
CHAPTER 6

SOME INVESTIGATIONS ON
THERMOELASTICITY THEORY WITH DUAL

PHASE-LAGS

6.1 Stochastic Thermoelastic Interactions under Dual-

Phase-Lag Model due to Deterministic and Ran-

dom Temperature Distribution at the Boundary

of a Half-Space1

6.1.1 Introduction

The present chapter is devoted to the study of dual-phase-lag thermoelasticity theory

which is developed by Chandrasekharaiah (1998) on the basis of dual-phase-lag heat

conduction law given by Tzou (1995b; 1995c). It has been realized by experimental ob-

servations that the fast-transient process of heat transfer in the gold film like structures

involves micro-structural interaction effects (Brorson et al. (1987), Tzou (1995a)). In

order to take into account these microscopic effects in heat transport mechanism, some

models have been developed such as phonon-scattering model (Joseph and Preziosi

(1989; 1990), Guyer and Krumhansl (1964)), phonon-electron interaction model (Bror-
1The content of this subchapter is published in Mathematics and Mechanics of Solids, 24(6), 2019.
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son et al. (1987), Anisimov et al. (1974), and Fujimoto et al. (1984)), and microscopic

two-step model (Qiu and Tien (1992; 1993)). In 1995, Tzou (1995b; 1995c) has incor-

porated the effects of microstructural interactions in the fast transient process of heat

transport phenomenon in a macroscopic formulation and proposed a more generalized

law of heat conduction, known as dual-phase-lag heat conduction model. This dual-

phase-lag heat conduction theory includes two different phase-lags associated with the

heat-flux and the temperature gradient. The phase-lag associated to heat-flux (τq) em-

phasizes the fast-transient effects of thermal inertia while the phase-lag related to the

temperature gradient (τθ) highlights the micro-structural interactions. This heat con-

duction model is further extended by Chandrasekharaiah (1998) to develop the gener-

alized thermoelasticity theory that successfully overcomes the paradox of infinite speed

of thermal waves. This theory is referred to as thermoelasticity with two phase-lags or

dual phase-lags.

Dual-phase-lag thermoelastic model has been the area of interest to many researchers

with respect to the study of the stability of the solution, various approximations, well-

posedness, quality aspects, etc. Quintanilla (2003) has analyzed the exponential sta-

bility and well-posedness of dual-phase-lag thermoelasticity theory. Quintanilla and

Racke (2006) have inspected the qualitative aspects of the dual-phase-lag theory. Roy-

choudhuri (2007b) has studied the problem of one-dimensional disturbances in an elastic

half-space under two different boundary conditions. Mukhopadhyay et al. (2011a; 2014)

have presented the domain of influence theorem, uniqueness theorem, variational theo-

rem, and Danilovskaya’s problem for this dual-phase-lag theory. In the present chapter,

some aspects of dual-phase-lag thermoelasticity theory are analyzed by solving three

different unsolved problems.

The main motive of the present subchapter is to investigate coupled thermoelas-

tic interactions due to two distinct types of boundary conditions in the context of

dual-phase-lag thermoelasticity theory. It is also aimed at investigating the effects of
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stochastic temperature distributions at the boundary of a half-space in the present con-

text. A stochastic process is the mathematical tool that helps to deal with random

nature of the system. It is basically a collection of random variables. Often, it makes

the mathematical problem more realistic as compared to deterministic case due to the

involvement of more possibilities by adding randomness to the problem. It facilitates

the use of different samples along which the process can run despite the availability of

initial conditions. However, some paths may be more probable than the others (Hoel

et al. (1986), Platen and Kloeden (2006), and Lawler (2006)). There are many rea-

sons that require replacing the rigorous deterministic model by stochastic model, out of

which two reasons are worth mentioning (Bellomo and Flandoli (1989)). Firstly, incom-

plete isolation of the system that includes the interaction with a background field which

gives rise to an additional noise. Secondly, the number of variables taken into account

may not be sufficiently large in order to include all the variables representing the real

physical system thus the remaining variables may give rise to some additional noise.

Due to these reasons, there has been a popular trend to involve stochastic simulations

to analyze many physical problems. Ahmadi (1978), Chen and Tien (1967), Kellar et

al. (1978), and Tzou (1988) studied various thermal problems with random conductiv-

ity and problems in random medium. Ahmadi (1974), Chiba and Sugano (2007), and

Gaikovich (1996) further studied the problems using random initial and boundary con-

ditions. Val’kovskaya and Lenyuk (1996) considered the problems involving stochastic

internal heat generation. Sherief et al. (2013; 2017) discussed the stochastic thermal

shock problems in generalized thermoelasticity and generalized thermoelastic diffusion,

respectively. Subsequently, Kant and Mukhopadhyay (2017; 2018) discussed the effects

of the stochastic thermomechanical loading effects in the contexts of the theory of ther-

moelasticity without energy dissipation and the theory of thermoelasticity with two

relaxation parameters.

This subchapter is arranged in the following way. In Subsection 6.1.2 and Sub-
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section 6.1.3, respectively the basic equations are discussed and the problem under

dual-phase-lag model for an isotropic homogeneous one-dimensional elastic half-space

is formulated. Subsection 6.1.4 demonstrates the method of solving the problem and

derives the solution of field variables in Laplace transform domain. In Subsection 6.1.5,

the solution for temperature in physical domain is obtained. For deterministic case,

two types of boundary conditions are considered. Case-I considers the application of

thermal shock (Danilovskaya’s Problem) at the stress free boundary of the half space,

whereas Case-II considers ramp-type heating at the boundary. The solution in physical

domain is obtained by using short time approximation and inverse Laplace transform.

Analytical solutions of the field variables are analyzed. Next, in Sub-subsection 6.1.5.2,

the stochastic type boundary conditions are introduced by incorporating the white

noise to the deterministic ones and then it is described how to get the solution of the

problem using the concept of Wiener process. Further, similar method is applied to

find the solution for stress and displacement in both deterministic and stochastic case

in Subsection 6.1.6 and Subsection 6.1.7, respectively. Subsection 6.1.8 involves the

numerical computation of the problem for copper material to illustrate the problem as

the special case. The solutions for the deterministic cases are potted and comparison

with stochastic solution for different sample paths and the mean path is made. Lastly,

in Subsection 6.1.9, the results are analyzed to mark the comparison between stochastic

and deterministic type solutions of all the physical fields. It has been shown that pre-

diction of finite wave speed by the present model is indicated in both the deterministic

as well as stochastic boundary conditions.

6.1.2 Basic Equations

The dual-phase-lag heat conduction theory was proposed by Tzou (1995b; 1995c) in

order to take into account the microscopic effects during heat transport process in a

medium and this theory was extended to generalized thermoelasticity theory by Chan-
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drasekharaiah (1998). Hence, following Tzou (1995b; 1995c) and Chandrasekharaiah

(1998), the basic governing equations in the context of dual-phase-lag thermoelasticity

in the absence of body forces and heat sources can be written as follows:

Modified heat conduction law with dual phase-lags:

(
1 + τq

∂

∂t
+
τ 2
q

2

∂2

∂t2

)
qi = −K

(
1 + τθ

∂

∂t

)
θ,i. (6.1.1)

Energy equation:

− qi,i = ρT0
∂S

∂t
. (6.1.2)

Entropy equation:

T0ρS = ρcEθ + βT0ekk. (6.1.3)

Equation of motion:

σij,j = ρüi. (6.1.4)

Stress-strain-temperature relation:

σij = λekkδij + 2µeij−βθδij. (6.1.5)

Strain-displacement relation:

eij =
1

2
(ui,j + uj,i). (6.1.6)

6.1.3 Problem Formulation

A problem of an isotropic and homogeneous elastic medium is taken. The formulation

of problem is done for one-dimensional half-space, i.e, x ≥ 0 in such a way that the
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boundary of the medium is experiencing zero stress and is subjected to a time-dependent

temperature distribution. Each physical field variable is assumed to be bounded and

vanishes as x → ∞. Therefore, for one-dimension with displacement vector as ~u =

(u(x, t), 0, 0), the governing equations can be obtained in the following way:

Using Eqs. (6.1.1-6.1.3) and Eq. (6.1.6), heat conduction equation is obtained as

K

(
1 + τθ

∂

∂t

)
∂2θ

∂x2
=

(
1 + τq

∂

∂t
+
τ 2
q

2

∂2

∂t2

)(
ρcE

∂θ

∂t
+ βT0

∂2u

∂x∂t

)
. (6.1.7)

Displacement equation of motion obtained by using Eqs. (6.1.4-6.1.6) takes the form

ρ
∂2u

∂t2
= (λ+ 2µ)

∂2u

∂x2
− β ∂θ

∂x
. (6.1.8)

Stress-displacement-temperature relation is derived using Eqs. (6.1.5-6.1.6) as

σxx = (λ+ 2µ)
∂u

∂x
− βθ. (6.1.9)

For simplification of the problem, the following non-dimensional variables and param-

eters are involved :

x
′
= c1ξx, t

′
= c2

1ξt, θ
′
=

θ

T0

, u
′
=
c1(λ+ 2µ)ξu

βT0

, τ
′

q = c2
1ξτq, τ

′

θ = c2
1ξτθ,

ε =
β2T0

ρ2cEc2
1

, andσ
′

xx =
σxx
βT0

.

where, c1 =
√

(λ+2µ)
ρ

is the speed of propagation of isothermal elastic waves, ξ = ρcE
K
,

and ε is the thermoelasticity coupling constant.

Therefore, using above non-dimensional variables and parameters, Eqs. (6.1.7-6.1.9)

are transformed to the following forms:
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(
1 + τθ

∂

∂t

)
∂2θ

∂x2
=

(
1 + τq

∂

∂t
+
τ 2
q

2

∂2

∂t2

)(
∂θ

∂t
+ ε

∂2u

∂x∂t

)
, (6.1.10)

∂2u

∂t2
=
∂2u

∂x2
− ∂θ

∂x
, (6.1.11)

σxx =
∂u

∂x
− θ. (6.1.12)

Here, the primes are dropped for the convenience.

Initial and boundary conditions:

The boundary conditions are assumed in the following form:

σxx(x, t)|x=0 = 0, u(x, t)|x=∞ = 0 for t > 0

θ(x, t)|x=0 = θ0(t), θ(x, t)|x=∞ = 0 for t > 0

 , (6.1.13)

where, θ0(t) is any function of t. On the other hand, all the initial conditions are

considered as homogeneous.

