
Chapter 3

Ordering kinetics and steady state of

self-propelled particles with

random-bond disorder

3.1 Introduction

In the previous chapter.2, we have studied the binary mixture of polar SPPs in homoge-

neous medium and characterised the four different observed phases in detail. Various other

studies on Vicsek model are similar model and have focused on the system in homogeneous

medium [(Chaté et al., 2008; Grégoire & Chaté, 2004; Pattanayak & Mishra, 2018; Toner

& Tu, 1998)] Recently, there is a growing interest to understand the effects and advantages

of different kinds of inhomogeneities which are omnipresent in nature. Many studies

show that the inhomogeneity can destroy the LRO present in a disorder-free system [Chep-

izhko et al. (2013); Das et al. (2018); Morin et al. (2017); Quint & Gopinathan (2015);

Reichhardt & Reichhardt (2017); Sándor et al. (2017); Toner et al. (2018a,b); Yllanes

et al. (2017)] whereas a few studies discuss special kinds of inhomogeneities which can

enhance the ordering of a system [Das et al. (2020); Pattanayak et al. (2020)]. Therefore,
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the inhomogeneity can be useful for many practical applications, e.g., crowd control and

faster evacuation etc. [Frank & Dorso (2011); Garcimartín et al. (2018); Zuriguel et al.

(2011, 2016)].

In the Vicsek model, each individual interacts through a short-range alignment interaction

and the strength of the interaction is the same for all the particles. But, in natural systems,

each particle can have a different ability to influence its neighbors. However, scientists

have not paid much attention to understand the effects of different interaction strengths in a

polar flock. In a recent study, Bialek et al. show that pairwise inhomogeneous interactions

between particles are sufficient to correctly predict the propagation of order throughout the

entire flock [Bialek et al. (2012)].

In this chapter, we introduce a collection of polar SPPs with the random-bond disorder,

and the particles interact through a short-range alignment interaction. Moreover, the vol-

ume exclusion among the particles is taken care of by introducing a repulsive interaction

among them [Caprini et al. (2020); Geyer et al. (2019); Sepúlveda et al. (2013)]. The

strength of interaction for each particle is obtained from a uniform distribution between

[1− ε/2 : 1+ ε/2], where ε is the strength of random-bond disorder. For ε = 0, the model

represents a disorder-free polar flock with uniform interaction strength for all the particles

or the Vicsek-like model [Vicsek et al. (1995)]. In this chapter, our focus is to understand

the effects of the random-bond disorder on the true long-range ordered state in a disorder-

free system [Toner & Tu (1998); Vicsek et al. (1995)]. Also, we have characterised the

effects of the random-bond disorder on the ordering kinetics of a polar flock.

We note that the presence of the disorder does not destroy the LRO present in a disorder-

free system. However, the disorder affects the density clustering and results in more

cohesive flocking. Furthermore, we also studied the ordering kinetics of the orientation

and the density fields. When the system is quenched from an isotropic to an ordered steady

state, both the orientation and the density fields coarsen with time. The size of the ordered
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orientation domains grows with time with an effective growth exponent zo ∼ 2 (same as

for non-conserved model A [Bray (1994)]. Also, the size of the high-density domains

grow with time with an exponent zρ ∼ 4, similar to as found for a conserved field in active

systems [Pattanayak et al. (2021); Wittkowski et al. (2014)].

The rest of the chapter is organised as follows. In Sec.3.2, we discuss the model and

simulation details. In Sec.3.3, the results from the numerical simulations are discussed.

Section.3.5 includes the details of linearised hydrodynamics to calculate the local density

fluctuations in the system. And finally, in Sec.3.6, we conclude the chapter with a summary

and discussion of the results.

3.2 Model

We consider a collection of N polar self-propelled particles (SPPs) moving on a two-

dimensional substrate. SPPs interact through a short-range alignment interaction within

interaction radius RI [Chaté et al. (2008); Grégoire & Chaté (2004); Vicsek et al. (1995)].

Moreover, the strength of interaction of each SPP is different unlike the Vicsek model of

uniform interaction strength [Vicsek et al. (1995)]. Furthermore, the volume exclusion

among the particles is introduced through a soft repulsive binary force fi j, to avoid the

clustering of particles to a single point for low noise or strong alignment [Barberis (2018)].

