
CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Thermoelasticity: Definition and Applications

Thermoelasticity is a very interesting branch of science that considers the simultane-

ous effects of thermal and mechanical fields in an elastic body and is concerned with

the prediction of thermomechanical behavior of the medium. It is an advancement

of elasticity theory that takes into account the thermal effects such as thermal stress,

strain, and deformation. The tendency of the material to change its mechanical prop-

erties with the change in temperature is referred to as thermal deformation. Therefore,

thermoelasticity theory predicts the thermomechanical interactions in the elastic body.

It comprises of the theory of stress and strain along with the heat conduction theory.

In contrast to the classical theory of elasticity, the impact of action of internal forces

on the temperature field is measured along with the effect of temperature change on

deformation under the theory of thermoelasticity.

This growing area of continuum mechanics proves to have a broad interest in the-

oretical as well as practical research. Therefore, it has become an integral subject

of science. With the rapid progress in machine and aircraft structures, the impor-

tance of thermal stresses is observed. Expansion and contraction of material are the

factors of concern for the stability of structures. Hence, maintaining the structural

integrity while designing buildings and structures is the main application of thermoe-
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lasticity. Moreover, thermoelasticity theory has applicability in other engineering fields

and technologies such as nuclear, mining, chemical, and acoustic engineering. This the-

ory also plays a vital role in studying micro- and nano-electromechanical resonators,

where the inherent loss consists of thermoelastic effects. Thermoelasticity further

forms the base for other branches of science such as electro-thermoelasticity, visco-

thermoelasticity, magneto-thermoelasticity, poro-thermoelasticity, thermo-piezoelectric

theory, aero-thermoelasticity, and many more.

1.2 Classical Thermoelasticity Theory and Its Draw-

backs

The classical thermoelasticity theory discusses the coupling effect of deformation on

temperature distribution with the effect of temperature on stress and strain distribu-

tion. Hence, it is also referred to as classical coupled thermoelasticity theory. On the

other hand, the uncoupled theory is developed on the simplifying assumption that the

influence of strain on the temperature field may be neglected. It is observed that when

heat supplied to the body is the primary reason for the change in temperature distribu-

tion, then the mechanical coupling term in the energy balance equation can be avoided.

However, it can not be neglected when the temperature variation is mainly due to the

deformation of the body. In coupled theory, the stress and the temperature distribution

are evaluated concurrently, whereas, in uncoupled theory, physical fields are evaluated

successively. Hence, the coupled thermoelasticity theory aims to overcome the draw-

back in the classical “uncoupled theory of thermoelasticity” that the elastic changes

have no effect on the temperature and vice versa.

It is worth to be mentioned that Duhamel (1837), the formulator of thermal stresses,

speculated the notion of coupling between thermal and mechanical fields for the first

time and derived the equations for the strain in an elastic body with temperature gra-
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dients. Later on, Neumann (1841) also obtained the similar results. However, the

theory dealt with the thermal and mechanical effects as independent effects and total

strain was determined by superimposing the elastic strain and the thermal expansion

caused by the temperature distribution only. Hence, the theory did not include the in-

teractions between the strain and the temperature distributions in a specified manner.

Subsequently, in 1857, the thermodynamic arguments were taken into consideration by

Thomson (1857) who was the first to use the laws of thermodynamics to determine

the stresses and strains in an elastic body in response to varying temperatures. Later,

Voigt (1928) and Jefferys (1930) ventured the thermodynamic documentation of the

equations suggested by Duhamel (1837). However, the field of coupled thermoelasticity

has been stimulated through the pioneering work by Biot (1956). In that work, the

fundamental relations and laws of thermomechanics, namely, laws of conservation of

mass, laws of conservation of energy, the balance of momentum, and kinematic rela-

tions, were employed in a fully justified manner to derive the basic governing equations

and constitutive relations for coupled thermoelasticity. Biot’s theory was consequently

termed as the classical coupled (or conventional) thermoelasticity theory. Biot (1956)

also presented the variational principle in the context of conventional thermoelasticity

theory, which is useful in deriving Lagrangian equations. Further, the author articu-

lated the methods to obtain general solutions to the thermoelasticity equations in an

isotropic homogeneous medium.

The following are the basic governing equations and constitutive relations of the

linear classical coupled thermoelasticity theory for a general anisotropic medium due

to Biot (1956):

The equation of motion:

σij,j + ρHi = ρüi. (1.2.1)

The energy equation:

ρT0Ṡ = −qi,i + ρR. (1.2.2)
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The constitutive relations:

σij = Cijklekl − βijθ, (1.2.3)

T0ρS = ρcEθ + βijT0eij, (1.2.4)

qi = −Kijθ,j. (1.2.5)

Further, for isotropic homogeneous material, the above constitutive relations take

the following forms:

σij = λekkδij + 2µeij − βθδij, (1.2.6)

T0ρS = ρcEθ + βT0ekk, (1.2.7)

qi = −Kθ,i. (1.2.8)

Using above equations, the following equations can be acquired:

Kθ,jj + ρR = ρcE θ̇ + T0βu̇j,j, (1.2.9)

µui,jj + (λ+ µ)uj,ji − βθ,i + ρHi = ρüi. (1.2.10)

Here, Eq. (1.2.9) and Eq. (1.2.10) represent the coupled field equations of classical ther-

moelasticity in ui and θ, namely, heat conduction equation and displacement equation

of motion, respectively.