6.1.4 Solution of the Problem in the Laplace Transform Domain

After applying the Laplace transform on time, t to Eqs. (6.1.10-6.1.12), the following

equations are obtained:

(nD2 −m)θ̄(s) = εmDū(s), (6.1.14)

(D2 − s2)ū(s) = Dθ̄(s), (6.1.15)

σ̄xx(s) = Dū(s)− θ̄(s), (6.1.16)

where,

D =
d
dx
, n = (1 + τθs), m = s

(
1 + τqs+

1

2
(τqs)

2

)
, (6.1.17)

and ū(s), θ̄(s), and σ̄xx(s) represent the Laplace transform of u(t), θ(t), and σxx(t),

respectively.
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Again, applying Laplace transform to boundary conditions (6.1.13) gives

σ̄xx(x, s)|x=0 = 0, ū(x, s)|x=∞ = 0

θ̄(x, s)|x=0 = θ̄0(s), θ̄(x, s)|x=∞ = 0

 , (6.1.18)

where, θ̄0(s) is the Laplace transform of θ0(t).

Now, simplification of Eqs. (6.1.14-6.1.15) gives decoupled equations in terms of ū and θ̄

as

[nD4 − (ns2 +m+mε)D2 +ms2](ū, θ̄) = 0. (6.1.19)

The corresponding auxiliary equation will be

nk4 − (ns2 +m+mε)k2 +ms2 = 0. (6.1.20)

Since all the variables are vanishing as x→∞, only the roots with negative real parts of

Eq. (6.1.20) are considered to avoid the positive powers of exponential while expressing

the solution of differential equation (6.1.19).

Therefore, the solution of Eqs. (6.1.14-6.1.16) is acquired using the boundary condition

(6.1.18) as

θ̄(x, s) =
θ̄0(s)

(k2
2 − k2

1)
[(s2 − k2

1) e−k1x − (s2 − k2
2) e−k2x], (6.1.21)

ū(x, s) =
θ̄0(s)

(k2
2 − k2

1)
[k1 e

−k1x − k2 e
−k2x], (6.1.22)

σ̄xx(x, s) =
s2θ̄0(s)

(k2
2 − k2

1)
[e−k2x − e−k1x], (6.1.23)

where, −k1 and −k2 are the roots of Eq. (6.1.20) such that Re(ki) > 0 (i = 1, 2) and

are functions of s alone.
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6.1.5 Temperature Distribution in Physical (Space-Time) Do-

main

6.1.5.1 Deterministic Temperature

In order to obtain the solution of the problem in space-time domain, it is required to

take the inverse Laplace transform of the solutions obtained in the previous subsection.

Firstly, the deterministic case is considered and in order to evaluate field variables

with deterministic type boundary conditions, two different types of such conditions are

assumed. Hence, the boundary temperature θ0(t) in Eq. (6.1.13) is defined in the

following two ways:

Case-I: Thermal shock (Danilovskaya’s Problem):

θ1(t) = θ0(t) = θ∗H (t) for t > 0, (6.1.24)

where, H (t) is Heaviside unit step function and θ∗ is a constant temperature.

Case-II: Ramp-type heating at the boundary:

θ2(t) = θ0(t) = θ∗


0, t ≤ 0

t
tc
, 0 < t ≤ tc

1, t > tc

, (6.1.25)

where, tc is a constant time that is the fixed time of rise of ramp-type heating.

Applying Laplace transform to both the cases yields

Case-I:

θ̄1(s) =
θ∗

s
(6.1.26)

Case-II:

θ̄2(s) =
θ∗

tcs2
(1− e−tcs) (6.1.27)
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Taking Laplace inverse of Eqs. (6.1.21-6.1.23) to get a closed form solution of field

variables is a formidable task. Therefore, an attempt to obtain the short time ap-

proximation is made for the large value of s to obtain the approximate solution of the

problem. For this, the roots of Eq. (6.1.20) are considered as follows:

k1 ≈
s

ν1

+
1

2

λ2

λ1ν1

, (6.1.28)

k2 ≈
s

ν2

+
1

2

µ2

µ1ν2

, (6.1.29)

where,

λ1 = a+
√
a2 − 4f, µ1 = a−

√
a2 − 4f,

ν1 =

√
2τθ
λ1

, ν2 =

√
2τθ
µ1

,

λ2 = b− a

τθ
+

√
a2 − 4f

τθ
{rτθ − 1} ,

µ2 = b− a

τθ
−
√
a2 − 4f

τθ
{rτθ − 1}

a = τθ +
1

2
(1 + ε)τ 2

q , b = 1 + (1 + ε)τq, (6.1.30)

d = τθτq +
1

2
τ 2
q , f =

τθτ
2
q

2
,

r =

(
ab− 2d

a2 − 4f

)
.

It is noted that a > 0 and a2 − 4f = 1
4

[
(2τθ − τq)2 + ε2τ 4

q + 4τθτ
2
q ε
]
> 0, which implies

that
√
a2 − 4f > 0.

Hence, substituting boundary conditions (6.1.26-6.1.27) and expressions from Eqs.

(6.1.28-6.1.29) in Eq. (6.1.21) and then taking inverse, yield the following expression

for temperature in case of deterministic distribution :
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Case-I:

θ1(x, t) = θ(x, t)

=
θ∗

l0

[
e
− λ2x

2λ1ν1

{
(ν2

1 − 1)

ν2
1

−
(
m0

l0

(ν2
1 − 1)

ν2
1

+
λ2

λ1ν2
1

)(
t− x

ν1

)}
h

(
t− x

ν1

)
−e−

µ2x
2µ1ν2

{
(ν2

2 − 1)

ν2
2

−
(
m0

l0

(ν2
2 − 1)

ν2
2

+
µ2

µ1ν2
2

)(
t− x

ν2

)}
h

(
t− x

ν2

)]
, (6.1.31)

Case-II:

θ2(x, t) = θ(x, t)

=
θ∗

l0tc

[
e
− λ2x

2λ1ν1

{
(ν2

1 − 1)

ν2
1

(
t− x

ν1

)
− 1

2

(
m0

l0

(ν2
1 − 1)

ν2
1

+
λ2

λ1ν2
1

)(
t− x

ν1

)2
}
h

(
t− x

ν1

)

− e−
µ2x

2µ1ν2

{
(ν2

2 − 1)

ν2
2

(
t− x

ν2

)
−
(
m0

l0

(ν2
2 − 1)

ν2
2

+
µ2

µ1ν2
2

)(
t− x

ν2

)2
}
h

(
t− x

ν2

)
− e−

λ2x
2λ1ν1

{
(ν2

1 − 1)

ν2
1

(
t− x

ν1

− tc
)
− 1

2

(
m0

l0

(ν2
1 − 1)

ν2
1

+
λ2

λ1ν2
1

)(
t− x

ν1

− tc
)2
}
h

(
t− x

ν1

− tc
)

+ e
− µ2x

2µ1ν2

{
(ν2

2 − 1)

ν2
2

(
t− x

ν2

− tc
)

−
(
m0

l0

(ν2
2 − 1)

ν2
2

+
µ2

µ1ν2
2

)(
t− x

ν2

− tc
)2
}
h

(
t− x

ν2

− tc
)]

, (6.1.32)

where,

m0 =
µ2

ν2
2µ1

− λ2

ν2
1λ1

,

l0 =
1

ν2
2

− 1

ν2
1

.

It must be mentioned here that the case-I was studied by Roychoudhuri (2007a) and

Mukhopadhyay et al. (2014) and similar results were reported.
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6.1.5.2 Stochastic Temperature

Now, the temperature at the boundary of the half space is considered as stochastic

distribution in the form

θ0(t) = θi(t) + ψ0(t), (6.1.33)

where, θi(t) (i = 1, 2) is defined as in Eqs. (6.1.24-6.1.25) and ψ0(t) is a stochastic

process based on the parameter t, satisfying

E[ψ0(t)] = 0. (6.1.34)

The stochastic process, ψ0, is taken to be of white noise type as it is the most common

type.

Recalling the property (Nowinski (1978) and Sherief et al. (2013)) satisfied by stochastic

process x(t) as

E[L{x(t)}] = L[E{x(t)}], (6.1.35)

and since ψ0(t) is a stochastic process and each physical field involves boundary con-

dition, therefore, each of them also becomes stochastic process mainly because of the

random function ψ0(t). Therefore, Eq. (6.1.21) and Eq. (6.1.34) give

E[θ̄(x, s)] = L {E[θ(x, t)]} =
θ̄0(s)

(k2
2 − k2

1)
[(s2 − k2

1) e−k1x − (s2 − k2
2) e−k2x]. (6.1.36)

It is observed that the mean of all the sample paths of the temperature field, E[θ(x, t)],

is similar to the solution for both cases given in Eqs. (6.1.31-6.1.32) for the deterministic

case.

Next, it is considered that

Θ(x, s) =
1

(k2
2 − k2

1)
[(s2 − k2

1) e−k1x − (s2 − k2
2) e−k2x]. (6.1.37)
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Therefore, Eq. (6.1.21) and Eq. (6.1.37) imply

θ̄(x, s) = θ̄0(s)Θ̄(x, s). (6.1.38)

Now, using Eq. (6.1.33), it is obtained that

θ̄(x, s) =
(
θ̄i(s) + ψ̄0(s)

)
Θ̄(x, s). (6.1.39)

Inverting the Laplace transform in above equation by using convolution property of

Laplace inverse and the results from Eq. (6.1.21) and Eqs. (6.1.31-6.1.32) give the

following:

θ(x, t) = θi(x, t) +

tw

0

ψ(u)Θ(x, t− u)du, (6.1.40)

where, θi(x, t)(i = 1, 2) represents the deterministic temperature for two cases expressed

as in Eqs. (6.1.31-6.1.32) and Θ(x, t) is the Laplace inverse of Eq. (6.1.37) obtained in

the similar way as in Eqs. (6.1.31-6.1.32). Therefore,

Θ(x, t) =
1

l0

[
e
− λ2x

2λ1ν1

{
(ν2

1 − 1)

ν2
1

δ

(
t− x

ν1

)
−
(
m0

l0

(ν2
1 − 1)

ν2
1

+
λ2

λ1ν2
1

)}
h

(
t− x

ν1

)
−e−

µ2x
2µ1ν2

{
(ν2

2 − 1)

ν2
2

δ

(
t− x

ν2

)
−
(
m0

l0

(ν2
2 − 1)

ν2
2

+
µ2

µ1ν2
2

)}
h

(
t− x

ν2

)]
,

(6.1.41)

where, δ(t) represents the Dirac delta function.

Further, Eq. (6.1.40) can be written as

θ(x, t) = θi(x, t) +

tw

0

Θ(x, t− u) dW (u), (6.1.42)

where, W (u) represents the Wiener process.

Therefore, stochastic temperature in different cases will be of the forms as given below:

Case-I:
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θ(x, t) = θ1(x, t) +

tw

0

Θ(x, t− u) dW (u). (6.1.43)

Case-II:

θ(x, t) = θ2(x, t) +

tw

0

Θ(x, t− u) dW (u). (6.1.44)

Now, recalling one more property of Laplace Transform w.r.t. auto-correlation as

(Nowinski (1978) and Sherief et al. (2013))

Rxx(s1, s2) = E[x(s1)x(s2)], (6.1.45)

where, Rxx(t1, t2) = E[x(t1)x(t2)] represents the auto-correlation function of a stochas-

tic process x(t) and

Rxx(s1, s2) = L2 {Rxx(t1, t2)} =

∞w

0

e−s1t1

(∞w
0

e−s2t2f(t1, t2)dt2

)
dt1, (6.1.46)

where, L2(.) represents the the double Laplace transform.