Each SPP is defined by its position ri and orientation θi, and it moves along its direction

vector ni(t) = (cos(θi(t)),sin(θi(t))) with a fixed speed v0. The two update equations for

the position ri(t) and the direction vector ni(t) are given by,

ri(t +∆t) = ri(t)+ v0ni(t)∆t (3.1)
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ni(t +∆t) =
∑ j∈RI J jn j(t)−β ∑ j∈R fi j +ηNi(t)ξi(t)

wi(t)
(3.2)

and soft repulsion force fi j =

(
exp

[
1−(

ri j
R )

γ]−1
)

ei j, where fi j ̸= 0 if ri j <R, and fi j = 0

if ri j ≥ R, where R = RI/10 is the typical size of the particles. ri j =| r j −ri |, ei j =
ri j
ri j

and

the exponent γ = 0.25 is kept fixed such that the range of the repulsive force is smaller

than the RI .

Eq ∼((3.1)) represents the motion of the particle due to its self-propelled nature along the

direction vector ni(t) with a fixed speed v0. ∆t = 1.0 is the unit time step. The first term on

the right hand side in Eq ∼((3.2)) represents the short-range alignment interaction of the ith

particle with its neighbors within the interaction radius (RI = 1.0), and J j is the interaction

strength of the jth neighbor. The probability distribution of the interaction strength J,

P(J), is obtained from a uniform distribution of range [1− ε

2 : 1+ ε

2 ] [Kumar et al. (2017)],

where ε measures the degree of disorder. ε = 0 corresponds to the uniform interaction

strength (Ji = 1 for all the particles) like the Vicsek model [Vicsek et al. (1995)] whereas

ε = 2 corresponds to the maximum disorder in the system. The second term indicates the

soft-repulsive force due to the finite size of the particles. The strength of the force β is

kept fixed to 0.01. Furthermore, the third term in the Eq ∼((3.2)) denotes the vector noise

which measures the error made by the particle while following its neighbors. ξi(t) is a

random unit vector and Ni(t) denotes the number of neighbors within the interaction radius

of the ith particle at time t. η represents the strength of the noise and it can vary from 0 to

1. wi(t) is the normalisation factor, which reduces the R. H. S. of the Eq ∼((3.2)) to a unit

vector.

The cartoon picture of the model is shown in Fig.3.1 (a). The resultant direction vector

na
i (t) of the ith particle (due to alignment interaction with its neighbors) for the disorder-

free (ε = 0) and the maximum disorder (ε = 2.0) system are shown in Fig.3.1(b) and (c),

respectively. In Fig.3.1(d), ∆Ωi represents the difference in the resultant vectors shown
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Fig. 3.1 (color online) (a) Cartoon picture of the model. The dashed circle of radius RI
represents the interaction radius of the green tagged particle of radius R (at the centre).
The circles of various colors of radius R indicate the neighbors of the tagged particle.
The arrows of different lengths represent the interaction strength J′s of the respective
particle. (b,c) The cartoon picture of the resultant direction of the tagged particle due to
the alignment interaction with its neighbors for the uniform strength (clean polar flock)
and the varying (RBDPF) interaction strength model, respectively. Black and green arrow
represent the resultant directions of the tagged particle in (b) and (c), respectively. (d) The
relative difference in the resultant direction ∆Ωi of the tagged particle for the clean and the
RBDPF.

in Fig. 3.1(b) and (c). For a disorder system the resultant direction vector is closer to

the particle’s original direction, which is due to the weaker alignment in the presence of

disorder. In analogy with the equilibrium random-bond XY (RBXY)-model [Kumar et al.

(2017)], we name our model as random-bond disorder in polar flock (RBDPF). However,

for ε = 0, the model reduces to a disorder-free or clean polar flock. We numerically update

the Eqs ∼((3.1)) and ((3.2)) for all SPPs sequentially. One simulation step is counted

after the update of Eqs ∼((3.1)) and ((3.2)) once for all the particles. Periodic boundary

conditions (PBC) are used for a system of size L×L, and L is varied from 50 to 512 (N
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from 2500 to 262144). The number density of the system is defined as ρ0 =
N

L×L . Most of

the results are obtained for density ρ0 = 1.0 and some results are calculated for ρ0 = 0.5

and 2.0. The self-propulsion speed is fixed at v0 = 0.5. The noise strength η is fixed at

η = 0.2, such that the steady state is an ordered state and the system is away from the

order-disorder phase transition [Chaté et al. (2008)]. The effect of random bond disorder

on the system near order-disorder phase transition have been discussed in Chapter.4 study

[Singh et al. (2021)]. We study the properties of steady state as well as the ordering kinetics

of the orientation and density fields for different strengths of the disorder ε . We consider

time up to 104 to study the ordering kinetics and steady state results are obtained from time

up to 106 and 20 independent realizations are used for the better statistics of the numerical

results.

