
CHAPTER 4

THEORETICAL ANALYSIS OF MODIFIED
GREEN-LINDSAY THERMOELASTICITY

THEORY

4.1 Introduction1

The present chapter and the subsequent chapter of the thesis aim at discussing some

aspects of newly proposed generalized thermoelasticity theory by Yu et al. (2018).

This theory is developed as a modification of the temperature rate-dependent theory

introduced by Green and Lindsay (1972). The Green-Lindsay thermoelasticity the-

ory (GL theory) modified the Biot’s theory and successfully overcame the paradox of

infinite speed of thermal wave propagation by altering the conventional theory with

the interesting fact of keeping Fourier’s law intact in the case of a centrally symmetric

body. Here the constitutive relations were modified by including two thermal relaxation

parameters and temperature rate terms as compared to the other thermoelasticity theo-

ries like, Lord-Shulman theory or the dual-phase-lag theory. Like LS theory, this theory

has been investigated by several researchers to study various problems involving ther-

moelastic interactions arisen due to thermomechanical loads in elastic media. Detailed

comparison of results predicted by classical theory, LS theory, and GL theory have

also been reported in literature as mentioned in the introduction section. However, it

1The content of this chapter is published in Acta Mechanica, 230(10), 2019.



CHAPTER 4. Theoretical analysis of modified Green-Lindsay...

has been reported by some researchers that GL theory predicts discontinuity in the

displacement field for transient motion (see Chandrasekharaiah and Srikantiah (1986;

1987), Dhaliwal and Rokne (1989), Ignaczak and Mr’ owka-Matejewska (1990), Yu et

al. (2018), and references therein). Discontinuity in the displacement field disobeys the

continuum hypothesis (Chandrasekharaiah (1998)). Recently, thermodynamic princi-

ples are employed differently by Yu et al. (2018) who have developed a modified version

of GL theory by incorporating strain-rate terms along with the temperature-rate terms

in constitutive relations. Hence, this theory is called as modified Green-Lindsay (MGL)

theory. The strain-rate term is usually neglected in constitutive relations of linear the-

ory by assuming it to be relatively small. However, this cannot be an appropriate

assumption for extreme conditions such as in ultra-fast heating. Hence, MGL theory

is developed with the help of extended thermodynamic principles and generalized dis-

sipation inequality. This theory is a new and alternative modification of the classical

thermoelasticity theory and is yet to get attention of researchers. Hence, it is worth

investigating some aspects of this recent theory which is also referred to as strain and

temperature rate-dependent thermoelasticity theory.

In the present chapter, the linearized theory for isotropic and homogeneous thermoe-

lastic material under modified Green-Lindsay (MGL) model is taken into consideration.

The chapter finds the Galerkin-type representation of the solution in the context of this

theory. Representation of solution in terms of elementary functions such as harmonic,

biharmonic, metaharmonic, etc. helps in solving various boundary value problems in

the field of elasticity and thermoelasticity. Some interesting works related to this chap-

ter can be found in the following references: Ciarletta (1991; 1995; 1999), Svanadze

(1993), Svanadze and Boer (2005), Mukhopadhyay et al. (2010), etc. The presentation

of work in this chapter is organized as follows. In Section 4.2, the basic governing equa-

tions and constitutive relations for the MGL model in the presence of body forces and

heat sources are presented. Next, in Section 4.3, a Galerkin-type solution of equations
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of motion is presented followed by a Galerkin-type solution for the system of equations

of steady oscillations given in Section 4.4. Lastly, in Section 4.5, the general solution

for the homogeneous system of equations for steady oscillations is obtained.

4.2 Governing Equations

Let x = (x1, x2, x3) represents an arbitrary point in three-dimensional Euclidean space

and t be the time variable. An isotropic elastic homogeneous medium is considered

to analyze a thermoelasticity theory. The medium occupies a bounded region Ξ of

Euclidean three-dimensional space at t = 0. In presence of body forces and heat

sources, the basic equations in the context of modified Green-Lindsay (MGL) linear

thermoelasticity theory given by Yu et al. (2018) are presented as follows:

Heat conduction law:

q = −K grad θ. (4.2.1)

Energy equation:

−div q +R = ρ T0Ṡ. (4.2.2)

Entropy equation:

T0 ρ S = ρ cE

(
θ + τ0 θ̇

)
+ β T0

(
trE + τ0 trĖ

)
. (4.2.3)

Equation of motion:

div Γ + ρH = ρ ü. (4.2.4)

Stress-strain-temperature relation:

Γ = λ
(
trE + τ1 trĖ

)
I + 2µ

(
E + τ1Ė

)
− β

(
θ + τ1θ̇

)
I. (4.2.5)
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Strain-displacement relation:

E =
1

2

(
gradu+ (gradu)T

)
. (4.2.6)

Here, τ0 and τ1 represent two relaxation times with the condition, τ1 ≥ τ0 > 0.