Here, the process is assumed to be probabilistic stationary. A random process, X(t), is

called stationary if for all n and for every set of time instants (ti ε T, i = 1, 2, ..n),

fX(x1, ..., xn; t1, ..., tn) = fX(x1, ..., xn; t1 + τ, ..., tn + τ),

where, fX is joint probability density function. Therefore, the auto-correlation of a

stationary function will be function of the time interval τ alone i.e.

E[X(t1)X(t2)] ≡ RXX(τ), τ = t1 − t2. (6.1.47)

From Eq. (6.1.21), Eq. (6.1.33), Eq. (6.1.34), Eq. (6.1.36), Eq. (6.1.37), and Eq.

158



CHAPTER 6. Some investigations on thermoelasticity....

(6.1.45), the following is acquired

Rθθ(x, s1, s2)

= E[θ(x, s1)θ(x, s2)]

= E

[
θ̄0(s1)

(k22(s1)− k21(s1))

[
(s21 − k21(s1)) e−k1(s1)x

−(s21 − k22(s1)) e−k2(s1)x
]
.

θ̄0(s2)

(k22(s2)− k21(s2))
[(s22 − k21(s2)) e−k1(s2)x − (s22 − k22(s2)) e−k2(s2)x]

]
= Θ(x, s1)Θ(x, s2)E[θ̄0(s1)θ̄0(s2)]

= Θ(x, s1)Θ(x, s2)E
[(
θ̄i(s1) + ψ̄0(s1)

) (
θ̄i(s2) + ψ̄0(s2)

)]
= Θ(x, s1)Θ(x, s2)

(
E
[
ψ̄0(s1)ψ̄0(s2)

]
+ θ̄i(s1)θ̄i(s1)

)
= Rψ0ψ0

(s1, s2)Θ(x, s1)Θ(x, s2) + E[θ̄(x, s1)]E[θ̄(x, s2)], (6.1.48)

where, Rψ0ψ0(s1, s2) = E
[
ψ̄0(s1)ψ̄0(s2)

]
.

In the present chapter, ψ0 is assumed to be a white noise. Therefore, (Nowinski (1978))

yields

Rψ0ψ0(t1, t2) = δ(τ). (6.1.49)

From Eq. (6.1.46), the double Laplace of Eq. (6.1.49) can be obtained as

Rψ0ψ0(s1, s2) =
1

s1 + s2

. (6.1.50)

Some properties of double Laplace transform can be stated as (Nowinski (1978)):

• L2 {f1(x)f2(x)} = L {f1(x)}L {f2(x)},

• 1
s1+s2

L2 {f(x− ξ, y − ξ)} =

 L2

{´ x
0
f(x− ξ, y − ξ)dξ

}
, for y > x

L2

{´ y
0
f(x− ξ, y − ξ)dξ

}
, for y < x

.

Using above mentioned properties of double Laplace transform and Laplace transform,
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Eq. (6.1.48) and Eq. (6.1.50) give

Rθθ(x, s1, s2)

=
1

s1 + s2

L2 {Θ(x, t1)Θ(x, t2)}+ E[θ̄(x, s1)]E[θ̄(x, s2)]

= L2

{
t1w

0

Θ(x, t1 − ξ)Θ(x, t2 − ξ)dξ

}
+ L2 {E[θ(x, t1)]E[θ(x, t2)]} , t2 > t1,

which implies

Rθθ(x, t1, t2) =

t1w

0

Θ(x, t1 − ξ)Θ(x, t2 − ξ)dξ + E[θ(x, t1)]E[θ(x, t2)].

Taking t1 = t2 = t above, implies

Rθθ(x, t) = E[θ2(x, t)] =

tw

0

Θ2(x, t− ξ)dξ + (E[θ(x, t)])2 .

Plugging t− ξ = ϑ, gives

E[θ2(x, t)] =

tw

0

Θ2(x, ϑ)dϑ+ (E[θ(x, t)])2 .

Therefore, variance for the temperature distribution can be obtained as

V ar[θ(x, t)] = E[θ2(x, t)]− (E[θ(x, t)])2 =

tw

0

Θ2(x, ϑ)dϑ. (6.1.51)

160



CHAPTER 6. Some investigations on thermoelasticity....

6.1.6 Stress Distribution

6.1.6.1 Deterministic Stress

In view of the deterministic boundary conditions (6.1.26-6.1.27) and following the same

way as in subsection 6.1.5, the solution of stress field are obtained for both the cases in

the following forms:

Case I:

σ1
xx

(x, t) = σxx(x, t)

=
θ∗

l0

[
−e−

λ2x
2λ1ν1

{
1− m0

l0

(
t− x

ν1

)}
h

(
t− x

ν1

)
+e
− µ2x

2µ1ν2

{
1− m0

l0

(
t− x

ν2

)}
h

(
t− x

ν2

)]
. (6.1.52)

Case II:

σ2
xx

(x, t) = σxx(x, t)

=
θ∗

l0tc

[
−e−

λ2x
2λ1ν1

{(
t− x

ν1

)
− m0

2l0

(
t− x

ν1

)2
}
h

(
t− x

ν1

)

+ e
− µ2x

2µ1ν2

{(
t− x

ν2

)
− m0

2l0

(
t− x

ν2

)2
}
h

(
t− x

ν2

)

+ e
− λ2x

2λ1ν1

{(
t− x

ν1

− tc
)
− m0

2l0

(
t− x

ν1

− tc
)2
}
h

(
t− x

ν1

− tc
)

−e−
µ2x

2µ1ν2

{(
t− x

ν2

− tc
)
− m0

2l0

(
t− x

ν2

− tc
)2
}
h

(
t− x

ν2

− tc
)]

. (6.1.53)

6.1.6.2 Stochastic Stress

Using the stochastic boundary condition as mentioned in Eq. (6.1.33) and proceeding

in the same manner as in section 6.1.5, the following is obtained:

E[σ̄xx(x, s)] = L {E[σxx(x, t)]} =
s2θ̄0(s)

(k2
2 − k2

1)
[e−k2x − e−k1x]. (6.1.54)

161



CHAPTER 6. Some investigations on thermoelasticity....

Therefore, again it is observed that the mean of all the sample paths of the stress field,

E[σxx(x, t)], is similar to the solution for both cases given in Eqs. (6.1.52-6.1.53) for

the deterministic case.

Now, considering

Γ̄(x, s) =
s2

(k2
2 − k2

1)
[e−k2x − e−k1x]. (6.1.55)

Therefore, from Eq. (6.1.23) and Eq. (6.1.55), it is obtained that

σ̄xx(x, s) = θ̄0(s)Γ̄(x, s). (6.1.56)

Further, Eq. (6.1.33) gives

σ̄xx(x, s) =
(
θ̄i(s) + ψ̄0(t)

)
Γ̄(x, s). (6.1.57)

Taking Laplace inversion by using convolution and using the results of Eq. (6.1.23) and

Eqs. (6.1.52-6.1.53) yield

σxx(x, t) = σi
xx

(x, t) +

tw

0

ψ(u)Γ(x, t− u)du, (6.1.58)

where, σi
xx

(x, t) (i = 1, 2) are given by Eqs. (6.1.52-6.1.53) and Γ(x, t) is the Laplace

inverse of Eq. (6.1.55) which can be expressed as

Γ(x, t) =
1

l0

[
−e−

λ2x
2λ1ν1

{
δ

(
t− x

ν1

)
− m0

l0

}
h

(
t− x

ν1

)
+e
− µ2x

2µ1ν2

{
δ

(
t− x

ν2

)
− m0

l0

}
h

(
t− x

ν2

)]
. (6.1.59)

Now, Eq. (6.1.58) can be rewritten as

σxx(x, t) = σi
xx

(x, t) +

tw

0

Γ(x, t− u)dW (u). (6.1.60)
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Therefore, the solution for stochastic stress in space-time domain for two different cases

can be written as

Case-I:

σxx(x, t) = σ1
xx

(x, t) +

tw

0

Γ(x, t− u)dW (u). (6.1.61)

Case-II:

σxx(x, t) = σ2
xx

(x, t) +

tw

0

Γ(x, t− u)dW (u). (6.1.62)

Also, using the same argument as in section 6.1.5, variance for the stress distribution

can be defined as

V ar[σxx(x, t)] =

tw

0

Γ2(x, ϑ)dϑ.

6.1.7 Displacement Distribution

6.1.7.1 Deterministic Displacement

Similar to above subsections, displacement in cases of two different deterministic bound-

ary conditions can be expressed as follows:

Case-I:

u1(x, t)

=
θ∗

l0

[
e
− λ2x

2λ1ν1

{
1

ν1

(
t− x

ν1

)
− 1

2ν1

(
m0

l0
+

λ2

2λ1

)(
t− x

ν1

)2
}
h

(
t− x

ν1

)

−e−
µ2x

2µ1ν2

{
1

ν2

(
t− x

ν2

)
− 1

2ν2

(
m0

l0
+

µ2

2µ1

)(
t− x

ν2

)2
}
h

(
t− x

ν2

)]
. (6.1.63)
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Case-II:

u2(x, t)

=
θ∗

l0tc

[
e
− λ2x

2λ1ν1

{
1

2ν1

(
t− x

ν1

)2

− 1

6ν1

(
m0

l0
+

λ2

2λ1

)(
t− x

ν1

)3
}
h

(
t− x

ν1

)

− e−
µ2x

2µ1ν2

{
1

2ν2

(
t− x

ν2

)2

− 1

6ν2

(
m0

l0
+

µ2

2µ1

)(
t− x

ν2

)3
}
h

(
t− x

ν2

)

− e−
λ2x

2λ1ν1

{
1

2ν1

(
t− x

ν1

− tc
)2

− 1

6ν1

(
m0

l0
+

λ2

2λ1

)(
t− x

ν1

− tc
)3
}
h

(
t− x

ν1

− tc
)

+e
− µ2x

2µ1ν2

{
1

2ν2

(
t− x

ν2

− tc
)2

− 1

6ν2

(
m0

l0
+

µ2

2µ1

)(
t− x

ν2

− tc
)3
}
h

(
t− x

ν2

− tc
)]

.

(6.1.64)

6.1.7.2 Stochastic Displacement

Again, using the stochastic boundary condition as mentioned in Eq. (6.1.33) and pro-

ceeding in the same manner as in above subsections, the following is obtained:

E[ū(x, s)] = L {E[u(x, t)]} =
θ0(s)

(k2
2 − k2

1)
[k1 e

−k1x − k2 e
−k2x]. (6.1.65)

Therefore, the mean of all the sample paths of the displacement field, E[u(x, t)], is

similar to the solution for both cases given in Eqs. (6.1.63-6.1.64) for the deterministic

case.