3.3 Results

3.3.1 Steady-state behaviour

In uniform-interaction strength models or Vicsek-like models [Chaté et al. (2008); Grégoire

& Chaté (2004); Vicsek et al. (1995)], the ordered state exhibits a true long-range order

in two dimensions. In general, the orientation ordering in the system is characterised by

the global orientation order parameter, which is defined as, χ(t) = 1
N |∑

N
i=1ni(t)|. χ(t) is

very small and it is of the order 1√
N

for the disordered state and it is close to unity in

the ordered state. The variation of the mean value of χ(t), χ , vs. 1/N for different ε

is shown in Fig.3.2(a), where “mean” is obtained from the value of χ(t) in the steady

state and it is averaged over 20 independent realisations. We note that χ is independent

of system size for different strengths (ε) of the disorder. However, the magnitude of χ

shows a small variation on increasing the strength ε of the disorder. Furthermore, the

probability distribution function (PDF) of fluctuation from the mean orientation of the
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Fig. 3.2 (color online) (a) Plot of the global orientation order parameter χ vs. 1/N
for different ε in semi− log X scale. (b) Probability distribution function of the mean
orientation fluctuation P(∆θ) vs. ∆θ

π
for different ε in semi− log Y scale. N = 62500.

The filled black circles, red squares, green diamonds represent data for ε = 0.0,1.0, and
2.0, respectively. (c,d) Plots of P(∆θ) vs. ∆θ

π
for different system sizes for ε = 0.0 and

ε = 2.0 in semi− log Y scale, respectively. The filled black circles and red squares denote
N = 40000 and 62500, respectively.

particles P(∆θ) is shown for different values of ε in Fig.3.2(b), where ∆θ = θi −θ where,

θi is the orientation of ith particle and θ is mean orientation of the flock. The peak of the

PDF decreases with the increasing disorder strength ε . Moreover, the change is small

but it is consistent with increasing ε . To confirm the long-range ordering, we plot P(∆θ)

for different system sizes for ε = 0 and 2, in Fig.3.2(c) and (d), respectively. P(∆θ)

distribution for different system sizes overlaps on each other for a particular ε . Therefore,

the magnitude of the global ordering shows a small decay with increasing ε but the ordered

steady state remains long range for all ε of RBDPF.
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Fig. 3.3 (color online) Horizontal panel: top to bottom panels are real space snapshots of
the local number density of the SPPs for different ε at different times t. The topmost panel
is for ε = 0, middle one is for ε = 1 and bottom is for ε = 2. Vertical panels: from left to
right, (a) to (c), are real snapshots of the local number density of the SPPs at different time
t for each ε . Leftmost panel (a) is for t = 5,000, the middle one (b) is for t = 45,000 and (c)
represent zoomed snapshots of (b) at time t=45000. The square boxes in (c) represent the
zoomed version of the square boxes of (b). N = 10,000. The color bar represents the local
number density of the particles. .

Behaviour of the flock state

As discussed in the previous paragraph, the disorder does not affect the usual long-range

ordering in the system. Furthermore, we study the effect of the disorder on the clustering of

particles in the steady state. The snapshots of the system for three different strengths of the

disorder, ε = 0,1 and 2 at different times are shown in Fig.3.3 . At late time, we note that

the number of particles inside a unit sized cell increases for high disorder strength, as shown

in Fig.3.3 . Hence, the particles cluster more cohesively for high disorder strength ε . To



3.3 Results 59

further characterise the density clustering, we calculate the probability distribution function

(PDF) P(n,ε) of the number of particles (n) inside the interaction radius for different ε .

P(n,ε) for different ε decay with an exponential tail, P(n,ε)∼Po(ε)exp(−n/nc(ε)) where

nc is a constant and it is obtained from the exponential fitting, as shown in Fig.3.4(a). The

distribution flattens with the increasing strength of the disorder. Therefore, the particles

are having more number of neighbors inside its interaction radius, i.e. more compact/dense

clustering in the system. In the inset of Fig.3.4(a), the variation of P(n) with ’n’ is shown.