Further, eliminating q, E, Γ, and S from Eqs. (4.2.1-4.2.6) gives the following field

equations in the context of modified Green-Lindsay thermoelasticity theory given by

Yu et al. (2018) :

µ
(
∇2u+ τ1∇2u̇

)
+ (λ+ µ) (grad divu+ τ1grad divu̇)

−β
(
grad θ + τ1 grad θ̇

)
+ ρH = ρ ü, (4.2.7)

K∇2θ = β T0 (div u̇+ τ0 div ü) + ρ cE

(
θ̇ + τ0 θ̈

)
−R. (4.2.8)

Now, the following notations and operators are introduced:

`1

(
∇2, T

)
= m2�1∇2 − T 2, `2

(
∇2, T

)
= K∇2 − ρ cE�2,

�1 (T ) = 1 + τ1T, �2 (T ) = T + τ0T
2, T =

∂

∂t
, T 2 =

∂2

∂t2
,

m1 =

(
λ+ µ

ρ

)
, m2 =

µ

ρ
, m3 =

β

ρ
.

Therefore, Eq. (4.2.7) and Eq. (4.2.8) take the forms as follows:

m1�1grad divu+ `1 u−m3�1grad θ = −H , (4.2.9)

`2 θ − β T0�2divu = −R. (4.2.10)
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4.3 Galerkin-Type Solution of Equations of Motion

By virtue of Eq. (4.2.9) and Eq. (4.2.10), the matrix differential operator is introduced

as following:

Ω (Dx, T ) =

 Ω(1) Ω(2)

Ω(3) Ω(4)

 ,
Ω(1) (Dx, T ) =

[
Ω(1)
pq

]
3×3

, Ω(2) =
[
Ω

(2)
p1

]
3x1

, Ω(3) =
[
Ω

(3)
1q

]
1×3

, Ω(4) = [Ω44]1×1 ,

Ω(1)
pq (Dx, T ) = `1δpq +m1�1

∂2

∂xp∂xq
,

Ω
(2)
p1 (Dx, T ) = −m3 �1

∂

∂xp
,

Ω
(3)
1q (Dx, T ) = (−β T0�2)

∂

∂xq
, Ω44(Dx, T ) = `2, (4.3.1)

where, the notations are used as; Dx =
(

∂
∂x1
, ∂
∂x2
, ∂
∂x3

)
and δpq as the Kronecker delta

for p, q = 1, 2, 3.

Therefore, Eq. (4.2.9) and Eq. (4.2.10), can be written as

Ω (Dx, T )U (x, t) = F (x, t) , (4.3.2)

where, U = (u, θ), F = (−H ,−R) and (x, t) ∈ Ξ × (0,+∞).

Now, the following system of equations are introduced:

m1�1grad divu+ `1 u− β T0 �2 grad θ = F ′, (4.3.3)

`2 θ −m3�1divu = F0, (4.3.4)

where, F ′ = (F ′1,F ′2,F ′3) is the vector function with F0 and F ′i (i = 1, 2, 3) as scalar

functions on Ξ × (0,+∞) .

Hence, in term of matrix operator, system (4.3.3-4.3.4) can be expressed in the form

ΩT (Dx, T )U (x, T ) = H (x, t) , (4.3.5)
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where, ΩT is the transpose of matrix Ω and H = (F ′,F0).

Next, taking divergence of Eq. (4.3.3), yields

B1div u− β T0�2∇2θ = div F ′, (4.3.6)

where, B1(∇2, T ) =
(
λ+2µ
ρ

)
�1∇2 − T 2.