Biot’s thermoelasticity theory as described above is considered to be an elegant

model to study various problems involving coupling effects of thermal and mechanical

fields. Eminent researchers like Chadwick (1960), Boley and Weiner (1960), Nowacki

(1962; 1975b), Parkus (2012), Nowinski (1978), Dhaliwal and Singh (1980), Chan-

drasekharaiah (1986b) have reported a broad and detailed discussion with appealing

applications and theorems based on the Biot’s theory. However, it is to be noted

that this theory is based on Fourier’s law (Eq. (1.2.8)) and hence, it consists of a

parabolic partial differential equation for thermal distribution (Eq. (1.2.9)) and a hy-
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perbolic partial differential equation for mechanical distribution (Eq. (1.2.10)). This

hyperbolic-parabolic system of partial differential equations results in infinite speed of

thermal wave propagation. This behavior suggests that the effects will be observed

instantaneously at another end from the source, which is physically inadmissible.

Further, several research works carried out under this classical thermoelasticity the-

ory have investigated apparent drawbacks of presenting unconvincing results in the

case of short laser pulses and low temperature (see Lord and Shulman (1967), Green

and Lindsay (1972), Francis (1972), Chandrasekharaiah (1986b), Ignaczak and Ostoja-

Starzewski (2010) and references therein). Also, micro-scale technology advancement

supports the thermal field motion as a wave, which opposes infinite thermal propaga-

tion, i.e., heat propagation as a wave rather than diffusion. All these have drawn the

serious attention of researchers over the years to step out in modifying the concept of

this theory. Some useful modifications in classical thermoelasticity theory have been

proposed accordingly. These modified thermoelasticity theories are often referred to as

generalized thermoelasticity theories.

1.3 Generalized Thermoelasticity Theory

Generalized thermoelasticity theories are mainly the modified forms of conventional

thermoelasticity theory to overcome the paradox of infinite speed of thermal propa-

gation. These theories can broadly be divided into two categories. The first one is

based on modified heat conduction law, i.e., the Fourier’s law employed in classical

thermoelasticity is exchanged with an appropriate alteration in the constitutive rela-

tion of heat-flux and temperature gradient. These modified constitutive relations are

mostly comprised of new constitutive variable or phase-lag parameters concerning time

or space, or both. The second one is the category of thermoelasticity theories in which

the conventional theory is improved in an alternative way to deduce reconditioned con-
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stitutive equations by employing thermodynamic principles. However, Fourier’s law is

kept unchanged in many of the theories in the second category. A brief introduction

on some well established and well studied or recently proposed generalized theories is

given below.

1.3.1 Non-Fourier Generalized Thermoelasticity Theory

1.3.1.1 Lord-Shulman Thermoelasticity theory (LS): Thermoelasticity with

One Thermal Relaxation Parameter

The generalized thermoelasticity theory proposed by Lord and Shulman (1967) is among

the most studied modified theories of thermoelasticity till date. In this theory, the

authors have considered the more general relation between heat-flux and temperature

gradient in comparison to Fourier’s law. The authors aim to include the time needed

to accelerate the heat flow in the heat conduction law, which has been neglected when

Fourier’s law is employed (Onsager (1931)).

In the context of the heat conduction problem, Cattaneo (1958) and Vernotte (1958;

1961) have theoretically introduced the concept of “second sound.” In other words, they

have suggested the generalization of Fourier’s law by including the time-lag, which on

combining with the law of conservation of energy, gave hyperbolic type heat conduction

equation in contrast to parabolic type diffusion equation. The modified Fourier’s law

of heat conduction presented by Cattaneo and Vernotte for the case of isotropic and

homogeneous material is given as follows:

qi + τq
∂qi
∂t

= −Kθ,i, (1.3.1)

which can be considered for the anisotropic medium in the form

qi + τq
∂qi
∂t

= −Kijθ,j. (1.3.2)
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Here, τq is the time-lag essential to acquire the steady-state of heat conduction when a

temperature gradient is suddenly imposed. It is also addressed as a thermal relaxation

time. Combining Eq. (1.3.1) with the energy equation

ρcE θ̇ = −qi,i + ρR (1.3.3)

yields the corresponding heat conduction equation as

Kθ,ii =

(
1 + τq

∂

∂t

)(
ρcE θ̇ − ρR

)
. (1.3.4)

In 1963, Chester (1963) has given the definite physical interpretation of the heat

conduction equation involving, τq (Eq. (1.3.4)). He has estimated the value of τq and

suggested the following expression:

τq =
3K

ρcv2
s

, (1.3.5)

where, vs is the speed of ordinary sound. The study by various researchers has spec-

ulated the range of τq for metals and gases from 10−14s to 10−10s (see the articles by

Nettleton (1960), Chester (1963), Chester (1966), Maurer (1969), Mengi and Turhan

(1978) and references therein). In view of the above expression, the value of τq being

very small has created an urge among the researchers to neglect the second term on

the left side in Eq. (1.3.2). Although, the more rigorous studies by several researchers

including Baumeister and Hamill (1969; 1971), Chan et al. (1971), Maurer and Thomp-

son (1973), Sadd and Cha (1982) have proved the relevance of the Eq. (1.3.2) in case of

very high heat-flux and very short time intervals. It has been reported that the hyper-

bolic type heat conduction equation (Eq. (1.3.4)) corresponding to modified Fourier’s

law (Eq. (1.3.2)) presents more physically relevant results in these cases as compared to

the parabolic type diffusion equation corresponding to Fourier’s law of heat conduction.