We note that the peak of the distribution decreases with the disorder strength. It further

confirms that the probability of the small clusters is less for high disorder strengths. In the

Fig.3.4(b), the scaling plot of P(n,ε)/Po(ε) vs. n/nc(ε) is shown for different ε . We note

that nc increases linearly with the disorder strength ε , as shown in the inset of Fig.3.4(b). It

also suggests that the number of neighbors for each particle is increasing with ε . Therefore,

the scaling behavior of the PDFs confirm that the clusters are statistically identical for

different strengths ε of the disorder. To further understand the density clustering, we

calculate the local density fluctuation, δφ(ε) =
√

1
L2 ∑

L2
j=1(φ j(ε))2 − ( 1

L2 ∑
L2
j=1φ j(ε))2, for

different ε . To calculate δφ(ε), we divide the full L × L system into L2 number of

unit sized sub-cells. φ j(ε) is the number of particles in the jth unit sized sub-cell and

δφ(ε) is the measure of the standard deviation in number of particles in a unit sized

sub-cell of the system. Furthermore, we define the relative density phase separation by

∆Φ(ε) = δφ(ε)−δφ(0), where δφ(0) is the local density fluctuation for the clean system

(ε = 0). The plot of ∆Φ(ε) vs. ε for three different densities ρ0 = 0.5,1.0 and 2.0 is shown

in Fig.3.4(c). We note that the density clustering increases with ε for all the densities.

We also calculate the magnitude of the density fluctuation using linearized hydrodynamic

equations of motion for the coarse-grained density and orientation fields of the system. The

dashed lines in Fig.3.4(c) is obtained from the linearized hydrodynamics in Eq ∼((3.23)).

Since the linearized hydrodynamic works well in the mean field limit, hence, the data
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matches well for lower density and deviates for the higher densities. The details of the

hydrodynamic calculation are given in Appendix 3.5. Therefore, the random-bond disorder

which has a tendency to disturb the ordering in the corresponding equilibrium system

[Bishop & Reppy (1978); Kumar et al. (2017)], enhances the density clustering in RBDPF.

Hence, the disorder introduces more cohesion among the SPPs.

Furthermore, we calculate the global number fluctuation in different sub-systems, ∆N =√
⟨N2⟩−⟨N⟩2, N, N2, and ∆N represent the number of particle in a box of size l, the

square of the number of particles in a box of size l and standard deviation, respectively. We

varied l from 1 to the 1/4 of the system size. ⟨⟩ represents the average over many snapshots

and many ensembles. We show the plot of ∆N vs. the mean number of particles in the

sub-system ⟨N ⟩ for different ε in Fig.3.4 (d). Although the disorder enhances the local

density clustering, ∆N remains unaffected in the presence of the disorder and the system

shows the usual Giant number fluctuation for all ε . Also, we note that ∆N ≃ ⟨N ⟩1.6, and

it matches well with the previous studies of polar self-propelled particles interact through

the Vicsek type interaction [Bishop & Reppy (1978); Chaté et al. (2008); Grégoire & Chaté

(2004)].

Distribution of particles in flock

In the previous section, we note that the random-bond disorder introduces more cohesion

among the SPPs. To understand this mechanism of cohesion for higher disorder, we

analyse a cluster and study the distribution of particles inside it, as shown in Fig.3.5 .

The snapshot of particles’ position inside the interaction radius of a tagged particle is

shown in Fig.3.5(a). We divide the full range of J ∈ [0,2] (for maximum disorder ε = 2)

in four parts J(1) ∈ [0 : 0.5], J(2) ∈ [0.5,1.0], J(3) ∈ [1.0 : 1.5] and J(4) ∈ [1.5 : 2.0] and

they are shown by different colors. The snapshot shows that the particles of different

interaction strengths are distributed homogeneously inside an interaction radius of a given
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Fig. 3.4 (color online) (a,b) Plots of P(n,ε) vs. n and P(n,ε)/Po(ε) vs. n/nc in semi-log
Y scale for different ε , respectively. The black, red, orange, blue and green lines represent
ε = 0.0,0.5,1.0,1.5, and 2.0, respectively. Inset of (a) is zoomed near to the peak of the
distribution of main plot. N = 62500. In the inset of (b) Plot of ∆nc(ε) = nc(ε)−nc(0) vs.
ε . Voilet circles represent the data obtained from the fitting function exp(−n/nc(ε)) and
orange dashed line indicates the linear variation. (c) Variation of local density fluctuation
∆Φ(ε) with ε . The filled black circles, blue squares and red triangles represent the
numerical data points for ρ0 = 0.5,1 and 2, respectively. Error bars are in the order of
symbol sizes. N = 62500. The black (ρ0 = 0.5), red (ρ0 = 1.0) and blue (ρ0 = 2.0) dashed
line indicate the variation of ∆Φ(ε) obtained from the analytical calculations, as shown
in Appendix.3.5 in Eq ∼((3.23)). (d) Plot of the global number fluctuation (∆N ) vs. the
mean number of particles ⟨N ⟩ in log− log scale. N = 62500. The dashed line represents
slope = 1.6.