Now, consider

Ū(x, s) =
1

(k2
2 − k2

1)
[e−k2x − e−k1x]. (6.1.66)

Therefore, Eq. (6.1.22) and Eq. (6.1.66) return

ū(x, s) = θ̄0(s)Ū(x, s). (6.1.67)
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Further, from Eq. (6.1.33), it is obtained that

ū(x, s) =
(
θ̄i(s) + ψ̄0(t)

)
Ū(x, s). (6.1.68)

Applying Laplace inversion by using convolution property and using the results of Eq.

(6.1.22) and Eqs. (6.1.63-6.1.64) give

u(x, t) = ui(x, t) +

tw

0

ψ(u)U(x, t− u)du, (6.1.69)

where, ui(x, t) (i = 1, 2) are given by Eqs. (6.1.63-6.1.64) and U(x, t) is Laplace inverse

of Eq. (6.1.66) which can be expressed as

U(x, t) =
1

l0

[
e
− λ2x

2λ1ν1

{
1

ν1

− 1

ν1

(
m0

l0
+

λ2

2λ1

)(
t− x

ν1

)}
h

(
t− x

ν1

)
−e−

µ2x
2µ1ν2

{
1

ν2

− 1

ν2

(
m0

l0
+

µ2

2µ1

)(
t− x

ν2

)}
h

(
t− x

ν2

)]
. (6.1.70)

Now, Eq. (6.1.69) can be modified as

u(x, t) = ui(x, t) +

tw

0

U(x, t− u)dW (u). (6.1.71)

Therefore, stochastic displacement for two different cases can be written as

Case-I:

u(x, t) = u1(x, t) +

tw

0

U(x, t− u)dW (u). (6.1.72)

Case-II:

u(x, t) = u2(x, t) +

tw

0

U(x, t− u)dW (u). (6.1.73)

With the previous subsection’s discussion, variance for the displacement distribution

can be given as

V ar[u(x, t)] =

tw

0

U2(x, ϑ)dϑ.
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6.1.8 Numerical Results

In this subsection, the present problem is illustrated by finding numerical solution by

considering copper material with the following materialistic data (Sherief et al. (2013)):

λ = 7.76×1010 kg m−1s−2, µ = 3.86× 1010 kg m−1s−2, ρ = 8954 kg m−3,

cE = 383.1 J kg−1K, βθ = 1.78× 10−5K−1, K = 386 Wm−1K−1, T0 = 293K.

The value of non-dimensional entities are taken as follows:

τθ = 0.01, τq = 0.015, t = 0.25, tc = 0.1, θ∗ = 1.

The solution of the physical fields in the space-time domain is obtained for both the

cases by carrying out numerical computation of the solution obtained in Subsections

(6.1.5-6.1.7). The theory of Brownian motion or standard Wiener process is used to

compute the stochastic integration following Higham (2001). Five thousand sample

paths have been taken during the computation of all physical variables for stochastic

distribution among which five random paths have been displayed along with the deter-

ministic and the mean of all sample paths to mark the difference between deterministic

and stochastic distributions. The mean is computed numerically by considering the

mean of the values in five thousand sample paths.

Results for Case-I are shown in Fig. 6.1.1 (a,b), Fig. 6.1.2 (a,b), and Fig. 6.1.3

(a,b), whereas results for Case-II are shown in Fig. 6.1.4 (a,b), Fig. 6.1.5 (a,b), and Fig.

6.1.6 (a,b). Fig. 6.1.1 (a) and Fig. 6.1.4 (a) show the comparison between deterministic

temperature distribution and stochastic temperature distribution for five sample paths

along with mean of stochastic temperature distribution for five thousand sample paths

for Case-I and Case-II, respectively. It is noted that the stochastic temperature dis-

tribution along different sample paths show variations with deterministic temperature
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distribution for small magnitude which later coincides completely. In order to show the

comparison between deterministic temperature distribution and mean of the stochastic

temperature distribution for all the sample paths, Fig. 6.1.1 (b) and Fig. 6.1.4 (b) are

plotted separately for Case-I and Case-II, respectively. From Fig. 6.1.1 (b) and Fig

6.1.4 (b), it is clear that the mean of all the sample paths coincides with deterministic

temperature distribution which further verifies our analytical result in this respect for

both the cases. For the present values, ν1 = 0.9999 and ν2 = 9.4290 where, ν1 repre-

sent the speed of elastic wave and ν2 represents the speed of thermal wave. For Case-I,

temperature distribution experiences two finite jumps, one at x = 0.2499 and other at

x = 2.357 while for case-II, temperature distribution is continuous overall.

Combined plot of the deterministic stress distribution along with stochastic stress

distribution for five sample paths and mean of all the sample paths is shown in Fig.

6.1.2 (a) and Fig. 6.1.5 (a) for Case-I and Case-II, respectively. Prominent variation be-

tween stochastic stress distribution and deterministic stress distribution along different

sample paths is observed near the boundary which later coincides with deterministic

distribution. A separate plot to compare deterministic stress distribution and mean of

stochastic stress distribution is shown in Fig. 6.1.2 (b) and Fig. 6.1.5 (b) for the two

different cases. From Fig. 6.1.2 (b) and Fig. 6.1.5 (b), the analytic result for stress for

both the cases is verified as the curve of deterministic stress distribution coincides with

the mean of stochastic stress distribution for all sample paths. Finite jumps, one at

x = 0.2499 and other at x = 2.357 is seen for Case-I while for Case-II, stress distribution

is found to be continuous.

Deterministic displacement distribution with stochastic displacement distribution

for five random sample paths and mean of all the paths are shown in Fig. 6.1.3 (a)

and Fig. 6.1.6 (a) for Case-I and Case-II, respectively. Similar to stress distribution,

significant variation between stochastic displacement distribution and deterministic dis-

placement distribution is observed near boundary. Unlike, temperature and stress,
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displacement distribution is continuous for both the cases.
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Figure 6.1.1: (a). Deterministic temperature distribution and stochastic temperature
distribution along five sample paths and its mean for Case-I (b). Deterministic tem-
perature distribution and mean of stochastic temperature distribution for Case-I
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Figure 6.1.2: (a). Deterministic stress distribution and stochastic stress distribution
along five sample paths and its mean for Case-I (b). Deterministic stress distribution
and mean of stochastic stress distribution for Case-I
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Figure 6.1.3: (a). Deterministic displacement distribution and stochastic displacement
distribution along five sample paths and its mean for Case-I (b). Deterministic dis-
placement distribution and mean of stochastic displacement distribution for Case-I
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Figure 6.1.4: (a). Deterministic temperature distribution and stochastic temperature
distribution along five sample paths and its mean for Case-II (b). Deterministic tem-
perature distribution and mean of stochastic temperature distribution for Case-II

171



CHAPTER 6. Some investigations on thermoelasticity....

0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

 

 

X: 2.358
Y: 0

x

S
tr

es
s

Sample path 1
Sample Path 2
Sample Path 3
Sample Path 4
Sample Path 5
Mean of all the sample paths
Deterministic stress

6.1.5 (a)

0 0.5 1 1.5 2 2.5
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

 

 

X: 2.358
Y: 0

x

S
tr

es
s

Mean of all the sample paths
Deterministic stress

6.1.5 (b)

Figure 6.1.5: (a). Deterministic stress distribution and stochastic stress distribution
along five sample paths and its mean for Case-II (b). Deterministic stress distribution
and mean of stochastic stress distribution for Case-II
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Figure 6.1.6: (a). Deterministic displacement distribution and stochastic displacement
distribution along five sample paths and its mean for Case-II (b). Deterministic dis-
placement distribution and mean of stochastic displacement distribution for Case-II
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Figure 6.1.7: Variance of temperature distribution
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Figure 6.1.8: Variance of stress distribution

174



CHAPTER 6. Some investigations on thermoelasticity....

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

X: 2.358
Y: 0

x

D
is

pl
ac

em
en

t

Variance of Displacement distribution

Figure 6.1.9: Variance of displacement distribution

Comparison between deterministic displacement distribution and mean of stochastic

displacement distribution for all sample paths for two cases is shown in Fig. 6.1.3 (b)

and Fig. 6.1.6 (b), respectively which further verify the analytical result for displace-

ment as the result for deterministic displacement distribution and mean of stochastic

displacement distribution almost coincide.

Figs. (6.1.7-6.1.9) represent the variation of temperature distribution, stress distri-

bution, and displacement distribution, respectively. All the field variables vanish after

finite distance (x = 2.358) for stochastic as well as deterministic distribution which

confirms the existence of a finite domain of influence and the same region of influence.

6.1.9 Conclusion

In this subchapter, a one-dimensional half-space problem for an isotropic elastic homo-

geneous medium is solved and discussed for two types of thermal boundary conditions.

Two distinct stochastic type thermal boundary conditions are defined by adding the

white noise in the deterministic boundary conditions. The problem is analyzed by find-

ing both analytical as well as numerical solutions. The comparison is made between

deterministic type field variables and their corresponding stochastic distributions using
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five thousand sample paths and their mean for numerical results. In case of determin-

istic distribution as well as stochastic distribution, all the field variables are observed

to vanish after a finite distance at any time which shows the presence of finite domain

of influence in both the cases. This fact is also verified from our analytical solutions

which show that the distributions of the field variables consist of two coupled waves

(predominantly elastic and predominantly thermal waves) and both the waves propa-

gate with finite speed. Furthermore, the numerical results show that all field variables

vanish at the same distance which confirms the same region of influence for determin-

istic and stochastic cases. Unlike stress and displacement, temperature field shows an

insignificant difference between stochastic temperature distribution and deterministic

temperature distribution. Both analytical and numerical arguments have been given

to verify the coincidence of mean of the stochastic solution with their respective de-

terministic solution for all the physical fields. This coincidence obviously verifies the

reliability of the obtained numerical results.
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6.2 Domain of Influence Results of Dual-Phase-Lag

Thermoelasticity Theory for Natural Stress-Heat-

Flux Problem 2

6.2.1 Introduction

The domain of influence (DOI) theorem is very important to analyze the deformation

of the elastic material when acted upon by thermomechanical loadings. It mathemat-

ically proves the presence of bounded domain at any finite time such that out of the

domain, the solution of mixed initial-boundary value problem vanishes, which further

affirms the hyperbolicity of the theory. In other words, domain of influence states that

the disturbances caused due to thermomechanical loadings does not propagate in the

entire medium at a finite time. One of the application of this theorem is that it can

help in deciding the model to be used when a particular area of medium is undergoing

laser treatment. The DOI results were initially conceptualized by Nunziato and Cowin

(1979) for elastic materials with void. In 1978, Ignaczak (1978) also presented the DOI

theorem for linear thermoelasticity. Further, Chandrasekharaiah (1987b) applied the

results of DOI theorem to obtain the uniqueness of problem in elastic materials with

void. Ignaczak and Bialy (1980) proved the domain of influence theorem for thermoelas-

ticity model with one relaxation time (Lord and Shulman (1967)). The DOI results of

the generalized thermoelastic models given by Lord and Shulman (1967) and Green and

Lindsay (1972) were discussed by Ignaczak (1991) and Ignaczak and Ostoja-Starzewski

(2010). Marin (1997; 2010) extended the concept of domain of influence by Nunziato

and Cowin (1979), to thermoelastic bodies with voids and microstructural elastic ma-

terials, respectively. Cimmelli and Rogolino (2002) proved the DOI results for linear

thermoelasticity with thermal relaxation and internal variable. Carbonaro and Ignaczak
2The content of this chapter is under review in an international journal.
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(1987) considered anisotropic inhomogeneous unbounded body to establish work and

energy theorem and reciprocity theorem along with domain of influence theorem under

temperature-rate-dependent thermoelasticity theory. Moreover, Mukhopadhyay and

co-researchers (2011a; 2017a; 2021b; 2021a) articulated domain of influence results on

various thermoelastic theories and also established the comparison among them. Re-

cently, Marin et al. (2020) presented the DOI results for Moore-Gibson-Thompson

(Quintanilla (2019)) theory for dipolar medium.