Lord and Shulman (1967) have worked upon developing an extension of classical
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thermoelasticity theory around the modified Fourier’s law given by Eq. (1.3.1) and have

arrived at a generalized thermoelasticity theory. This theory supports the finite speed

of heat propagation. This theory is also termed as extended thermoelasticity theory

(ETE) or thermoelasticity with thermal relaxation. The heat conduction equation of

this theory in the context of isotropic and homogeneous material can be presented as

follows:

Kθ,jj =

(
1 + τq

∂

∂t

)(
ρcE θ̇ + T0βu̇j,j − ρR

)
, (1.3.6)

whereas, the displacement equation is same as Eq. (1.2.10). Further, Eq. (1.3.6) evalu-

ates the speed of thermal wave propagation as
√

K
ρcτq

, which is evidently dependent on

the thermal relaxation parameter. For the relaxation parameter (τq) equal to zero, the

extended thermoelasticity theory corresponds to classical theory (Biot’s theory) pre-

dicting an infinite speed of thermal signals. Furthermore, Lord and Shulman analyzed

the one-dimensional problem for their theory and compared the results with that of

conventional theory.

1.3.1.2 Green-Naghdi Thermoelasticity Theory (GN)

In the 1990s, Green and Naghdi (1991; 1992; 1993) have elaborated and extended the

concept of coupled thermoelasticity in a completely different manner to present the

unconventional set of thermoelasticity theories. One of their theories in linearized form

has resulted in a similar heat conduction law, as has been suggested by the inertial

theory of heat conduction. In Inertial theory, Cattaneo and Vernotte (1958; 1958;

1961) heat conduction law, i.e., qi + τq
∂qi
∂t

= −Kθ,i, is treated in limiting case, where,

τq →∞ and K/τq is assumed to be finite. The altered law of heat conduction obtained

in this scenario is as follows:

qi
τq

+
∂qi
∂t

= −K
τq
θ,i, (1.3.7)

which after applying the limits gives
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∂qi
∂t

= −K∗1θ,i, (1.3.8)

where, K∗1 = K/τq.

On the other hand, Green and Naghdi (1991) have formulated the generalized theory

by introducing a new constitutive variable ν, where, ∂ν
∂t

= θ. In view of its definition, ν

is termed as thermal displacement. They have presented three types of thermoelastic-

ity theories, each varying based on variables involved in the balance of energy equation

while deriving the theory. These theories have subsequently been referred to as ther-

moelasticity theories of type GN I, GN II, and GN III. The laws of heat conduction

employed in these thermoelasticity theories for the anisotropic medium can be stated

as follows:

• GN I Theory:

qi = −Kijθ,j, (1.3.9)

which is classical Fourier’s law in which θ and θ,i are considered as independent

variables in derivation.

• GN II Theory:

qi = −K∗ijν,j, (1.3.10)

where, θ, ν and ν,i are considered as independent variables.

• GN III Theory:

qi = −Kijθ,j −K∗ijν,j, (1.3.11)

where, θ, θ,i, ν and ν,i are considered as independent variables.

Form of Eq. (1.3.10), for the isotropic case, is the heat transportation law that is similar

to that of inertial theory (K∗1 and K∗ interpret the same quantity). The authors have

also inferred that the relation of model GN II involves no dissipation of energy (Green
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and Naghdi (1993)). Hence, the corresponding theory is also called as thermoelasticity

theory without energy dissipation. The anisotropic version of displacement equation

of motion given by Eq. (1.2.10) along with heat conduction equation obtained on

combining energy equation with Eqs. (1.3.9-1.3.11) gives the set of governing equations

for the thermoelasticity theory of types GN I, GN II and GN III, respectively. In the

context of the isotropic case, linearized forms of the equations for GN II and GN III

have been presented by Green and Naghdi in 1993 and 1992, respectively. Furthermore,

equations for the anisotropic case for both GN II and GN III thermoelasticity theories

are articulated by Quintanilla (1999; 2001; 2002a).

1.3.1.3 Dual-Phase-Lag Thermoelasticity Theory (DPL)

With the increasing popularity of generalized thermoelasticity theory, more detailed

studies have been carried out to get alternative theories that exhibit the finite speed

of thermal signals. In 1992, Tzou (1992) presented the idea of Cattaneo and Vernotte

heat conduction law in a mathematical way and produced a new modified Fourier’s law

as follows:

qi(x, t+ τq) = −Kijθ,j(x, t). (1.3.12)

This corresponds to modified Fourier’s law given by Cattaneo and Vernotte (1958; 1958;

1961) when the left hand side of Eq. (1.3.12) is expanded to the first order Taylor’s

series expansion about t. Here, Tzou (1992) has interpreted Eq. (1.3.12) in presence of

phase-lag (time lag), τq that the heat-flux at some point in the medium will be observed

at time t + τq when the temperature gradient at that point is incorporated at time t.

Further, Tzou (1995b; 1995c) has extended this idea of time-lag and proposed a new

heat conduction relation, which can be stated as follows:

qi(x, t+ τq) = −Kijθ,j(x, t+ τθ). (1.3.13)
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In this new law, Tzou has incorporated two phase-lags with respect to heat-flux and

temperature gradient, i.e., τq and τθ, respectively and hence, termed it as dual-phase-

lag heat conduction law. According to Eq. (1.3.13), when at a point in the medium

temperature gradient is applied at time t + τθ, then the heat-flux will be felt at time

t + τq at that point if τq > τθ. However, the results are the other way round when

τθ > τq. The addition of new phase-lag, τθ emphasizes the micro-structural interactions

caused due to heat transportation in the medium. It can be alternatively be phrased

that this law brings out the microscopic effects in both space and time whereas the

classical Fourier’s law is macroscopic in view of space and time. By taking two different

forms of Taylor series expansion of above equation, Tzou (1995b; 1995c) has introduced

two different constitutive relations for heat-flux and temperature gradient vectors as

follows:

• When the first-order Taylor’s series expansion about time t is considered on both

sides of Eq. (1.3.13), it yields dual-phase-lag heat conduction model-I:

(
1 + τq

∂

∂t

)
qi = −Kij

(
1 + τθ

∂

∂t

)
θ,j. (1.3.14)

• When the second-order Taylor’s series expansion about time t is considered on

left hand side (in terms of τq) and the first-order expansion is taken on right side

(in terms for τθ), it yields dual-phase-lag heat conduction model-II:

(
1 + τq

∂

∂t
+ τ 2

q

∂2

∂t2

)
qi = −Kij

(
1 + τθ

∂

∂t

)
θ,j. (1.3.15)

The interpretation of Eq. (1.3.14) and Eq. (1.3.15) in terms of heat conduction problem

is conducted by Tzou (1995b; 1995c) in his work. According to him, Eq. (1.3.15)

exhibits thermal propagation as wave in nature whereas results of Eq. (1.3.14) depends

on the values of τq and τθ. More detailed elaboration of these two models and several
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important findings in this respect are available in the book given by Tzou (1997).

The dual-phase-lag heat conduction model is consequently extended by Chandrasekhara-

iah (1998), who introduced a new generalized thermoelasticity theory, namely dual-

phase-lag thermoelasticity theory based on the above two modified Fourier’s laws given

by Tzou (1995b; 1995c). Chandrasekharaiah (1998) has conducted the analysis of Eq.

(1.3.15) with respect to the thermoelasticity theory. The author combined Eq. (1.3.15)

with energy law to derive the following governing relation of heat transportation for

DPL thermoelasticity theory in the context of anisotropic medium:

(
1 + τθ

∂

∂t

)
Kijθ,ij =

(
1 + τq

∂

∂t
+ τ 2

q

∂2

∂t2

)(
ρcE θ̇ + T0βiju̇i,j − ρR

)
. (1.3.16)

The other governing equations however remained the same as the conventional theory.

Likewise to Tzou, Chandrasekharaiah (1998) has also stated that the Eq. (1.3.16) and

the other field equations form the hyperbolic system of partial differential equations in

the context of dual-phase-lag thermoelasticity model. The author elaborates that the

DPL thermoelasticity theory based on Eq. (1.3.14) will transmit thermal disturbances

with finite speed only when τq > τθ ≥ 0 otherwise the paradox of infinite speed sustains

in the theory. Further, the velocity of thermal signals for DPL model in terms of

material parameters is expressed as follows:

v =
1

τq

√
2Kτθ
ρcE

. (1.3.17)

1.3.1.4 Three-Phase-Lag Thermoelasticity Theory (TPL)

In early twenty first century, Roychoudhuri (2007a) has implemented the idea of phase-

lag introduced by Tzou to Green-Naghdi thermoelasticity theory. The author has in-

corporated an additional phase-lag, represented as τv, for the gradient of thermal dis-

placement, ∇ν, along with τq and τθ, which are phase-lags with respect to heat-flux and
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temperature gradient, respectively. Following Tzou, Roychoudhuri (2007a) has compre-

hended the role of τν and stated that the heat-flux will be acquired at time t + τq at

a point on the material when temperature gradient and thermal displacement gradient

is observed at time t + τθ and t + τν , respectively. This type of setup also brings out

the effect of phonon-scattering, phono-electron interactions in the macroscopic frame.

The modified Fourier’s law that has been employed in this theory in the context of an

isotropic and homogeneous medium is stated as follows:

qi(x, t+ τq) = −Kθ,i(x, t+ τθ)−K∗ν,i(x, t+ τν). (1.3.18)

Further, combining Eq. (1.3.18) with the energy equation gives the desired heat conduc-

tion equation of three-phase-lag theory. Similar to DPL theory, various Taylor’s series

expansion of three-phase-lag theory is the topic of interesting concern. Roychoudhuri

discussed two versions of Eq. (1.3.18) in his article. The first one is obtained by con-

sidering first order Taylor’s series expansion in Eq. (1.3.18) w.r.t. t and in terms of

τq, τθ and τν . On the other hand, the second one involves the first order Taylor’s series

expansion w.r.t. t for τθ and τν , and the second order Taylor’s series expansion in

terms of τq. The later version can be stated as follows:

(
1 + τq

∂

∂t
+ τ 2

q

∂2

∂t2

)
qi(x, t) = −K

(
1 + τθ

∂

∂t

)
θ,i(x, t)−K∗

(
1 + τν

∂

∂t

)
ν,i(x, t).

(1.3.19)

Since, ν̇ = θ and considering τ ∗ν = K +K∗τν , Eq. (1.3.19) transforms as(
1 + τq

∂

∂t
+ τ 2

q

∂2

∂t2

)
qi = −

[
τ ∗ν θ,i +Kτθ

∂θ,i
∂t

+K∗ν,i

]
. (1.3.20)

Further, on taking divergence of Eq. (1.3.20) and using energy equation with relation,

ν̇ = θ, the heat transportation equation of three-phase-lag thermoelasticity theory

based on the Eq. (1.3.19) is obtained in the following form:

(
1 + τq

∂

∂t
+ τ 2

q

∂2

∂t2

)(
ρcθ̈ + T0βüj,j − ρṘ

)
= τ ∗ν θ̇,ii +Kτθθ̈,ii +K∗θ,i. (1.3.21)
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Neglecting, τ 2
q in Eq. (1.3.21) gives the thermal field equation of three-phase-lag ther-

moelasticity theory based on the first version of Eq. (1.3.18) as has been discussed by

Roychoudhuri (2007a). Using above mentioned heat transportation equation and dif-

ferent values of material parameter and phase-lags, equation for previously mentioned

thermoelasticity theories can be obtained from Eq. (1.3.21) as special cases.