particle. Furthermore, we calculate the probability distribution function (PDF) P(nJ(i))

of the particles nJ(i) of the four different ranges of J(i), where i = 1,2,3,4, as shown in

Fig3.5(b). We note that P(nJ(i)) for each range of J(i) are nearly identical and it confirms

that particles are distributed homogeneously in the system. We also plot the particles

orientation distribution P(∆θJ(i)) for the four different ranges of J(i). The orientation

distribution of the particles of different ranges, P(∆θJ(i)), remains unchanged, as shown

in the Fig.3.5(c). Hence, the clusters are a homogeneous network of particles of different
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Fig. 3.5 (color online) (a) Snapshot of the neighbour particles within the interaction
radius (R = 1.0) of a tagged particle in the steady state for disorder strength ε = 2.0.
N = 10000. The filled black circles, red squares, green diamonds, and blue triangles
denote 0 ≤ J < 0.5, 0.5 ≤ J < 1.0, 1.0 ≤ J < 1.5, and 1.5 ≤ J ≤ 2.0, respectively. At the
centre of the box, yellow triangle indicates the tagged particle. (b,c) Plots of P(nJ(i)) and
P(∆θJ(i)) distribution for different J(i) ranges, respectively. N = 62500. Color lines and
symbols in (b,c) indicate same things as in (a). (d) Plot of normalise effective transport
speed v(ε, t)/v0 vs. t. Black, red, green and blue lines represent ε = 0.0, 1.0, 1.5 and 2
respectively. N = 10000.

interaction strengths for the RBDPF. Therefore, a moving particle always experiences a

random network of interaction strengths during its motion. The resulting orientation due

to the random strength of neighbours results in the weaker alignment, hence, the system

has less ordering. Furthermore, we calculate the effective transport speed v(ε, t) of the

particles for different strengths of the disorder. The mean displacement of the particles is

calculated by taking the square root of their mean square displacement, ∆r(t) =
√

⟨∆2r(t)⟩

where ∆2r(t) = ∑
N
i
(
⟨r2

i(t)⟩−⟨ri(t)⟩2). Moreover, the transport speed of the particles is

defined as v(ε, t) = ∆r(t)
t . In Fig.3.5(d), we show the variation of the normalized effective

transport speed v(ε,t)
v0

for four values of disorder strengths ε (= 0, 1, 1.5 and 2). We note

that v(ε,t)
v0

decreases with increasing strength of the disorder. Hence, we claim that due to
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random nature of different interaction strength, dynamics of the particle become slow for

high disorder strength. It further leads to strong clustering on increasing the strength of

disorder.

3.4 Dynamical Behaviour

3.4.1 Ordering kinetics to the steady state

In previous sections, we have discussed the steady-state properties of the ordered state. In

this section, we discuss the effects of the random-bond disorder on the ordering kinetics

when the system is quenched from a random disordered state to an ordered steady state.

Kinetics of the orientation ordering is characterised by calculating the two-point orientation

correlation function C(r, t) =
〈∑i j ni(r0,t)·n j(r+r0,t)

N(N−1)

〉
− ∑i j<ni(r0,t)><n j(r+r0,t)>

N(N−1) , where second

term on the right hand side is zero. ⟨..⟩ represents average over many reference points

r0s’ and 10 independent realizations. We note that C(r, t) grows with time for all disorder

strengths ε as shown in inset of Fig.3.6(a),(b). In the main plot of Fig.3.6 (a) and (b), we

find nice scaling with respect to the reduced length r/Lo(t), where Lo(t) is the characteristic

domain size and it is obtained from the first 0.17 crossing of the correlation function C(r, t).