Therefore, the matrix representation of Eq. (4.3.4) and Eq. (4.3.6) is derived as follows:

B
(
∇2, T

)
V = F̃ , (4.3.7)

where, V = (div u, θ), F̃ = (divF ′,F0), and

B(∇2, T ) =
[
Bpq

(
∇2, T

)]
2×2

=

 B1 −β T0�2∇2

−m3�1 `2

 .
System (4.3.7) implies

χ1

(
∇2, T

)
V = Φ, (4.3.8)

with,

Φ = (Φ1,Φ2) , Φq =
2∑
p=1

B∗pqfp, χ1(∇2, T ) = detB
(
∇2, T

)
, (4.3.9)

where, q = 1, 2 and B∗pq is the co-factor of the element Bpq of the matrix B.

Now, operating χ1 (∇2, T ) to Eq. (4.3.3), and using Eq. (4.3.8), gives the following

relation:

χ1

(
∇2, T

)
`1u = Φ′, (4.3.10)

where,

Φ′ = χ1F ′ − grad [m1�1Φ1 − β T0�2Φ2] . (4.3.11)
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Further, Eqs (4.3.8) and (4.3.10) give

χ
(
∇2, T

)
U (x, t) = Φ̃, (4.3.12)

where, Φ̃ = (Φ′, Φ2) and

χ(∇2, T ) =
[
χpq(∇2, T )

]
4×4

,

χjj = χ1

(
∇2, T

)
`1, j = 1, 2, 3,

χ44 = χ1(∇2, T ), χpq = 0, p, q = 1, 2, 3, 4 p 6= q. (4.3.13)

Further, introducing the operators

np1
(
∇2, T

)
= −

{
m1�1B

∗
p1 − β T0�2B

∗
p2

}
,

np2(∇2, T ) = B∗p2, p = 1, 2, (4.3.14)

and using Eq. (4.3.9), Eq. (4.3.11) yields

Φ′ = (χ1I + n11grad div)F ′ + n21grad F0, (4.3.15)

Φ2 = n12divF ′ + n22F0. (4.3.16)

Thus, in view of Eq. (4.3.15) and Eq. (4.3.16), it is found that

Φ̃(x, t) = LT (Dx, T )H (x, t) , (4.3.17)
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where,

L =

 L(1) L(2)

L(3) L(4)


4×4

,

L(1) =
[
L(1)
pq

]
3×3

, L(2) =
[
L(2)
p1

]
3x1

, L(3) =
[
L(3)

1q

]
1×3

, L(4) = [L44]1×1 ,

L(1)
pq (Dx, T ) = χ1

(
∇2, T

)
δpq + n11

(
∇2, T

) ∂2

∂xp∂xq
, L(2)

p1 (Dx, T ) = n12

(
∇2, T

) ∂

∂xp
,

L(3)
1q (Dx, T ) = n21(∇2, T )

∂

∂xq
, L44 = n22(∇2, T ), p, q = 1, 2, 3. (4.3.18)

Next, using Eq. (4.3.5), Eq. (4.3.12), and Eq. (4.3.17), the following equation is

obtained

χU = LTΩTU ,

which implies LTΩT = χ and hence,

Ω(Dx, T )L(Dx, T ) = χ(∇2, T ). (4.3.19)

Thus, the following lemma is proved.

Lemma-4.3.1:

Statement: If the matrix differential operators Ω, L, and χ are defined by Eq. (4.3.1),

Eq. (4.3.18), and Eq. (4.3.13), respectively, then Ω, L, and χ satisfy Eq. (4.3.19).

Now, let H ′j(x, t), (j = 1, 2, 3) and h(x, t) be functions on Ξ × (0,+∞) with H ′ =

(H ′1, H
′
2, H

′
3), and H̃ = (H ′, h).

Then, the subsequent theorem provides a Galerkin-type solution to the system by Eq.

(4.2.9) and Eq. (4.2.10).
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Theorem-4.3.1:

Statement: Let

u = L(1)H ′ + L(2)h, (4.3.20)

θ = L(3)H ′ + L(4)h, (4.3.21)

where, the fields H ′j of class C8 and h of class C5 satisfy

χ1(∇2, T ) `1H
′ = −H , (4.3.22)

χ1(∇2, T )h = −R, (4.3.23)

on Ξ×(0,+∞). Then U = (u, θ) is the solution of Eq. (4.2.9) and Eq. (4.2.10).