1.3.1.5 Thermoelasticity Theory Based on Exact Heat Conduction Law

with a Single Delay

The results of generalized thermoelasticity theories based on modified Fourier’s law de-

pend on the nature of that law. The study of these constitutive laws in terms of the

heat conduction problem can help in understanding the tentative heat flow in corre-

sponding thermoelasticity theory. For this purpose, Dreher et al. (2009) have analyzed

the heat flow laws given by Eq (1.3.13) and Eq. (1.3.18) after combining them with the

following energy equation:

− qi,i(x, t) = ρcE θ̇(x, t). (1.3.22)

The authors have marked the observation that in the point spectrum, the sequence of

eigenvalues with its real part tending to infinity always exist. This inspection points out

the instability and ill-posedness of the problems on dual-phase-lag and three-phase-lag

heat conduction. These types of observations further shift the interest of researchers

towards different theories based on Taylor’s expansion of heat conduction law with

phase-lag(s).

In 2011, Quintanilla (2011) differently treated the three-phase-lag heat flow law

given by (1.3.18) in order to obtain the stability of the model. The author has proposed

to consider, τ1 = τq − τθ and τ2 = τq − τν in Eq. (1.3.18), which modified the equation

as follows:

qi(x, t) = −Kθ,i(x, t− τ1)−K∗ν,i(x, t− τ2). (1.3.23)
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Here, τ1 and τ2 are termed as delay time parameters. The author has further studied

the problem considering, τ1 = 0 and τ2 = τ > 0, i.e.

qi(x, t) = −Kθ,i(x, t)−K∗ν,i(x, t− τ). (1.3.24)

In continuation to this, the author has presented the thermoelasticity theory with a

delay term based on the anisotropic version of Eq. (1.3.24) and has stated the stability

of a problem for the system of thermoelasticity theory. Furthermore, he has concluded

the article by showing the stability of the heat conduction problem by considering

Taylor’s series expansion of Eq. (1.3.24) when expanded till third order. Subsequently,

Leseduarte and Quintanilla (2013) have investigated the spatial behavior of the heat

conduction problem solution based on Eq. (1.3.24). The authors have later presented

Phragmén Lindelöf type alternative for heat conduction problem and have extended

the results to thermoelasticity theory. Further, they have also studied problems based

on the forward- and backward-in-time version of (1.3.24). These two versions of the

exact heat conduction law can be stated as follows:

• Forward-in-time version, i.e., when τ = τν − τq > 0

qi(x, t) = −Kθ,i(x, t)−K∗
(
ν,i(x, t) + τ

∂

∂t
ν,i(x, t) +

τ 2

2

∂2

∂t2
ν,i(x, t)

)
. (1.3.25)

• Backward-in-time version, i.e., when τ = τq − τν > 0

qi(x, t) = −Kθ,i(x, t)−K∗
(
ν,i(x, t)− τ

∂

∂t
ν,i(x, t) +

τ 2

2

∂2

∂t2
ν,i(x, t)

)
. (1.3.26)

It is worth noting that this thermoelasticity theory is yet to get attention. In the view

of stability of the heat conduction problem based on these constitutive relations, this

recent generalized thermoelasticity theory under the exact heat conduction equation

with a single delay is, therefore, worth studying.
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1.3.1.6 Non-Local Thermoelasticity Theory

With the emerging era of nanotechnology, the shift of studies from macro to micro level

is must needed. In this respect, the non-local continuum theory has proved to be in

the right direction. This type of theory involves the effect of a neighborhood of the

considered point of material during the thermomechanical process (Eringen (2002)).

The size factor brings out the influence of microscopic elements at a macroscopic level

in the ongoing process. Moreover, the role of non-local response in space is analogous to

the lagging response in time. Like the time phase-lag helps to understand the process

in femtosecond domain, non-local response aids in comprehending the mechanism at

the nanoscale (Tzou (1997)).

The concept of non-local response can be applied to the thermoelasticity theory

either on the basis of non-local elasticity (Eringen (1974), Balta and Suhubi (1977))

or using non-local heat conduction law. In 2010, Tzou and Guo (2010) have presented

a new heat conduction model which involves both phase-lag response and non-local

response. In this work, the authors have firstly combined the non-local response with

the single phase-lag heat conduction model (Tzou (1992)) which can be stated as:

qi(x+ λq, t+ τq) = −Kθ,i(x, t), (1.3.27)

where, λq refers the correlating length vector. Further, this non-local heat conduction

model has been compared with the thermomass heat conduction model (Cao and Guo

(2007), Guo and Hou (2010)) in order to obtain the relation between the corresponding

parameters. The phase-lag of heat-flux and correlating length have been shown equiv-

alent to the thermal lagging and twice the length parameter in the thermomass model,

respectively. Heat conduction laws based on the concept of thermomass theory have

been developed by Cao and Guo (2007), Guo and Cao (2008), and Guo and Huo (2010).

Thermomass is defined according to Einstein’s mass-energy relation as the equivalent
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mass of phonon gas in dielectrics.