In the previous subchapter, the finite speed of thermoelastic disturbances inside a

one dimensional half-space was observed in the context of dual-phase-lag thermoelas-

ticity theory for deterministic as well as stochastic type boundary conditions. Being

motivated by this results, the present subchapter is devoted to establish the hyperbolic-

ity of this theory. Hence, this section of the thesis focuses upon the domain of influence

results for stress-heat-flux problem under dual-phase-lag thermoelasticity theory for a

three dimensional medium of isotropic homogeneous thermoelastic material. The prob-

lem that describes a thermoelastic process in terms of stress and heat-flux is termed as

natural stress-heat-flux problem (Ignaczak and Ostoja-Starzewski (2010)). The work

is arranged in the following manner. The thermoelastic governing equations are formu-

lated in terms of stress and heat-flux along with generalized mixed initial and boundary

conditions in Subsection 6.2.2. The main objective is to extend the domain of influence

notion to DPL thermoelastic model in the considered problem. In order to prove the

theorem, an energy identity is first established in Subsection 6.2.4. Further, a detailed

proof of domain of influence is given in Subsection 6.2.5 under which an upper bound

is established for the speed of stress-heat-flux disturbances. Lastly, analogous results

for other thermoelasticity theories like Lord-Shulman (1967) and classical theory (Biot

(1956)) are recovered using the obtained theorem and it is shown that the present

analysis in special cases matches with the corresponding DOI results reported in the

literature.
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6.2.2 Basic Equations and Problem Formulation

A homogeneous and isotropic material is considered which occupies a regular region A of

three-dimensional Euclidean space. Let Ã denotes the closure of a bounded, connected

and open set with ∂A denoting the boundary of Ã and A as the interior of Ã. The

components of outward unit normal to ∂A is represented by ni . The fundamental

system governing the DPL thermoelasticity theory consists of the following equations:

Stress equation of motion:

σij,j + ρHi = ρüi, (6.2.1)

Energy equation:

− qi,i + ρR = Cσθ̇ + T0βσ̇kk, (6.2.2)

Temperature-strain-stress relation:

eij =
1

2µ

(
σij −

λ

3λ+ 2µ
σkkδij

)
+ βθδij, (6.2.3)

Heat conduction equation:

(
1 + τq

∂

∂t
+
τ 2
q

2

∂2

∂t2

)
qi = −K

(
1 + τθ

∂

∂t

)
θ,i, (6.2.4)

Strain-displacement relation:

eij = u(i,j) =
1

2
(ui,j + uj,i) , (6.2.5)

where, Cσ denotes the specific heat at constant stress.

Now, the present thermoelastic process is considered in view of stress and heat-flux for
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an isotropic and homogeneous material. Hence, above Eqs. (6.2.1-6.2.5) for this natural

problem can be rewritten such that a pair (σij, qi) satisfies the following field equations

(Ignaczak (1991) and Ignaczak and Ostoja-Starzewski (2010)):

ρ−1σ(ik,kj)−
[

1

2µ

(
σ̈ij −

λ

3λ+ 2µ
σ̈kkδij

)
− T0β

2

Cσ
σ̈kkδij

]
+
β

Cσ
q̇k,kδij =

1

Cσ
ρβṘδij−H(i,j),

(6.2.6)

K

(
1 + τθ

∂

∂t

)
1

Cσ
(qk,k + βT0σ̇kk),i −

(
1 + τq

∂

∂t
+
τ 2
q

2

∂2

∂t2

)
q̇i = K

(
1 + τθ

∂

∂t

)
ρ

Cσ
R,i,

(6.2.7)

where, H(i,j) = 1
2

(Hi,j +Hj,i) and σ(ik,kj) = 1
2

(σik,kj + σjk,ki).

The following assumptions are imposed on the material constants:

ρ > 0, λ > 0, µ > 0, K > 0, Cσ > 0, β > 0, T0 > 0,

τq > 0, 3λ+ 2µ > 0. (6.2.8)

Moreover, the following relation is considered:

2τθ > τq. (6.2.9)

Here, it is worth recalling the fact examined by Quintanilla (2002b; 2003) that the

exponentially stability of the solutions in the context of DPL theory of thermoelasticity

is satisfied if the phase-lag constants τq and τθ satisfy the relation (6.2.9).

Now, in view of the Eq. (6.2.6) and Eq. (6.2.7), the notations are further introduced

as follows:

T(ij) = H(i,j) −
1

Cσ
ρβṘδij, (6.2.10)

gi = −K
(

1 + τθ
∂

∂t

)
ρ

Cσ
R,i. (6.2.11)
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Then, Eq. (6.2.6) and Eq. (6.2.7) yield

ρ−1σ(ik,kj) −
[

1

2µ

(
σ̈ij −

λ

3λ+ 2µ
σ̈kkδij

)
− T0β

2

Cσ
σ̈kkδij

]
+

β

Cσ
q̇k,kδij = −T(ij),

(6.2.12)

K

(
1 + τθ

∂

∂t

)
1

Cσ
(qk,k + βT0σ̇kk),i −

(
1 + τq

∂

∂t
+
τ 2
q

2

∂2

∂t2

)
q̇i = −gi. (6.2.13)

The initial conditions on x = (x1, x2, x3) ∈ A for the above Eq. (6.2.12) and Eq.

(6.2.13) are assumed in the following way:

σij(x, 0) = σ0
ij(x),

σ̇ij(x, 0) = σ̇0
ij(x),

qi(x, 0) = q0
i (x),

q̇i(x, 0) = q̇0
i (x),

q̈i(x, 0) = q̈0
i (x), (6.2.14)

and boundary conditions on ∂A× [0,∞[ are considered as:

σijnj = σ′i,

qini = q′. (6.2.15)

6.2.3 Preliminaries

Now, in order to obtain the domain of influence results for the present problem, the

following important definitions (Ignaczak and Ostoja-Starzewski (2010)) are recalled.
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Definition 1. For a fixed time t ∈ (0,∞), the set

D0 (t) =


x ∈ Ã :

(1) forx ∈ A, σ0
ij 6= 0 or σ̇0

ij 6= 0 or q0
i 6= 0 or q̇0

i 6= 0 or q̈0
i 6= 0

(2) for (x, τ) ∈ ∂A× [0, t] , σ′i 6= 0 or q′ 6= 0

(3) for (x, τ) ∈ ∂A× [0, t] , T(ij) 6= 0 or gi 6= 0

(6.2.16)

is known as the thermomechanical load support at time t in the context of the present

system (6.2.12-6.2.15).

Definition 2. Let V is any real parameter and an open ball Ω (x, V t) with radius

V t and center at x, then the set

D(t) =
{
x ∈ Ã : Ω (x, V t) ∩D0 (t) 6= Ø

}
(6.2.17)

represents the set of all the points of Ã which can be affected by the thermomechanical

disturbances propagating from D0(t) with a finite speed less than or equal to V (see

Ignaczak and Ostoja-Starzewski (2010)). Hence, the set D(t) defines the domain of

influence corresponding to the thermomechanical load, D0(t).

6.2.4 Energy Identity

In this section, the following theorem presents an energy identity for the present context

which is a counterpart of the identity acquired by Ignaczak and Ostoja-Starzewski

(2010).

Theorem 6.2.4.1.

Statement: Let a smooth solution to the mixed problem (6.2.12-6.2.15) is defined by

(σij, qi) and a scalar field is represented by m(x) ∈ C1(Ã) in a such manner that the

set

E0 =
{
x ∈ Ã : m(x) > 0

}
(6.2.18)
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is bounded. Then

1

2

ˆ
A

{
M0 (x,m (x))−

[
m (x) Ṁ0 (x, 0) +M0 (x, 0)

]}
dA

+
1

2

ˆ
A

{ˆ m(x)

0

M1 (x, t) dt−m (x)M1 (x, 0)

}
dA

+

ˆ
A

{ˆ m(x)

0

[m (x)− t]N (x, t) dt

}
dA+

ˆ
A

{ˆ m(x)

0

Pi (x, t)m,i (x) dt

}
dA

=

ˆ
∂A

{ˆ m(x)

0

[m (x)− t]Pi (x, t)ni (x) dt

}
dB +

ˆ
A

{ˆ m(x)

0

[m (x)− t]Q (x, t) dt

}
dA,

(6.2.19)

where,

M0 (x, t) =
Kτ 2

q

2T0

(q̇i)
2 , (6.2.20)

M1 (x, t) =ρ−1σ̂ik,kσ̂ij,j +
1

2µ

(
˙̂σij ˙̂σij −

λ

3λ+ 2µ

(
˙̂σkk

)2
)
− β2T0

Cσ

(
˙̂σkk

)2

+

+
1

CσT0

(q̂k,k)
2 +

Kτq +Kτθ
T0

(q̇i)
2 +

Kτθτ
2
q

2T0

(q̈i)
2 , (6.2.21)

N (x, t) =
K

T0

[
(q̇i)

2 +

(
2τqτθ − τ 2

q

2

)
(q̈i)

2

]
, (6.2.22)

Pi (x, t) =ρ−1 ˙̂σijσ̂jk,k +
1

Cσ

(
β ˙̂σkk +

1

T0

q̂k,k

)
K

(
1 + τθ

∂

∂t

)
q̇i, (6.2.23)

Q (x, t) =T̂(ij)
˙̂σij +

1

T0

gi ˙̂qi, (6.2.24)

where, for a function h = h (x, t) defined on x ∈ Ã× [0,∞[ , ĥ( ) is denoted as follows:

ĥ = K

(
1 + τθ

∂

∂t

)
h. (6.2.25)

Proof. The proof is initiated by applying the hat operator as given by Eq. (6.2.25), on

the Eq. (6.2.12). Then, after multiplying ˙̂σij to both sides of Eq. (6.2.12), the following

equation is obtained:
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ρ−1σ̂(ik,kj)
˙̂σij−

[
1

2µ

(
¨̂σij ˙̂σij −

λ

3λ+ 2µ
¨̂σkk ˙̂σkk

)
− T0β

2

Cσ
¨̂σkk ˙̂σkk

]
+

β

Cσ
˙̂qk,k ˙̂σkk = −T̂(ij)

˙̂σij.