Proof: From Eq. (4.3.20) and Eq. (4.3.21), the following is acquired:

U(x, t) = L(Dx, T )H̃(x, t). (4.3.24)

On the other hand, from Eq. (4.3.22) and Eq. (4.3.23), it is derived that

χ(∇2, T )H̃(∇2, T ) = F(∇2, T ). (4.3.25)

Further, in view of Eq. (4.3.19), Eq. (4.3.24) and Eq. (4.3.25), ΩU = ΩLH̃ =

χH̃ = F is obtained which finalizes the proof of the theorem.

4.4 Galerkin-Type Solution of System of Equations

for Steady Oscillations

In this section, the steady state oscillations are considered. Hence, the solution and

external loads can be assumed in the following forms:
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u(x, t) = Re[ũ(x) e−iωt], H(x,t) = Re[H̃(x) e−iωt],

θ(x, t) = Re[θ̃(x) e−iωt], R(x,t) = Re[R̃(x) e−iωt].

Therefore, from Eq. (4.2.7) and Eq. (4.2.8), the system of equations of the steady

oscillations for MGL thermoelasticity theory are derived as follows:

µ(∇2ũ− i τ1 ω∇2ũ) + (λ+ µ)(grad div ũ− i τ1 ω grad divũ)

−β(grad θ̃ − i τ1 ω grad θ̃) + ρ f̃ = −ω2 ρ ũ, (4.4.1)

[K∇2 + ρ cE(iω + ω2 τ0)]θ̃ + β T0(iω div ũ+ τ0 ω
2 div ũ) = −R̃, (4.4.2)

where, (x, t) ∈ Ξ×(0,+∞), i =
√
−1, and ω(> 0) denotes the frequency of oscillation.

The above system can further be expressed as

[
ρω2 + µ(1− i τ1 ω)∇2

]
ũ+ (λ+ µ) [1− i τ1 ω] grad div ũ

−β [1− i τ1 ω] grad θ̃ = −ρ H̃ , (4.4.3)[
K∇2 + (iω + ω2 τ0)ρ cE

]
θ̃ + β T0(iω + τ0 ω

2)div ũ = −R̃. (4.4.4)

In the following, the succeeding notations are used

C(∇2) = |Cpq(∇2)|2x2 =

 ρω2 + (λ+ 2µ) [1− i τ1 ω]∇2 β T0(iω + τ0ω
2)∇2

−β [1− i τ1 ω] K∇2 + ρ cE(iω + ω2 τ0)


2×2

.

Now, let

χ̃1(∇2) = det C(∇2),

mp1(∇2) = −
[
(λ+ µ)(1− i τ1 ω)C∗p1 + β T0(iω + ω2 τ0)C∗p2

]
,

mp2(∇2) = C∗p2, p = 1, 2.
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It can be verified that λ2
1 and λ2

2 are the roots of the equation χ̃1(−λ∗) = 0, such that

χ̃1(∇2) = (∇2 + λ2
1)(∇2 + λ2

2).

Next, the matrix differential operators M and χ̃ are defined as

•

M =

 M(1) M(2)

M(3) M(4)


4×4

,

M(1) =
[
M

(1)
lj

]
3×3

, M(2) =
[
M

(2)
l1

]
3×1

, M(3) =
[
M

(3)
1l

]
3×1

, M(4) = [M44]1×1 ,

M(1)
pq (Dx) = χ̃1(∇2)δpq +m11(∇2)

∂2

∂xp∂xq
, M

(2)
p1 (Dx) = m12(∇2)

∂

∂xp
,

M
(3)
1p (Dx) = m21(∇2)

∂

∂xp
, M44 = m22(∇2), p, q = 1, 2, 3. (4.4.5)

•

χ̃(∇2, T ) =
[
χpq(∇2)

]
4×4

,

χ̃jj = χ̃1(∇2)[ρω2 + µ(1− i τ1 ω)∇2], j = 1, 2, 3,

χ̃44 = χ̃1(∇2), χ̃pq = 0, p, q = 1, 2, 3, 4 p 6= q. (4.4.6)

If Q̃j, (j = 1, 2, 3) and q be functions on Ξ with Q̃ = (Q̃1, Q̃2, Q̃3), and Q = (Q̃, q)

then, in accordance with the Theorem-4.3.1, the following theorem provides a Galerkin-

type solution to system by Eq. (4.4.1) and Eq. (4.4.2).