In order to remove singularities from model with single phase-lag, Tzou and Guo

(2010) has combined non-local response with dual-phase-lag model given by Tzou

(1995b; 1995c). The general form of their final modified Fourier’s law is proposed

as follows:

qi(x+ λq, t+ τq) = −Kθ,i(x, t+ τθ). (1.3.28)

Here, the authors further have analyzed the impact of various parameters on a one-

dimensional heat conduction problem by considering the following Taylor’s series ex-

pansion of Eq. (1.3.28):

qi + (λq.∇)qi + τq
∂qi
∂t

= −Kθ,i −Kτθ
∂θ,i
∂t

(1.3.29)

1.3.2 Generalized Thermoelasticity Theory Based on Classical

Fourier’s Law

1.3.2.1 Green-Lindsay Thermoelasticity Theory (GL)

After LS thermoelasticity theory, it is the Green-Lindsay theory (GL theory) that gained

popularity amongst researchers. In 1972, Green and Lindsay (1972) formulated an un-

conventional thermoelasticity theory based on entropy production inequality given by

Green and Laws (1972). This inequality is a generalization of the classical entropy

inequality, which involves a scalar function depending on both absolute temperature

and temperature-rate. One of the key features in this theory is that it does not alter

Fourier’s law when the center of symmetry of the body is considered. The derivation of

this theory results in modified constitutive relations involving temperature-rate terms

and two relaxation times. For this reason, it is sometimes referred to as thermoe-

lasticity theory with two relaxation parameters. Further, since it is derived including
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temperature-rate, it is also termed as temperature rate-dependent thermoelasticity the-

ory. This new development in thermoelasticity theory has consequently resulted in the

finite speed of propagation of both thermal and elastic waves. The constitutive relations

for linear generalized thermoelasticity theory given by Green and Lindsay (1972) for

the anisotropic homogeneous medium with the centre of symmetry are given as follows:

The equation of motion:

σij,j + ρHi = ρüi. (1.3.30)

The energy equation:

ρT0Ṡ = −qi,i + ρR. (1.3.31)

The constitutive relations:

T0ρS = ρcE(θ + τ0θ̇) + βijT0eij, (1.3.32)

σij = Cijklekl − βij(θ + τ1θ̇), (1.3.33)

qi = −Kijθ,j. (1.3.34)

Here, τ0 and τ1 are the two thermal relaxation time parameters included in the consti-

tutive relations to incorporate the temperature-rate terms. Using the aforementioned

Eqs. (1.3.30-1.3.34), the two field equations in the context of linear GL thermoelasticity

theory can be obtained as earlier.

1.3.2.2 Modified Green-Lindsay Thermoelasticity Theory (MGL)

As explained in the previous subsection, Green-Lindsay thermoelasticity theory suc-

cessfully overcomes the paradox of infinite speed of thermal wave propagation by al-

tering the conventional thermoelasticity with the interesting fact of keeping Fourier’s

law intact in the case of a centrally symmetric body. Like LS theory, this theory has

drawn considerable attention from researchers to investigate several problems concern-
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ing with thermoelastic interactions in thermoelastic media. Detailed comparison of

results predicted by classical theory, LS theory, and GL theory have also been reported

in literature. However, it has been reported in several studies that GL theory suffers

discontinuity in the displacement field for transient motion (see Chandrasekharaiah

and Srikantiah (1986; 1987), Dhaliwal and Rokne (1989), Chatterjee and Roychoudhuri

(1990), Ignaczak and Mr’ owka-Matejewska (1990)). Discontinuity in the displacement

field suggests that one part of the matter penetrates the other, which disobeys the con-

tinuum hypothesis (Chandrasekharaiah (1998)). Considering this fact, recently, Yu et

al. (2018) have developed a modified version of Green-Lindsay thermoelasticity theory

based on strain-rate along with the temperature-rate terms. The strain-rate term is

usually neglected in constitutive relations of linear theory by assuming it to be rela-

tively small. This is not an appropriate assumption for extreme conditions such as in

ultra-fast heating. Hence, the authors have proposed the new thermoelasticity model

with the help of extended thermodynamics theory and generalized dissipation inequal-

ity. While developing this theory, the modification in constitutive relations are resulted

as follows:

T0ρS = ρcE(θ + τ0θ̇) + βijT0(eij + τ0ėij), (1.3.35)

σij = Cijkl(ekl + τ1ėkl)− βij(θ + τ1θ̇). (1.3.36)

Eq. (1.3.35) and Eq. (1.3.36) represent the addition of strain-rate term and

temperature-rate term in entropy and stress-strain constitutive relations, respectively.

Further, with the help of a one-dimensional problem, the authors have demonstrated

the impact of this new theory and have concluded that this theory may remove the

drawback of occurrence of the discontinuous displacement field. A detailed comparison

of the results in the contexts of MGL thermoelasticity theory with the corresponding re-

sults under GL theory and GN (II, III) thermoelasticity theory has also been presented

in the same article by Yu et al. (2018).
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1.3.3 Other Generalized Thermoelasticity Theories

Apart from the aforementioned theories, there are thermoelasticity theories which have

been developed on the concepts of fractional calculus, micropolar, porous media, etc.

Thermoelasticity theories which are proposed on the basis of the heat conduction law

with fractional derivatives are called as fractional order thermoelasticity theories. A

book by Povstenko (2015) has summarized the work done in the fractional thermoe-

lasticity from the beginning. With the help of fractional calculus, the theory can be

studied in time and space non-local domain. Few of the other works on fractional ther-

moelasticity can be seen in the following references: Sherief et al. (2010), Youssef (2010;

2016), El-Karamany and Ezzat (2011a; 2011b), Sur and Kanoria (2012), Abbas(2014;

2015), and Povstenko (2019). Further, micropolar thermoelasticity theory is another

topic that has been studied widely. Eringen (1970) has covered the fundamental of

micropolar thermoelasticity in which the author expressed the constitutive thermome-

chanical equations for materials inheriting granular and molecular nature. The articles

by Boschi and Ieşan (1973), Chandrasekharaiah (1986a), Ciarletta (1999), Sherief et

al. (2005), Othman and Singh (2007), Ciarletta et al. (2007) and many more have

inspected the micropolar behavior of materials under different thermoelastic models.