(6.2.26)

Now, on multiplying both sides by T−1
0

˙̂qi, Eq. (6.2.13) transforms to

{
K

(
1 + τq

∂

∂t

)
1

Cσ
(qk,k + βT0σ̇kk),i

}
T−1

0
˙̂qi

−
{(

1 + τq
∂

∂t
+
τ 2
q

2

∂2

∂t2

)
q̇i

}
T−1

0
˙̂qi = −giT−1

0
˙̂qi. (6.2.27)

Adding Eq. (6.2.26) and Eq. (6.2.27) and then after detailed manipulations, the fol-

lowing equation is acquired:
1

2

∂

∂t

{
∂

∂t
M0 (x, t) +M1 (x, t)

}
+N (x, t) = Pi,i (x, t) +Q (x, t) , (6.2.28)

where, M0, M1, N, Pi, and Q are given by Eqs. (6.2.20-6.2.24), respectively.

Recalling the following relation (Ignaczak and Ostoja-Starzewski (2010)):

ˆ m(x)

0

Pi,i [m (x)− t] dt =

ˆ m(x)

0

{
[Pi (x, t) [m (x)− t]],i − Pi (x, t)m,i (x)

}
dt

=

[ˆ m(x)

0

Pi (x, t) [m (x)− t] dt

]
,i

−
ˆ m(x)

0

Pi (x, t)m,i (x) dt.

(6.2.29)

Therefore, taking double integration of Eq. (6.2.28) over t from t = 0 to t = m (x) and

using Eq. (6.2.29), gives as follows:

1

2

[
M0 (x,m (x))−M0 (x, 0)−m (x) Ṁ0 (x, 0)

]
+

1

2

[ˆ m(x)

0

M1 (x, t) dt−m (x)M1 (x, 0)

]

+

ˆ m(x)

0

[m (x)− t]N (x, t) dt+

ˆ m(x)

0

Pi (x, t)m,i (x) dt

=

[ˆ m(x)

0

Pi (x, t) [m (x)− t] dt

]
,i

+

ˆ m(x)

0

[m (x)− t]Q (x, t) dt. (6.2.30)

Each term in Eq. (6.2.30) is bounded since the set E0 is bounded from the definition
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of Eq. (6.2.18). Therefore, integrating Eq. (6.2.30) over A and applying the divergence

theorem in the R.H.S., the Eq. (6.2.19) is obtained. This completes the proof of

Theorem 6.2.4.1.

Next, the domain of influence results is established under DPL thermoelastic model in

view of a natural stress-heat-flux problem in the following theorem.

6.2.5 Domain of Influence Theorem

Theorem 6.2.5.1.

Statement: Let V denotes a real number which satisfies the following inequality:

V ≥ max(V1, V2, V3, V4), (6.2.31)

where,

V1 =

(
2µ

ρ

) 1
2

, (6.2.32)

V2 =

{
2Kτθ
τ 2
qCσ

[
1 +

Cσ
CE

(
1− CE

Cσ

) 1
2

]} 1
2

, (6.2.33)

V3 =

{
K

(τq + τθ)Cσ

[
1 +

Cσ
CE

(
1− CE

Cσ

) 1
2

]} 1
2

, (6.2.34)

V4 =

(3λ+ 2µ)

ρ

Cσ
CE

[
1−

(
1− CE

Cσ

) 1
2

]−1


1
2

, (6.2.35)

and, CE denotes the specific heat at constant strain which satisfies the relation with

Cσ as follows:

Cσ = CE + 3β2 (3λ+ 2µ)T0. (6.2.36)

Then, for the set D (t) defining the domain of influence for thermomechanical load

D0 (t) at time t and the pair (σij, qi) defining a smooth solution of mixed problem

(6.2.12-6.2.15), the following results hold:

σij = 0, qi = 0, on
{
Ã−D(t)

}
× [0, t] . (6.2.37)

185



CHAPTER 6. Some investigations on thermoelasticity....

Proof. Let

Λ = Ã ∩ Ω (w, V τ), (6.2.38)

where, (w, τ) ∈ {A−D (t)} × (0, t) is a fixed point.

Then, consider the following:

mτ (x) =


τ − 1

V
|x−w| , for x ∈ Λ

0, for x /∈ Λ

, (6.2.39)

where, V represents a parameter as given in inequality (6.2.31).

Since τ < t and employing the definitions of domain D (t) and Λ as given by the Eq.

(6.2.17) and Eq. (6.2.38), respectively, it is found that

Λ ∩D0 (t) = Ø. (6.2.40)

Therefore,

σijnj = 0, qini = 0, on (Λ ∩ ∂A)× [0, t] , (6.2.41)

and

˙̂σijnj = 0, q̇ini = 0, q̈ini = 0, on (Λ ∩ ∂A)× [0, t] , (6.2.42)

T(ij) = 0, gi = 0, on Λ× (0, t) . (6.2.43)

Furthermore,

σij (x, 0) = σ̇ij (x, 0) = qi (x, 0) = q̇i (x, 0) = q̈i (x, 0) , on Λ. (6.2.44)

Now, using the Eq. (6.2.23), Eq. (6.2.39), and Eq. (6.2.42), giveˆ
∂A

{ˆ mτ (x)

0

[mτ (x)− t]Pi (x, t)ni (x) dt

}
dB = 0. (6.2.45)

Similarly, in view of the Eq. (6.2.24), Eq. (6.2.39), and Eq. (6.2.43), it is obtained thatˆ
A

{ˆ mτ (x)

0

[mτ (x)− t]Q (x, t) dt

}
dA = 0. (6.2.46)
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Further, using the definitions of M0 (x, t) , M1 (x, t), and mτ (x) , it is acquired that

M0 (x,mτ (x))−M0 (x, 0)−mτ (x) Ṁ0 (x, 0) =


M0 (x,mτ (x)) , for x ∈ Λ

0, for x /∈ Λ

,

(6.2.47)

and
ˆ mτ (x)

0

M1 (x, t) dt−mτ (x)M1 (x, 0) =


´ mτ (x)

0
M1 (x, t) dt, for x ∈ Λ

0, for x /∈ Λ

. (6.2.48)

Now, on substituting mτ (x) into the Eq. (6.2.19) and making use of the Eqs. (6.2.45-

6.2.48), yield

1

2

ˆ
Λ

M0 (x,mτ (x)) dA+
1

2

ˆ
Λ

ˆ mτ (x)

0

M1 (x, t) dtdA

+

ˆ
Λ

{ˆ mτ (x)

0

[mτ (x)− t]N (x, t) dt

}
dA = −

ˆ
Λ

{ˆ mτ (x)

0

Pi (x, t)mτ,i (x) dt

}
dA.

(6.2.49)

Since, Eq. (6.2.9) imply that N ≥ 0 on Λ. Therefore, from the Eq. (6.2.39) and Eq.

(6.2.49), the following inequality is found:
1

2

ˆ
Λ

M0 (x,mτ (x)) dA+
1

2

ˆ
Λ

ˆ mτ (x)

0

M1 (x, t) dtdA ≤ 1

V

ˆ
Λ

ˆ mτ (x)

0

|Pi (x, t) dt| dA.

(6.2.50)

Now,

1

V
|Pi| ≤ρ−1

∣∣∣∣∣ ˙̂σij
V
σ̂jk,k

∣∣∣∣∣+
1

Cσ

∣∣∣∣β ˙̂σkk +
1

T0

q̂k,k

∣∣∣∣ ∣∣∣∣K (1 + τθ
∂

∂t

)
q̇i
V

∣∣∣∣
≤ρ−1

∣∣∣∣∣ ˙̂σij
V

∣∣∣∣∣ |σ̂jk,k|+ |β|Cσ
∣∣∣ ˙̂σkk∣∣∣ ∣∣∣∣Kq̇i +Kτθq̈i

V

∣∣∣∣+
1

CσT0

|q̂k,k|
∣∣∣∣Kq̇i +Kτθq̈i

V

∣∣∣∣ .
(6.2.51)

To calculate each term of the R.H.S. of Eq. (6.2.51) and simplify the Eq. (6.2.51), the

following relation of real numbers is used:
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√
ab ≤ 1

2

(
εa+ ε−1b

)
, (6.2.52)

ε represents a dimensionless positive parameter and a and b are non-negative physical

fields of same dimension.

To calculate the first term of Eq. (6.2.51), a = (σ̂jk,k)
2 , b =

(
˙̂σij
V

)2

, and ε = 1 are used

in Eq. (6.2.52) and then it is obtained that

|σ̂jk,k|

∣∣∣∣∣ ˙̂σij
V

∣∣∣∣∣ ≤ 1

2

(
σ̂ij,jσ̂ik,k +

1

V 2
˙̂σij ˙̂σij

)
. (6.2.53)

Further to calculate the second term of Eq. (6.2.51), the following is employed:

a =
(

˙̂σkk

)2

, b =
1

V 2 (βT0)2 (Kq̇i +Kτθq̈i)
2 , ε =

CE
Cσ

(
1− CE

Cσ

)− 1
2

. (6.2.54)

Therefore, using Eq. (6.2.54) in Eq. (6.2.52) gives

∣∣∣ ˙̂σkk∣∣∣ 1

V |β|T0

|Kq̇i +Kτθq̈i|

≤ 1

2

{
CE
Cσ

(
1− CE

Cσ

)− 1
2 (

˙̂σkk

)2

+
Cσ
CE

(
1− CE

Cσ

) 1
2 1

V 2β2T 2
0

(Kq̇i +Kτθq̈i)
2

}

≤ 1

2

{
CE
Cσ

(
1− CE

Cσ

)− 1
2 (

˙̂σkk

)2

+
Cσ
CE

(
1− CE

Cσ

) 1
2 K2

V 2β2T 2
0

[
(q̇i)

2 + τ 2
θ (q̈i)

2]}

+
K2τθ

2V 2β2T 2
0

Cσ
CE

(
1− CE

Cσ

) 1
2 d
dt

(q̇i)
2 . (6.2.55)

Now, by fixing a = (q̂k,k)
2 , b =

(
Kq̇i+Kτθ q̈i

V

)2
, and ε = 1 in Eq. (6.2.52), the last term of

Eq. (6.2.51) is obtained as

|q̂k,k|
∣∣∣∣Kq̇i +Kτθq̈i

V

∣∣∣∣ ≤1

2

{
(q̂k,k)

2 +
1

V 2
(Kq̇i +Kτθq̈i)

2

}
≤1

2

{
(q̂k,k)

2 +
K2

V 2

[
(q̇i)

2 + τ 2
θ (q̈i)

2]}+
K2τθ
2V 2

d
dt

(q̇i)
2 . (6.2.56)

Thus, Eq. (6.2.51), Eq. (6.2.53), Eq. (6.2.55), and Eq. (6.2.56) yield

188



CHAPTER 6. Some investigations on thermoelasticity....