Theorem-4.4.1:

Statement: Let
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ũ = M(1)Q̃ + M(2)q, (4.4.7)

θ̃ = M(3)Q̃ + M(4)q, (4.4.8)

where, the fields Q̃j of class C6 and q of class C4 on Ω satisfy

χ̃1(∇2)
[
ρω2 + µ (1− i τ1 ω)∇2

]
Q̃ = −H̃ , (4.4.9)

χ̃1(∇2)q = −R̃, (4.4.10)

on Ξ. Then
(
ũ, θ̃

)
is the solution of Eq. (4.4.3) and Eq. (4.4.4).

4.5 General Solution of System of Equations for Steady

Oscillations

In the absence of any body force and external heat source, the Eq. (4.4.3) and Eq.

(4.4.4) can be written as

[
ρω2 + µ (1− i τ1 ω)∇2

]
ũ+ (λ+ µ) (1− i τ1 ω) grad divũ

−β (1− i τ1 ω) grad θ̃ = 0, (4.5.1)

[K∇2 + ρ cE
(
iω + ω2 τ0

)
]θ̃ + β T0

(
iω div ũ+ τ0 ω

2 div ũ
)

= 0. (4.5.2)

Firstly, the following lemma in the context of above system of equations are used:

Lemma-4.5.1:

Statement: If (ũ, θ̃) is a solution of Eq. (4.5.1) and Eq. (4.5.2), then
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χ̃1(∇2)div ũ = 0, (4.5.3)

χ̃1(∇2)θ̃ = 0, (4.5.4)[
ρω2 + µ (1− i τ1 ω)∇2

]
curl ũ = 0. (4.5.5)

Proof: Firstly, by using the operator div to (4.5.1), the following is obtained[
ρω2 + (λ+ 2µ) (1− i τ1 ω)∇2

]
div ũ− β (1− i τ1 ω)∇2θ̃ = 0. (4.5.6)

Then, elimination of θ̃ from Eq. (4.5.6) and Eq. (4.5.2) gives

χ̃1div ũ = 0.

Again from Eq. (4.5.6) and Eq. (4.5.2), eliminating div ũ, it is acquired that

χ̃1θ̃ = 0.

Furthermore, by applying the operator curl to (4.5.1), it is acquired that[
ρω2 + µ (1− i τ1 ω)∇2

]
curl ũ = 0.

Therefore, the Eqs. (4.5.3-4.5.5) are obtained which completes the proof of Lemma-

4.5.1.

Theorem-4.5.1:

Statement: If
(
ũ, θ̃

)
is a solution of Eq. (4.5.1) and Eq. (4.5.2), then

ũ(x) = β (1− i τ1 ω) grad
2∑
p=1

ϕp(x) + Ψ (x), (4.5.7)

θ̃(x) =
2∑
p=1

ap ϕp(x), (4.5.8)

where, ϕp (p = 1, 2) and Ψ = (Ψ1, Ψ2, Ψ3) satisfy the following equations:
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(
∇2 + λ2

p

)
ϕp(x) = 0, (4.5.9)[

∇2 +
ρω2

µ (1− i τ1 ω)

]
Ψ (x) = 0, x ∈ Ξ, (4.5.10)

divΨ (x) = 0, (4.5.11)

and

ap = − (λ+ 2µ) (1− i τ1 ω)λ2
p + ρω2 where, p = 1, 2. (4.5.12)

Proof: Let Eq. (4.5.1) and Eq. (4.5.2) have
(
ũ, θ̃

)
as solution. Then, taking into

account ∇2ũ = grad divũ− curl curl ũ and using Eq. (4.5.1),the following is obtained

ũ =
1− i τ1 ω

ρω2

{
grad

[
− (λ+ 2µ) div ũ+ β θ̃

]
+µ curl curl ũ

}
. (4.5.13)

Introducing the notation

Ψ (x) =
(1− i τ1 ω)µ

ρω2
curl curl ũ, (4.5.14)

and using Eq. (4.5.5), and div curl ũ = 0 for x ∈ Ξ, Eq. (4.5.10) and Eq. (4.5.11) can

be directly obtained.

Now, let

ϕj = bj

 2∏
p=1

p 6=j

(
∇2 + λ2

p

) θ̃, (4.5.15)

where,

bj =

aj 2∏
p=1

p 6=j

(
λ2
p − λ2

j

)
−1

, j = 1, 2.

Therefore, in view of Eq. (4.5.4), the Eq. (4.5.15) yields Eq. (4.5.9) and Eq. (4.5.8).