1.4 Literature Review

With the advancement of thermoelasticity theory as the integral subject of science,

a significant range of research work has been carried out both in mathematical and

physical terms. In view of overcoming the drawbacks of conventional thermoelastic-

ity theory and attaining appropriate results in extreme thermal and mechanical con-

ditions, gradual and continuous developments have been observed to derive various

generalized thermoelasticity theories. Several review articles and books have reported

these advancements upto certain extents. Few among them to be worth mentioning
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are as follows: Nowacki (1969b; 1975b), Chandrasekharaiah (1986b; 1998), Joseph and

Prezios (1989; 1990), Straughan (2011), Parkus (2012), Hetnarski and Ignaczak (1999),

and Ignaczak and Ostoja-Starzewski (2010). Moreover, in 2005, Picard (2005) has

addressed the structural formulation for linear thermoelasticity in nonsmooth media.

Subsequently, structural formulation for linear material laws in classical mathematical

physics has been reported by Picard (2009), where class of evolutionary boundary value

problems have been considered to cover a number of initial boundary value problems

of classical mathematical physcis and the corresponding solution theory hase been de-

rived. For more review and studies on specific problems under various thermoelasticity

theories, the Ph.D. theses of Roushan Kumar (2010), Rajesh Prasad (2012), Shweta

Kothari (2013), Rakhi Tiwari (2017), Bharti Kumari (2017), Shashi Kant (2018), and

Anil Kumar (2018) can also be viewed. This section aims at reporting some literature

survey to acquire the state of art in the context of generalized thermoelasticity theories

as mentioned in sections.

The classical thermoelasticity theory proposed by Biot (1956) succeeded in bringing

the coupling effects of thermal and mechanical fields. This theory, therefore gained seri-

ous attention during subsequent decades. Sternberg and McDowell (1957) studied this

theory for a semi-infinite elastic medium bounded by a plane in order to find steady-state

thermal stresses and displacements. The authors using the method of Green showed

that the stress field is plane and parallel to the boundary. Further, Sneddon and Lockett

(1960) extended the study of Sternberg and McDowell (1957) to thick plate. Deresiewicz

(1957) studied the propagation of plane waves in the context of classical theory proving

the independence of shear waves from the thermal effect and the presence of two dilata-

tion waves, namely, elastic wave and thermal wave. Subsequently, Lessen (1957; 1959)

studied the propagation of thermoelastic waves and the thermal shock problem in the

thermoelastic medium to analyze the thermal and mechanical effects in the case of con-

ventional coupled theory given by Biot (1956). Furthermore, the thermoelastic effects
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in thick plates and rods were analyzed by Chadwick (1962). A survey on various meth-

ods on the basis of categories such as linear and nonlinear, isotropic and anisotropic,

stationary and non-stationary, deterministic and random, was made by Parkus (1963)

in the context of thermoelastic problems. Ismail and Nowinski (1965) used a pertur-

bation scheme to solve an axially symmetric steady state thermoelastic problem with

temperature-dependent material properties. Ignaczak and Nowacki (1966) represented

the solution of the equations of conventional coupled thermoelasticity in terms of sur-

face integral. The solution provided the surface potentials, which helps to reduce the

basic boundary value problem to the solution of a system of singular integral equations.

Books by Chadwick (1960), Boley and Wiener (1960), Carlson (1973), Nowacki (1975a),

Parkus (2012), Nowinski (1978), and Dhaliwal and Singh (1980) thoroughly recorded

the results and applications of this classical thermoelasticity theory. However, with

the progression of the decade, the deviation of research was observed from studying

classical thermoelasticity to modifying classical thermoelasticity in order to overcome

the paradox of infinite speed of thermal propagation.

The generalized thermoelasticity theory given by Lord and Shulman (1967) is con-

sidered as one of the most appropriate modifications to the classical theory till date.

The authors studied the one-dimensional problem for an isotropic homogeneous ther-

moelastic half-space with free-surface subjected to step-strain and evaluated the exact

solution for a particular case. Further, they made the comparison with the previous

theories to articulate the elimination of the paradox of an infinite propagation speed of

thermal waves. Similarly, Achenbach (1968), Norwood and Warren (1969), and Lord

and Lopez (1970) investigated the effects of step in strain and temperature; step strain,

stress and temperature and step in strain at the free-surface, respectively. Nayfeh and

Nemat-Nasser (1972) focused on two-dimensional Lamb’s problem, highlighting the im-

portance of relaxation times on wave speed and wave amplitudes. Puri (1973) analyzed

phase velocity, specific loss, and amplitude ratio of the plane waves and approximated
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the expressions for very low and high frequency values. The problem of thermal shock

for a circular cylinder with stress-free boundary was discussed by Wadhawan (1973).

Moreover, the thermal shock problem in the case of the infinite plate and long bar

were respectively studied by Kolyano and Semerak (1973) and Shashkov and Yanovskii

(1977) and Szekeres (1980). Dhaliwal and Sherief (1980) further thoroughly proved

the theory of LS model for general anisotropic medium. Ignaczak (1979) showed the

uniqueness of the problem involving stress- heat-flux initial boundary conditions. Chan-

drasekharaiah (1986b) illustrated the uniqueness of the solution, domain of influence

results, variational principle, and reciprocity theorem in the context of Lord-Shulman

thermoelasticity theory. The solution of thermal shock problem in this context was

also discussed in the same article. Sherief (1987) proved the uniqueness of the LS

thermoelasticity theory for general anisotropic medium and studied the stability when

initial data is perturbed. In 1988, Chandrasekharaiah (1988) presented the thermo-

piezoelectricity theory related to LS theory along with the uniqueness of solution in the

same context. Anwar and Sherief (1988) treated a one-dimensional problem under LS

model by using state space approach and presented numerical results for two scenar-