The plot of Lo(t) vs. time t for the clean system ε = 0 and for the RBDPF (ε = 1,2) are

shown in Fig.3.6(c). We note that the disorder has no effect on the kinetics of growing

domains. Moreover, the size of domains varies as, Lo(t)≃ t1/zo with zo ∼ 2 for all disorder

strengths. We also calculate the kinetics of the growth of the density cluster. Density

growth is measured by the mass of the largest cluster m(t). The mass of the largest cluster

m(t) is calculated using the cluster counting algorithm [Beatrici et al. (2017)]. The plot

of m(t) vs. time t for the clean system ε = 0 and the RBDPF, ε = 1,2, are shown in Fig.

3.6(d). For all cases, m(t) grows with time as tα with α ∼ 0.5. Hence, the length of

the density cluster Lρ(t)≃
√

m(t)∼ t1/zρ and zρ ∼ 4, which is similar to the asymptotic
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Fig. 3.6 (color online) (a,b) Plots C(r, t) vs. r/Lo for ε = 0 and 2, respectively in semi-
log Y-scale. Black, red, green, blue, cyan, brown and Violet lines represents time t =
2,4,16,32,64,128 and 256, respectively. In the inset of (a) and (b), the variation C(r, t)
with r is shown at different time. Different colored lines represent same thing as the main
figure. Dashed line with color magenta is drown parallel to x-axis and intersect y-axis at
0.17 (crossing point) . N = 262144 (c) Plot of Lo(t) with time t in log− log scale. The
dashed line represents the slope 0.5. N = 262144. (d) Plot of mass of the largest cluster
m(t) with time t in log− log scale. N = 40000. The dashed line represents the slope 0.5.
The filled black circles, red squares, and green diamonds represent ε = 0.0,1.0 and 2.0,
respectively.

growth exponent for the conserved field in the active model B [Pattanayak et al. (2021);

Wittkowski et al. (2014)].

3.5 Linearised study of hydrodynamic equations of mo-

tion

We define local density of the particles as,

ρ(r, t) =
N

∑
i=1

δ (r−Ri(t)) (3.3)
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where, Ri and N are the position vector of the ith particle and total number of particles

respectively. Similarly we define the local polarisation density field as

P(r, t)ρ = ∑
N
i=1ni(t)δ (r−Ri(t)). (3.4)

We can write the coupled hydrodynamic equations of motion for density and polarization

fields as obtained in the study [Bertin et al. (2013); Ihle (2011); Toner & Tu (1998)].

∂tρ =−v0∇ · (Pρ) (3.5)

∂tP =

(
α1(ρ,ε)−α2P ·P

)
P− v1

2ρ0
∇(ρ)+λ (P ·∇)P+Dp∇

2
ρ + fp(r, t) (3.6)

For the random-bond disorder model, we introduce an additional general ε dependence term

to alignment parameter α1 in the Eq ∼((3.6)). α1 is considered as a constant in the study

by Toner et al. [Toner & Tu (1998)] whereas have density and noise dependence in [Bertin

et al. (2013); Ihle (2011)]. Here we show in steps, how we get the specific dependence of

α1 on ε . Starting from the position and orientation update (without repulsion) as given in

Eq ∼((3.3)) and ((3.4)), we can write

∂t(Pρ) =
∑i

[
ni(t +∆t)δ (r−Ri(t +∆t))−ni(t)δ (r−Ri(t))

]
∆t

(3.7)

The above discretisation of time derivative are written by approximating all the relevant

time scales are much larger than the unit time step of updation. ni(t +∆t) and Ri(t +∆t)

is obtained from the two updates of orientation and position as given in Eq ∼((3.1)) and

((3.2)) and we have taken ∆t = 1.0 in the simulation. After substitution of the orientation
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and position at time t +∆t, we find

∂t(Pρ) = ∑
i

[∑ j J jn j +Niφiη ][δ (r−Ri(t)− v0ni(t))]
ωi

−∑
i
[ni(t)δ (r−Ri(t))] (3.8)

where ωi = ||∑ j n j(t)+Niφiη ||, where ||..|| means norm of the vector inside. After using

the distribution P(J j) from the uniform distribution of J j from [1− ε/2 : 1+ ε/2] and use

this in the summation inside the interaction radius and replacing it the summation by the

integral (since the distribution of J is continuous), we find that the first term (linear term in

P) in Eq ∼ ((3.6)) will be of the form α1(ρ,ε) = α0

(
ρ0(

1+ε2/12
1−ε2/84)−η2

)
, where α0 is a

constant. Another derivation of the hydrodynamic equations from the microscopic update

equation is similar to as given in [Bertin et al. (2013); Pattanayak & Mishra (2018)]. For

simplicity, we assume all other terms are independent of the disorder.