Next, using Eq. (4.5.2), Eq. (4.5.8), Eq. (4.5.9), and Eq. (4.5.12), it is acquired that

div ũ = −β (1− i τ1 ω)
2∑
p=1

λ2
p ϕp. (4.5.16)
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Hence, Eq. (4.5.13) yields

ũ =
1− i τ1 ω

ρω2

{
grad

[
(λ+ 2µ) β (1− i τ1 ω)

2∑
p=1

λ2
pϕp + β θ̃

]
+µ curl curl ũ

}
. (4.5.17)

Further, simplifying the above equation using Eq. (4.5.12) and Eq. (4.5.14), finally it

is obtained that

ũ(x) = β (1− i τ1 ω) grad
2∑
p=1

ϕp(x) + Ψ (x),

which completes the proof of Theorem 4.5.1.

Theorem-4.5.2:

Statement: If
(
ũ, θ̃

)
is expressed as in Eq. (4.5.7) and Eq. (4.5.8), where ϕj and Ψ

satisfies Eqs. (4.5.9-4.5.11), then
(
ũ, θ̃

)
is the solution of Eq. (4.5.1) and Eq. (4.5.2)

on Ξ.

Proof: From Eq. (4.5.7) and using Eq. (4.5.9) and Eq. (4.5.10), the following is

acquired

∇2ũ = −β (1− i τ1 ω) grad
2∑
p=1

λ2
pϕp −

ρω2

µ (1− i τ1 ω)
Ψ ,

grad div ũ = −β (1− i τ1 ω) grad
2∑
p=1

λ2
pϕp. (4.5.18)

Replacing ũ and θ̃ as given in Eq. (4.5.7) and Eq. (4.5.8) on the left-hand side of Eq.

(4.5.1) and using Eq. (4.5.9), Eq. (4.5.12), and Eq. (4.5.18), it is yielded that

[
ρω2 + µ (1− i τ1 ω)∇2

]
ũ+ (λ+ µ) (1− i τ1 ω) grad divũ

−β (1− i τ1 ω) grad θ̃ = ρω2

[
(1− i τ1 ω) β grad

2∑
p=1

ϕp + Ψ

]
,

−β (1− i τ1 ω) grad
2∑
p=1

[
(λ+ 2µ) (1− i τ1 ω)λ2

p + ap
]
ϕp − ρω2Ψ .
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After simplification, the above equation yields[
ρω2 + µ (1− i τ1 ω)∇2

]
ũ+ (λ+ µ) (1− i τ1 ω) grad divũ− β (1− i τ1 ω) grad θ̃ = 0,

which is our field Eq. (4.5.1).

Similarly, replacing ũ and θ̃ again on the left-hand side of Eq. (4.5.2) by the expression

given in (4.5.7) and (4.5.8) and using Eq. (4.5.9), Eq. (4.5.12), and Eq. (4.5.16) give

[
K∇2 + ρ cE

(
iω + ω2 τ0

)]
θ̃ + β T0

(
iω + τ0 ω

2
)
div ũ

=
[
K∇2 + ρ cE

(
iω + ω2 τ0

)]( 2∑
p=1

ap ϕp

)
+ β2 T0

(
iω + τ0 ω

2
)

(1− i τ1 ω)

(
−

2∑
p=1

λ2
pϕp

)

=
2∑
p=1

{
ap
[
K∇2 + ρ cE

(
iω + ω2 τ0

)]
− β2T0

(
iω + τ0 ω

2
)

(1− i τ1 ω)λ2
p

}
ϕp

= 0
(
by using χ̃1

(
−λ2

p

)
= 0, p = 1, 2

)
.

Thus acquiring Eq. (4.5.2).

Hence, it can be confirmed that the general solution of the system of homogeneous Eq.

(4.5.1) and Eq. (4.5.2) is attained in terms of the metaharmonic functions ϕp and Ψ .

4.6 Conclusion

The present chapter is concerned with a newly proposed non-classical model referred

to as modified Green-Lindsay (MGL) model that incorporates temperature and strain

rate terms in the constitutive relations. The work includes representation of Galerkin-

type solution for the system of equations of motion in terms of elementary functions.

A theorem that represents Galerkin-type solution of equations for steady state oscilla-

tions in the context of MGL linear thermoelasticity theory is established. Finally, the

representation of a general solution for the system of equations in the case of steady

state oscillations is also acquired in terms of metaharmonic functions.
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