε = (0, 1 and 2) at time t = 106. For clean polar

flock (ε = 0), particles form isolated clusters. Whereas with a non-zero ε , these isolated

clusters break, and the system gets into a more homogeneous state. To further confirm

this, we calculate the density phase separation order parameter, δφ vs. ε (where δφ(ε)

is the deviation of the number of particles among the sub-cells), as shown in Fig.4.5(a).

We calculate δφ by dividing the whole L×L system into unit sized sub-cells, δφ(ε) =√
1

L2 ∑
L2
j=1(φ j(ε))2 − ( 1

L2 ∑
L2
j=1φ j(ε))2 where φ j is the number of particles in the jth sub-

cell and ⟨....⟩ represents averaging over 20 realisations. We note that δφ decreases in a

linear fashion with increasing ε as shown in Fig. 4.5(a). Hence system becomes more

homogeneous with increasing the random bond disorder ε in the system. Furthermore, in

Fig.4.5(b), we plot the probability distribution function (PDF) of a number of neighbours

P(n) for different values of ε = 0, 0.5, 1, 1.5 and 2, respectively. Sharper tail for large

n for the higher value of ε = 2 shows that the system is approaching towards a more

homogeneous state or clusters of smaller size while the longer tail, for lower values

of ε = 0, hence bigger clusters. In the inset of Fig.4.5(b), we plot the mean number

of particles Nc with ε where Nc is obtained by fitting the tail of the main plot by the

exponential function exp(−n
Nc
). This shows that Nc decreases linearly with an increase in

the value of ε . Similarly, when zoomed for smaller n as shown in Fig.4.5(c), P(n) for

larger ε is higher as compared to smaller ε . Hence formation of small clusters have more

probability for the larger disorder. Fig.4.5(d) shows the zoomed tail of the P(n).

4.3.3 Accelerated response to external perturbation

We claim that enhanced ordering near-critical regions, and homogeneous density clusters

promote faster response among the flock. To confirm the same, we perform another
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Fig. 4.6 (color online) (a) Plot of OACF C0(r, t) vs. t. for ε = 0.0 (circles), 0.5 (squares), 1.0
(diamonds), 1.5 (triangles up) and 2.0 (triangles left). Dashed lines are fit to exponential to
the data (symbols). (b) Plot for C0(r, t) vs. scaled time t/tc; and tc vs. ε (inset) where the
dashed lines are a linear fit to the data. All other parameters are the same as in Fig. 4.3

perturbation to the well-ordered flock in the steady-state and calculate its response. We

randomly select a fraction of particles 1% and quench their direction to a randomly selected

fixed orientation. With time all other particles will rotate in that direction. Their response to

the direction of quench is measured by calculating the orientation auto-correlation function

(OACF) C0(t) = ⟨cosθi(t)−θi(0)⟩− ⟨cosθi(T )−θi(0)⟩. Where θi(t) and θi(0) are the

orientation of the ith particle at time t and 0 from the time of quench, and T is the late

time when approximately all the particles are oriented in the direction of the quench. ⟨....⟩

denotes averaging over all the SPPs over 30 independent realizations. In Fig.4.6(a), OACF

C0(t) decays exponentially and shows the sharper decay with the increase in the strength

of disorder ε . Therefore, the response of the flock to external perturbation becomes faster

with the increase in ε . In Fig.4.6(b), we plot the C0(t) vs. scaled time t/tc, where tc is

obtained from the fitting of C0(t) to exp(−t/tc). The inset of Fig.4.6(b) shows the variation

of tc vs. ε . tc shows linear decay with ε , which confirms the faster response of the flock

towards external perturbation with an increase in the value of ε .
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Fig. 4.7 (color online) (a), (b) and (c) show the variation of X(t) vs. t. Black, blue and
magenta colors are for ε = 0, 1 and 2, respectively. (d) Variation of neighbour fluctuation
autocorrelation Cn(r, t) vs. t. Symbols with black (circles), red (squares), green (diamonds),
blue (triangles up) and magenta (triangles left) colors are for ε = 0, 0.5, 1.0, 1.5 and 2.0,
respectively. Dashed lines are fit to exponential. (e) The plot of tn vs. ε shows linear decay
with ε ; inset; the plot of correlation Cn(r, t) vs. scaled time t/tn. (f) The plot of the systems’
information entropy ∆S(t) vs. t. (g) Time evolution of ψ(t) with time t where colors black,
blue and magenta are for ε = 0, 1 and 2, respectively. All other parameters are the same as
in Fig. 4.3

4.3.4 Disorder increases the systems’ information entropy

Further, we claim that the accelerated response to external perturbation is due to neighbours’

frequent updates for high disorder strength.