1

V
|Pi| ≤

ρ−1

2

(
σ̂ij,jσ̂ik,k +

1

V 2
˙̂σij ˙̂σij

)
+
β2T0

2Cσ

{
CE
Cσ

(
1− CE

Cσ

)− 1
2 (

˙̂σkk

)2

+
Cσ
CE

(
1− CE

Cσ

) 1
2 K2

V 2β2T 2
0

[
(q̇i)

2 + τ 2
θ (q̈i)

2]}

+
1

2CσT0

{
(q̂k,k)

2 +
K2

V 2

[
(q̇i)

2 + τ 2
θ (q̈i)

2]}
+

K2τθ
2V 2CσT0

{
1 +

Cσ
CE

(
1− CE

Cσ

) 1
2

}
d
dt

(q̇i)
2 . (6.2.57)

Further, the relation (6.2.36) implies that

β2T0

Cσ
=

1

3 (3λ+ 2µ)

(
1− CE

Cσ

)
. (6.2.58)

Therefore, from Eq (6.2.50), Eq. (6.2.57), and the relation (6.2.58), the following is

obtained:

(
1

2µ
− 1

ρV 2

)ˆ
Λ

ˆ mτ (x)

0

(
˙̂σij −

1

3
˙̂σkkδij

)(
˙̂σij −

1

3
˙̂σkkδij

)
dtdA

+
K

T0

[
τq + τθ −

K

CσV 2

{
1 +

Cσ
CE

(
1− CE

Cσ

) 1
2

}]ˆ
Λ

ˆ mτ (x)

0

(q̇i)
2dtdA

+
Kτθ
T0

[
τ 2
q

2
− Kτθ
CσV 2

{
1 +

Cσ
CE

(
1− CE

Cσ

) 1
2

}]ˆ
Λ

ˆ mτ (x)

0

(q̈i)
2dtdA

+
1

3

[
1

3λ+ 2µ

CE
Cσ

{
1−

(
1− CE

Cσ

) 1
2

}
− 1

ρV 2

] ˆ
Λ

ˆ mτ (x)

0

(
˙̂σkk

)2

dtdA

+
K

T0

[
τ 2
q

2
− Kτθ
CσV 2

{
1 +

Cσ
CE

(
1− CE

Cσ

) 1
2

}]ˆ
Λ

(q̇i)
2dA ≤ 0. (6.2.59)

Now, with respect to Eq. (6.2.31), the non-negativity of the coefficients of each integrals

in Eq. (6.2.59) is acquired. Thus, equality sign must hold in Eq. (6.2.59) which

therefore, implies that each term of Eq. (6.2.59) vanishes on Λ.

In particular, it can be stated that

˙̂σij (x,mτ (x)) = 0, q̇i (x,mτ (x)) = 0 on Λ. (6.2.60)
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Now, smoothness property of (σij, qi) and definition of mτ (x) imply that
˙̂σij (x,mτ (x))→ ˙̂σij (w, τ)

q̇i (x,mτ (x))→ q̇i (w, τ)

 asx→ w. (6.2.61)

Consequently, taking the limit x→ w in Eq. (6.2.60), Eq. (6.2.39) yields

˙̂σij (w, τ) = 0, q̇i (w, τ) = 0 on
{
Ã−D(t)

}
× [0, t] . (6.2.62)

Since (σij, qi) is sufficiently smooth in Ã× [0,∞[ and since (w, τ) is an arbitrary point

of
{
Ã−D(t)

}
× (0, t), therefore, it is found that

˙̂σij = 0, q̇i = 0 on
{
Ã−D(t)

}
× [0, t] . (6.2.63)

Now, in view of (x, τ) ∈
{
Ã−D (t)

}
× [0, t] , Eq. (6.2.63) yields

σij (x, τ) = σij (x, 0) +
{

1− e−
1
τθ
τ
}
τθσ̇ij (x, 0) , (6.2.64)

and

qi (x, τ) = qi (x, 0) . (6.2.65)

From the definition of D(t), it is concluded that

σij (x, 0) = σ̇ij (x, 0) = qi (x, 0) = 0 on
{
Ã−D (t)

}
. (6.2.66)

Hence, Eq. (6.2.64) and Eq. (6.2.65) combining with Eq. (6.2.66) finally give

σij = 0, qi = 0 on
{
Ã−D(t)

}
× [0, t] . (6.2.67)

Therefore, the required result is proved.

6.2.6 Conclusion

In the present subchapter, a theorem is established that states that if the condition

(6.2.9) holds then the pair (σij, qi) satisfying the system (6.2.12-6.2.15) in view of the

DPL theory, generates no stress-heat-flux disturbance outside the bounded set D (t) for

a finite time t and a prescribed bounded support of thermomechanical loading. Fur-

thermore, this theorem also find that the stress-heat-flux disturbance propagates with
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finite speed less than or equal to V defined by inequality (6.2.31), when the relation

given by (6.2.9) holds. Clearly, V depends on the material parameters including the two

phase-lags, τq and τθ, and the other thermoelastic parameters. Further, it must be men-

tioned that in early twenty-first century, Quintanilla (2002b; 2003) stated a condition

for the exponential stability of the solutions in the context of DPL theory. According

to that condition, the exponential stability is attained if the phase-lag constants, τq and

τθ satisfy the relation (6.2.9).

After further analyzing the results, it can be clearly noted that in the special case

of only one thermal relaxation parameter (i.e., when τθ = 0, τq > 0), the present

inequality given by Eq. (6.2.9) reduces to the same inequality as reported by Ignaczak

and Ostoja-Starzewski (2010) for the Lord-Shulman thermoelastic model. Moreover,

when both the phase-lag parameters in the results are vanished, the propagation of

thermoelastic wave generated by the pair (σij, qi) is obtained to be of infinite speed.

This result corresponds to classical thermoelasticity theory as plugging both phase-lags

as zero reduces the current thermoelastic model to the classical model. Hence, the

domain of influence theorem proves the hyperbolicity of the DPL theory as described

by the present system of governing equations and from this theorem, one can find the

upper bound of the speed of stress-heat-flux variations.
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6.3 A Study on Generalized Thermoelasticity Theory

Based on Non-Local Heat Conduction Model with

Dual Phase-Lags3

6.3.1 Introduction

Further to elaborate the discussion on dual-phase-lag thermoelasticity theory, this sub-

chapter investigates the extension of the dual-phase-lag thermoelasticity theory con-

sidering the non-local effects in heat conduction. Non-local continuum theory helps

to analyze the influence of all the points of the body at any particular material point

(Eringen (2002)). Involvement of non-local factor, i.e., size effect enhances pronounce

microscopic effects in heat transport process at a macroscopic level. The non-local

response is same as the lagging response in space as the latter in time. As discussed

by Tzou (1997), the phase-lag captures the ultrafast response in femtosecond domain.

However, the non-local response enlightens the physical mechanism at nanoscale level.

In recent times, a heat conduction model is proposed by Tzou and Guo (2010) which

brings out the notion of thermomass by introducing the non-local response in dual-

phase-lag heat conduction model without actually using the concept of thermomass.

Thermomass is defined according to Einstein’s mass-energy relation as the equivalent

mass of phonon gas in dielectrics. The concepts of thermal as well as mechanical

fields are employed in the thermomass heat conduction theory. Subsequently, Wang

et al. (2014) has developed a thermoelastic theory based on the heat conduction with

thermomass concept. Moreover, Tzou and Guo (2010) have developed a new heat

conduction law which considers non-local behavior with thermal lagging. Therefore,

the main objective in this subchapter is to propose the general thermoelasticity theory

based on the non-local heat conduction model given by Tzou and Guo (2010).
3The content of this subchapter is published in Journal of Thermal Stresses, 42(9), 2019.
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This subchapter of the thesis starts by introducing the general basic governing

equations of the proposed model. Then in order to analyze the prediction of the present

non-local model, a one-dimensional problem is investigated for an isotropic half-space

medium. The Danilovskaya’s problem is considered and then the problem is formulated

in Laplace transform domain. Further, the solution is obtained numerically by finding

the Laplace inversion through Stehfest method (Stehfest (1970)). An attempt is made

to analyze the specific predictions of the non-local model with previously developed

models. However, special attention is paid to investigate the effects of the non-local

length parameter and phase-lags on physical fields. The effects of different parameters

is elaborated by plotting various graphs of field variables in the last subsection.

6.3.2 Basic Governing Equations

In this subsection, the governing equations are formulated in the context of generalized

thermoelasticity theory based on the non-local heat conduction law with two phase-

lags. The basic equations in the coordinate form in the same context for isotropic

homogeneous medium can be constituted as follows:

Modified heat conduction law for non-local model (Tzou and Guo (2010)):

(
1 + (λq)k

∂

∂xk
+ τq

∂

∂t

)
qi = −K

(
1 + τθ

∂

∂t

)
θ,i. (6.3.1)

Energy equation:

− qi,i = ρT0
∂S

∂t
. (6.3.2)

Entropy equation:

T0ρS = ρcEθ + βT0ekk. (6.3.3)
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Equation of motion:

σij,j = ρ
∂2ui
∂t2

. (6.3.4)

Stress-strain-temperature relation:

σij = λekkδij + 2µeij−βθδij. (6.3.5)

Strain-displacement relation:

eij =
1

2
(ui,j + uj,i). (6.3.6)

Here, (λq)k is the component of non-local length vector.

The first governing equation is obtained by combining Eqs. (6.3.1-6.3.3) and Eq. (6.3.6)

to get the heat conduction equation in the form

K

(
1 + τθ

∂

∂t

)
θ,ii =

(
1 + (λq)i

∂

∂xi
+ τq

∂

∂t

)(
ρcE

∂θ

∂t
+ βT0

∂

∂t
(ui,i)

)
. (6.3.7)

Next, by using Eqs. (6.3.4-6.3.6), the displacement equation of motion takes the form

as

ρ
∂2ui
∂t2

= (λ+ µ)uj,ji + µui,jj − βθ,i. (6.3.8)

Lastly, stress-displacement-temperature relation, using Eqs. (6.3.5-6.3.6), is obtained

as follows:

σij = λuk,kδij + µ(ui,j + uj,i)−βθδij. (6.3.9)

Hence, the Eq. (6.3.7) and Eq. (6.3.8) along with Eq. (6.3.9) represent the basic

governing equations of the generalized thermoelasticity theory based on non-local heat

conduction model given by Tzou and Guo (2010).
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6.3.3 Problem Formulation

A problem of one-dimensional half-space (x ≥ 0) is investigated for an isotropic elastic

homogeneous medium in the respect of proposed non-local model. The formulation of

problem for traction free boundary of the medium is considered that is subjected to a

time-dependent temperature distribution. All the physical field variables are assumed

to be bounded and vanish as x→∞. Therefore, ~u = (u(x, t), 0, 0) is considered as one-

dimension displacement vector and the governing equations for one-dimension obtained

from Eqs. (6.3.7-6.3.9) are as follows:

K

(
1 + τθ

∂

∂t

)
∂2θ

∂x2
=

(
1 + λq

∂

∂x
+ τq

∂

∂t

)(
ρcE

∂θ

∂t
+ βT0

∂2u

∂x∂t

)
, (6.3.10)

ρ
∂2u

∂t2
= (λ+ 2µ)

∂2u

∂x2
− β ∂θ

∂x
, (6.3.11)

σxx = (λ+ 2µ)
∂u

∂x
− βθ. (6.3.12)

For the simplification of the problem, the following non-dimensional variables and pa-

rameters are used :

x
′
= c1ξx, t

′
= c2

1ξt, θ
′
=

θ

T0

, u
′
=
c1(λ+ 2µ)ξu

βT0

, τ
′

q = c2
1ξτq,

τ
′

θ = c2
1ξτθ, λ

′

q = c1ξλq, andσ
′

xx =
σxx
βT0

,

where, c1 =
√

(λ+2µ)
ρ

is the speed of propagation of isothermal elastic waves and ξ =

ρcE
K
.