Eq ∼((3.5)) represents continuity equation for the conserved density field ρ with a flux

controlled by, −v0∇ · (Pρ) describes convection due to self-propulsion speed v0P. In

Eq ∼((3.6)), the first term on right hand side represents a mean field transition from an

isotropic state (P = 0) to a broken symmetry state P =
√

α1(ρ0,ε)
α2

x̂ (the direction of broken

symmetry is chosen along x−axis). The second and third term indicate hydrostatic pressure

due to density gradient and convection in the model, respectively. Both λ and v1 depends on

self-propelled speed of the particle [Bertin et al. (2013)]. Here in present study we assume it

∼ v0. The fourth term represents diffusion in the polarisation field. The last term is noise in

the system fp(r, t) = ( fpx(r, t), fpy(r, t))is white Gaussian white noise with mean zero and

variance ∆p. We perturb the system about the homogeneous steady state solution of Eqs ∼

((3.5)) and ((3.6)) and write ρ(r, t) = ρ0 +δρ and P(r, t) = (p0 +δ px(t))x̂+(δ py(t))ŷ,

where p0(t) =
√

α1(ρ0,ε)
α2

. We write the linearised hydrodynamic equations for small

perturbations in three fields δρ(t), δ px(t) and δ py(t) as,
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∂tδ px =

(
α

′
1(p0)p0 −

v1

2ρ0
∂x

)
δρ −2α1(ρ0,ε)δ px (3.9)

∂tδ py(t) = λ p0∂xδ py +Dp∇
2
δ py −

v1

2ρ0
∂yδρ + fpy(r, t), (3.10)

∂tδρ(t) =−v0(∂x(p0 +δ px)(ρ0 +δρ)+∂yδ py(ρ0 +δρ)) (3.11)

where δ px and δ py are in the directions of broken symmetry and perpendicular to it,

respectively and α ′
1 =

∂α1(ρ)
∂ρ

|ρ0 = α0
(1+ε2/12)
(1−ε2/84) . In writing Eq ∼((3.9)), we assumed that

fluctuations in the longitudinal direction is long range and higher order derivatives are

negligible. In the steady state, using Eq ∼((3.9)) we can solve for δ px

δ px =
(α ′

1 p0 − v1
2ρ0

∂x)δρ

2α1(ρ0,ε)
. (3.12)

We substitute δ px from Eq ∼((3.12)) in Eqs ∼ ((3.10)) and ((3.11)) and write effective

dynamical equations for δ py and δρ as,

∂tδ py = λ p0∂xδ py +Dp∇
2 py −

v1

2ρ0
∂yδρ (3.13)

∂tδρ = v0 p0Vx∂xδρ +Dρ∂x
2
δρ − v0ρ0∂yδ py (3.14)

where, Vx = (
ρ0α

′
1

2α1
+1), Dρ = v0v1

4α1
and α1 = α1(ρ0,ε). Furthermore, we take the Fourier

transform of Eq ∼((3.13)) and ((3.14)) using Y (r, t) =
∫

dkexp(−i(k · r+ωt))Y (k,ω)
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and write different terms in matrix notation,

M

 δρ

δ py

=

 0

fpy

 (3.15)

where, the coefficient matrix M can be written as,

M =

(−iω + iqxv0 p0Vx −Dρqx
2) (−v0ρ0iqyδ py)

( iv1
2ρ0

qyδρ) (−iω −λ p0iqx −Dpq2)

 . (3.16)

The Eq ∼((3.16)) gives the two modes from the linearised hydrodynamics calculations,

ω± =C±(θ)q− iΓL[
V±(θ)

2C2(θ)
]− iΓρ [

V±(θ)

2C2(θ)
], (3.17)

where, C±(θ) =
γ+v0Vx

2 cosθ ±C2(θ), C2(θ) =

√
(γ−v0Vx)2cos2θ

4 +ρ0v1sin2θ , γ = −λv0,

Γρ(q) = Dρq2
x , ΓL(q) = Dpq2 and V±(θ) =C2(θ)± γ−v0Vx

2 cosθ . θ is the angle between

flock direction and propagation vector q, and Γρ(q) and ΓL(q) are the wave vectors

dependent on damping. Using Eq ∼((3.15)) we get

 δρ

δ py

= M−1

 0

fpy

 (3.18)

Therefore, solution for the fluctuations in ρ , δρ(q,ω) = Gρ p(q,ω) fpy(q,ω), where the

propagator Gρ p(q,ω) can be written as,

Gρ p(q,ω)=
v0ρiqy

(ω −C+(θ)q)(ω −C−(θ)q)+ [iω(Γρ(q)+ΓL(q))− iqcosθ(γΓρ(q)+ v0VxΓL(q))]
.