We define the update in the neighbour list of the SPPs as X(t) = 1
N ∑

N
i=1((< Ni

R(t)×N/2 >

)−∑ j∈R j). Where Ni
R is the number of SPPs inside the interaction radius of the ith particle,

N is the total number of particles in the system and the second term on the right-hand side

is the sum over all the particle indices j inside the interaction radius of the ith particle. The
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time series of X(t) oscillates around 0 for different values of ε , as shown in Fig.4.7(a), (b)

and (c). The frequency of oscillation of X(t) increases with increasing ε . The increase

in the oscillation frequency of X(t) suggests more frequent updates of the neighbour list

and the decrease in the magnitude of X(t) implies a lesser number of neighbours inside

the interaction radius of an SPP. Furthermore, we calculate the neighbour autocorrelation

function,

Cn(t) =
〈∑

T−t
t ′=1

(X(t
′
)−X)(X(t

′
+ t)−X)

∑
T
t ′=1

(X(t ′)−X)2
⟩ (4.4)

where X is the mean value of X(t) over the total time T and t < T . ⟨....⟩ represents

averaging over 20 independent realisations. In Fig.4.7(d), faster decay of Cn(t) with

increase in the disorder strength ε , suggests more frequent update of neighour list. Also, in

the inset of Fig.4.7(e), we plot the scaled correlation Cn(t) vs. t/tn where tn is obtained by

fitting the exponential function to exp(−t
tn
). In Fig.4.7(e), we have shown the variation of

tn with ε which decays linearly. Now we use the systems’ information entropy [Ben-Naim

(2015); Cavagna et al. (2014)] approach to show that the larger the disorder, the larger

is the systems’ information entropy and hence the more information transfer among the

SPPs. The faster information transfer in more disorder system is due to the possibility

of more number of accessible states for the particles. Each state can be defined as the

new neighbour in the chosen particle’s contact list, if we denote Ps, as the probability of

being in the ith states from the set of all possible accessible states. If a particle changes its

neighbours frequently, it is exploring more number of neighbouring particles and hence

more number of states. Hence the neighbour autocorrelation, Cn,s(t), ( the quantity inside

the < ... > of Eq ∼(4.4) is the neighbour autocorrelation for one state. The subscript s

denotes the different independent configurations and hence different sets can be generalised

as different independent configurations. And Cn,s(t) and Ps(t) are equivalent. One is the

measure of the probability of being in a given neighbour list, and is the same as Ps(t). As

time progresses Cn,s(t) decreases, and hence more and more states are accessed. Hence we



4.3 Results 85

define the systems’ information entropy of the system as ∆S(t) =−∑sCn,s(t) ln2Cn,s(t),

where summation s is over all possible realisations. Larger the systems’ information

entropy, larger the available microstate for the particles, and hence the more information

transfer among the flocks. We plot the variation of the systems’ information entropy ∆S(t)
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Fig. 4.8 (color online) The plot shows the probability of newly visited particles p(ε, t) with
respect to time t for three values of ε . Black ◦, red □, and blue △ are for ε = 0, 1 and
2, respectively. Color dotted lines show the data fit with fitting function p(ε, t) = m(ε) · t
where m(ε) is the slope. In the inset, we show the m vs. ε which increases linearly. Other
parameters are the same as in Fig.4.3

for different disorders in Fig.4.7(f). We note that ∆S(t) increases with ε which further

confirms that particles are exploring more states for higher disorder strength hence more

information transfer. Also, in Fig.4.7(g), we have plotted the time evolution of order

parameter in the early time, which shows that for larger ε , the system reaches the ordered

state quicker in comparison to the lower ε . Further, we also show the quicker update of the

neighbour list for a single particle. In Fig.4.8 , we plot the fraction of new particles p(ε, t)
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in the neighbour list of a given particle from some reference time t0 = 0. At time t0, all the

particles are labeled as old, hence p = 0. Time in Fig.4.8 , is measured from the reference

time t0, hence reference time is time zero on the x−axis. As time progresses, new particles

come in the contact list of the given particle, and p(ε, t) starts to increase. At a very late

time, all the old particles are gone out of the neighbour list, and hence p = 1. As shown in

the figure, for the larger disorders, new neighbours are updated faster than for the small

disorder. In the inset of Fig.4.8 , we show the linear increase of slope m(ε) with respect

to ε = 0, 1 and 2 where m(ε) is obtained from fitting the main plot with the linear fitting

function.

4.4 Discussion

We introduce a minimal model for a collection of self-propelled particles with bond disorder.

Each particle has a different ability (interaction strength) to influence its neighbours. The

varying interaction strength is obtained from a uniform distribution, and it can be varied

from [1− ε/2 : 1+ ε/2], where ε is the disorder strength. For ε = 0, the model reduces to

the constant interaction strength model or the Vicsek-like model [Vicsek et al. (1995)]. We

have studied the steady-state characteristics for different strengths of the disorder near to

order-disorder transition. To our surprise, bond disorder leads to faster information transfer

within the flock viz; the systems’ information entropy gets increased.

Our numerical study also shows that the disorder-to-order transition is discontinuous in

the disorder-free system and changes to continuous type with an increase in disorder.

Furthermore, the transition point shifts towards the higher η for the large disorder.

Our study provides a new direction to understand the effect of intrinsic inhomogeneity in

many natural active systems. It shows how the bond-disorder in the system can enhance

ordering, and faster information transfer among the particles. Such properties can be useful
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for many applications: like the faster evacuation of active particles, and also for crowd

control in many social gatherings.

***********