By using above non-dimensional variables and parameters, Eqs. (6.3.10-6.3.12) are

transformed into the following forms:
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(
1 + τθ

∂

∂t

)
∂2θ

∂x2
=

(
1 + λq

∂

∂x
+ τq

∂

∂t

)(
∂θ

∂t
+ ε

∂2u

∂x∂t

)
, (6.3.13)

∂2u

∂t2
=
∂2u

∂x2
− ∂θ

∂x
, (6.3.14)

σxx =
∂u

∂x
− θ, (6.3.15)

where, ε = β2T0
ρ2cEc

2
1
is the thermoelastic coupling constant. Here, the primes are dropped

for the convenience.

Initial and boundary conditions:

All the initial conditions are considered as homogeneous and the boundary conditions

are assumed as follows:

σxx(x, t)|x=0 = 0, u(x, t)|x=∞ = 0 for t > 0

θ(x, t)|x=0 = θ0H (t), θ(x, t)|x=∞ = 0 for t > 0

 , (6.3.16)

where, H (t) is Heaviside unit step function and θ0 is a constant temperature. The

above initial and boundary conditions constitute the Danilovskaya’s problem.

6.3.4 Solution of the Problem in the Laplace Transform Domain

After applying the Laplace transform on time, t to Eqs. (6.3.13-6.3.15), the following

equations are obtained:

(nD2 −m− λqsD)θ̄ = ε(mD + λqsD
2)ū, (6.3.17)

(D2 − s2)ū = Dθ̄, (6.3.18)

σ̄xx = Dū− θ̄, (6.3.19)

where,

D =
d
dx
, n = (1 + τθs), m = s (1 + τqs) , (6.3.20)
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and ū(s), θ̄(s), and σ̄xx(s) represents the Laplace transform of u(t), θ(t), and σxx(t),

respectively with s as the Laplace Transform parameter.

Again, applying Laplace transform to boundary conditions (6.3.16) gives

σ̄xx(x, s)|x=0 = 0, ū(x, s)|x=∞ = 0,

θ̄(x, s)|x=0 = θ0
s
, θ̄(x, s)|x=∞ = 0.

 (6.3.21)

Now, solving the Eqs. (6.3.17-6.3.18) gives decoupled equations in terms of ū and θ̄ as

[nD4 − (1 + ε)λqsD
3 − (ns2 +m+mε)D2 + λqs

3D +ms2](ū, θ̄) = 0. (6.3.22)

The corresponding auxiliary equation will be

nk4 − (1 + ε)λqsk
3 − (ns2 +m+mε)k2 + λqs

3k +ms2 = 0. (6.3.23)

Since, all the variables are vanishing as x → ∞, only the roots with negative real

parts of Eq.(6.3.23) are considered to avoid the positive powers of exponential while

expressing the solution of differential Eq. (6.3.22).

Therefore, the solution of Eqs. (6.3.17-6.3.19) is acquired using the boundary condition

(6.3.21) as

θ̄(x, s) =
θ0

s (k2
2 − k2

1)
[(s2 − k2

1) e−k1x − (s2 − k2
2) e−k2x], (6.3.24)

ū(x, s) =
θ0

s (k2
2 − k2

1)
[k1 e

−k1x − k2 e
−k2x], (6.3.25)

σ̄xx(x, s) =
s θ0

(k2
2 − k2

1)
[e−k2x − e−k1x], (6.3.26)

where, −k1 and −k2 are the roots of Eq. (6.3.23) such that Re(ki) > 0 (i = 1, 2).

Therefore, Eqs. (6.3.24-6.3.26) give the solution of physical fields in the Laplace trans-

form domain.

197



CHAPTER 6. Some investigations on thermoelasticity....

6.3.5 Numerical Results and Discussion

In this subsection, the solution to the problem is found numerically. The aid of math-

ematical softwares, MATLAB and Mathematica is used to compute the roots of the

auxiliary Eq. (6.3.23). The Stehfest method (Stehfest (1970)) is used to compute the

Laplace inversion involved in the solutions obtained in previous subsection. The main

aim of this subsection is to analyze the newly developed model on the basis of pa-

rameters involved and also by comparing it to the corresponding results of previously

established generalized thermoelasticity models. The discussion is made by considering

the numerical data for copper material as following (Sherief et al. (2013)):

λ = 7.76×1010 kg m−1s−2, µ = 3.86× 1010 kg m−1s−2, ρ = 8954 kg m−3,

cE = 383.1 J kg−1K−1
, βθ = 1.78× 10−5K−1, K = 386 Wm−1K−1, T0 = 293K.

The effects are analyzed at two non-dimensional time, one at t = 0.1 and other at

t = 0.5. The dashed line in each figure represents the result for t = 0.1 while the solid

line represents the result for t = 0.5.

6.3.5.1 Effect of λq

The effect of λq is analyzed by taking the five values : 0, 0.012, 0.12, 1.2, and 12 and

by keeping τq = 0.015 and τθ = 0.01 fixed. Here, the case of λq = 0 corresponds to DPL

model. Further, the case of λq = 0 and τθ = 0 corresponds to the LS model. Figs. (6.3.1-

6.3.3) show the distributions of non-dimensional temperature, stress and displacement

fields, respectively for different values of λq. An attempt is made to analyze the effects

of non-local model by comparing the results for λq 6= 0 with the corresponding results

for LS model and DPL model. The main effect that is observed is the change in domain

of influence. The domain of influence increases with increase in value of λq. However,

at a particular time, the nature of graphs remains the same for different values of λq,
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i.e., behavior does not alter significantly with the change in value of λq. The graphs of

non-local model show minute variation with that of LS model and DPL model for small

values of λq whereas for higher values of λq, a significant difference can be observed in

the results. Like, for λq = 0.012, it is noticed that the results predicted by DPL and

LS models almost coincide with that of the non-local model but for higher values of

λq, the significant variation in the predictions by non-local model and other generalized

thermoelastic models is observed. However, it is noticed that as the time increases the

effect of λq diminishes in case of temperature. A similar effect is observed in case of

stress and displacement fields. Further, the increase in the domain of influence with

increase of time is observed for each field. It can be concluded from these observations

that the involvement of non-local length parameter, λq have significant effects that

make the non-local thermoelastic model different from previous other models.

6.3.5.2 Effect of τq

The effect of τq on the behavior of physical fields is analyzed by taking the five values

of τq as 0.0015, 0.015, 0.15, 1.5, and 15 and keeping λq = 0.012 and τθ = 0.01 fixed.

Figs. (6.3.4-6.3.6) show the effect of τq on non-dimensional temperature, stress, and

displacement, respectively. Effect on the domain of influence is significant. However,

the effect of this parameter is lesser than the effect due to the non-local parameter, λq.

The effect of time on domain of influence is clearly visible in this case too. The nature

of graphs of each field is same for the first two values, but it changes for higher values.

Further, for higher values of τq, the negative values for temperature is reflected in the

graph. Such behavior in the temperature field is not observed for smaller values of τq.

In case of displacement, unlike the effect of λq, the magnitude of displacement decreases

as the value of τq increases for small values of x.
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Figure 6.3.1: Effect of non-local parameter, λq on temperature distribution

Figure 6.3.2: Effect of non-local parameter, λq on stress distribution

200



CHAPTER 6. Some investigations on thermoelasticity....

Figure 6.3.3: Effect of non-local parameter, λq on displacement distribution

Figure 6.3.4: Effect of phase-lag, τq on temperature distribution
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Figure 6.3.5: Effect of phase-lag, τq on stress distribution

Figure 6.3.6: Effect of phase-lag, τq on displacement distribution
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Figure 6.3.7: Effect of phase-lag, τθ on temperature distribution

Figure 6.3.8: Effect of phase-lag, τθ on stress distribution
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Figure 6.3.9: Effect of phase-lag, τθ on displacement distribution

6.3.5.3 Effect of τθ

The values of τθ are considered as 0.001, 0.01, 0.1, 1. and 10 with λq = 0.012 and τq =

0.015. Figs. (6.3.7-6.3.9) show the effect of τθ on non-dimensional temperature, stress

and displacement, respectively. A prominent effect of τθ on each field is observed. The

effect increases with increase of time and it is more significant in temperature and stress

as compared to displacement. The domain of influence for each field is significantly

affected by τθ, and it is more visible at higher time.

6.3.6 Conclusion

The new non-local heat conduction model introduced by Tzou and Guo (2010) that

involves thermal lagging in the form of dual phase-lags, has given the insight of ther-

momass effect. Further, the inclusion of non-local factor, i.e., size effect enhances the

microscopic effects in heat transport process at a macroscopic level. However, the heat

conduction model in this theory has been formulated without actually using the concept

of thermomass. In this subchapter, an effort has been made to extend the concept of
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this new non-local heat conduction model to the generalized thermoelasticity theory.

The basic governing equations for the generalized thermoelasticity theory in the context

of this non-local heat conduction model have been formulated and a one-dimensional

problem has been investigated. The predictions of the new thermoelastic model have

been analyzed by specially paying attention to the effect of non-local length parameter,

λq, which is the characteristic of this non-local heat conduction model. A significant

effect of this parameter is observed on the behavior of physical fields like, displacement,

temperature and stress. The results of the present context are further compared with

the corresponding results of the other existing models, like LS model and DPL model.

The variation of LS and DPL model from this non-local model increases with an in-

crease in value of λq. The effect of λq is also observed to be prominent on the domain

of influence of the field variables. The impacts of phase-lag parameters, τq and τθ, in

presence of λq are also investigated. It is observed that the effect of phase-lag, τq is more

prominent as compared to the phase-lag, τθ. It is believed that the present investigation

will help in understanding the non-local effect of heat conduction in mutual interac-

tions due to thermomechanical loading in a medium. Further study in this direction

will result in developing better and more appropriate model of thermoelasticity.
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