(3.19)
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Furthermore, the two-point density-density correlation function, Cρρ = ⟨|δρ(q,ω)|2⟩, can

be written as,

Cρρ =
v2

0ρ2
0 q2

y∆p

(ω −C+(θ)q)2(ω −C−(θ)q)2 +[ω(Γρ(q)+ΓL(q))−qcosθ(γΓρ(q)+ v0VxΓL(q))]2
.

(3.20)

Moreover, the density fluctuation ⟨|δρ(q,ω)|⟩ can be obtained as,

√
Cρρ =

[
v0ρ0 sinθ

√
∆p

C+(θ)(Γρ +ΓL)− cosθ(γΓρ + v0VxΓL)

]
+

[
v0ρ0 sinθ

√
∆p

C−(θ)(Γρ +ΓL)− cosθ(γΓρ + v0VxΓL)

]
.

(3.21)

We can write Eq ∼((3.21)) in a simple form for fluctuation in θ = π/4 and for finite q ∼ 1,

⟨|δρ|⟩=
√

∆p[
(C+(θ)Dρ −A)+(C−(θ)Dρ −A)
(C+(θ)Dρ −A)(C−(θ)Dρ −A)

]. (3.22)

Substituting A = γDρ + v0VxΓL, C++C− = γ+v0Vx
2 , C+C− = γv0Vx in Eq ∼((3.22)) and

further simplification gives,

⟨|δρ|⟩=
ρ0
√

∆pα0

(
ρ0

1+ε2/12
1−ε2/84 −η2

)
γv1 +ρ0α0(

1+ε2/12
1−ε2/84)+1

. (3.23)

Substituting value of ε = [0.0,2.0], v0 = 0.5, η = 0.2 and ∆p = 0.1 and using α0 as fitting

parameter to match the curve for smallest ρ0 = 0.5 we found α0 = 8, curve matches well.

Then changed value of ρ0 = 1.0 and 2.0 for other two curves. The γ and v1 ∼ v0. The plot

of ⟨|δρ|⟩ for three ρ0 is shown by the dashed line in Fig.3.4(c).

3.6 Discussion

In this chapter, we introduced a minimal model of a collection of self-propelled particles

with the random-bond disorder. Each particle has a different ability (interaction strength)
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to influence its neighbours. The varying interaction strength is obtained from a uniform

distribution and it can be varied from [1− ε/2 : 1+ ε/2], where ε is the disorder strength.

For ε = 0, the model reduces to the uniform interaction strength model or the Vicsek-

like model [Vicsek et al. (1995)]. The equilibrium analogue of the present model is the

random-bond XY model. We studied the characteristics of the ordered steady state for

different strengths of the disorder. The random-bond disorder does not affect the usual

LRO present in a clean polar flock. To our surprise, the random-bond disorder leads to a

more cohesive flock, hence, more inhomogeneous or dense clusters. This phenomenon

is due to the slower dynamics of a particle moving in a random network of different

interaction strengths. Although the disorder affects the local density inhomogeneity, the

global density fluctuation remains unaffected and the system shows the usual giant number

fluctuation (GNF).

Furthermore, we also studied the effects of the random-bond disorder on the ordering

kinetics of the orientation and the density fields. We note that the orientation field in a

polar flock with uniform interaction coarsens with time with a growth exponent zo ∼ 2

whereas the growth exponent for the density field zρ ∼ 4. Moreover, the coarsening for

both the fields remain unaffected in the presence of random-bond disorder as opposed to

what is observed in the corresponding equilibrium model [Bishop & Reppy (1978); Kumar

et al. (2017)].

Hence, this study introduces the effect of the random-bond disorder in a polar flock and

shows many interesting features that are in general not present in the corresponding equi-

librium system with random-bond disorder [Bishop & Reppy (1978); Kumar et al. (2017)].

This study provides a new direction to understand the effects of intrinsic inhomogeneity in

many natural active systems.

***********