ios, namely, half-space domain and layered domain. On the other hand, Furukawa et

al. (1990) found the short-time solution for a one-dimensional problem in an infinite

body with a circular cylindrical cavity and illustrated the impact of relaxation time on

physical fields. An elaborated study of plane harmonic thermoelastic waves in the ho-

mogeneous anisotropic medium was conducted by Sharma and Singh (1989) to show the

existence of four waves, namely, a quasi-longitudinal, two quasi-transverse, and a ther-

mal wave. Chand et al. (1990) made the combined study of the thermal, mechanical,

and magnetic field for uniformly rotating elastic half-space. Further, Mukhopadhyay

et al. (1991) investigated the thermoelastic waves in infinite solid with spherical cavity

when the inner boundary is subjected to step rise in temperature and step rise in dy-

namic pressure on its surface. They articulated the presence of discontinuities at the
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corresponding wavefront of physical fields. Wang and Dhaliwal (1993) developed the

fundamental solution when impulsive body force and heat source are acted at a point in

the infinite domain. Moreover, Sherief and Anwar (1994) studied the two-dimensional

problem under the LS model using state-space approach.

The second most studied generalized thermoelasticity theory considered by researchers

was the theory by Green and Lindsay (1972). In this article, the authors showed the

finite speed of thermal waves along with the uniqueness of the linearized theory. Boschi

(1972) analyzed the plane waves in the context of this model. Further, in 1973, Boschi

and Ieşan (1973) extended this theory to a homogeneous micropolar continuum sup-

ported by derivation based on invariance conditions under superposed rigid body mo-

tions. Agarwal (1978; 1979) studied the surface waves under LS and GL thermoelasticity

and plane waves in GL theory, respectively. Further to support the existence of the

finite speed of thermal waves, Ignaczak (1978) proved the domain of influence theorem

for linear Green-Lindsay thermoelasticity theory. Chandrasekharaiah and Srikantaiah

(1983) studied the uniqueness theorem, variational principle, and Betti-Rayleigh-type

reciprocity theorem for anisotropic medium, whereas Gladysz (1985) presented Gurtin-

type convolutional variational principle in the same context. Further, Chandrasekhara-

iah and Srikantiah (1984) did the analysis of decay coefficient, energy loss, and phase

velocity for isotropic homogeneous rotating solid. Erbay and Suhubi (1986) studied the

longitudinal waves when the lateral surface of an infinite cylinder is stress-free and kept

at a constant ambient temperature. Chen and Wang (1988) applied a combined method

of finite element and Laplace transform to work on the dynamic problem in the contexts

of LS and GL thermoelasticity theories. Noda et al. (1989) analyzed variation in tem-

perature, displacement, and stresses for an infinite solid with the cylindrical hole under

both the theories given by Lord and Shulman and Green and Lindsay. Ieşan (1989) in-

troduced a new form of reciprocity theorem in the LS model case, which led to classical

reciprocity, uniqueness, and minimum principle. In 1991, Ignaczak (1991) presented
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a survey on the domain of influence theorems in the context of LS and GL thermoe-

lasticity theories. Further, Chandrasekharaiah and Murthy (1991) considered a linear,

homogeneous, and isotropic unbounded thermoelastic body acted upon by continuous

line heat source under LS model. They employed Laplace and Hankel transformation

to solve the problem and study the thermoelastic interactions. On the other hand, Het-

narski and Ignaczak (1993) discussed the one-dimensional Green’s function in the case

of plane heat source for infinite and semi-infinite space and presented the closed-form

solutions in the physical domain after Laplace inversion. Sherief (1992) discussed the

fundamental solution in the presence of a spherically symmetric point heat source in

GL theory and numerically compared with the classical and LS thermoelastic model

for copper material. Chandrasekharaiah and Murthy (1994) articulated mixed initial

and boundary value problem using unified governing equations of Lord-Shulman and

Green-Lindsay models. Sinha and Elsibai (1996) showed the effects of two relaxation

times on the reflection of two types of incident waves and numerically showed the

variation of reflection coefficient and partition of energy with respect to the angle of

incidence. Misra et al. (1996) studied the thermoelastic interaction under LS theory

using state-space approach for ramp-type heating. Sharma (1997) showed the impact

of two boundary conditions, namely, thermal shock and normal load for the LS and GL

model using the state-space approach. Singh and Kumar (1998) traced the variation of

the reflection coefficient of thermoelastic waves at the free surface of micropolar solid

half-space. Singh (2000) presented the analysis of plane wave reflection and refraction

at the thermally conducting liquid interface and a micropolar generalized thermoelastic

solid. They numerically highlighted the dependence of angle of incidence on amplitude

ratios. Ezzat and El-Karamany (2002) extended the theory of generalized thermoe-

lasticity by Lord-Shulman and Green-Lindsay theory to present a generalized theory

of thermoviscoelasticity. The authors discussed the theory for anisotropic medium to

prove the uniqueness of solution and reciprocity theorem. Othman (2003; 2004) treated
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the GL thermoelasticity model in two ways. In the first one, he showed the effect of tem-

perature dependent elastic modulus using the state-space approach, whereas later, he

presented the exact expression of physical fields for two different problems using normal

mode analysis for rotating elastic medium under linearized theory. El-Maghraby (2005)

studied the two-dimensional thick plate with traction free upper surface subjected to

known temperature distribution and the thermally insulated rigid lower surface un-

der Lord-Shulman theory and Green-Lindsay theory. Further, Youssef (2006b; 2006c)

numerically discussed a two-dimensional half space problem and also a problem of infi-

nite medium with a cylindrical cavity both subjected to ramp-type heating. Bagri and

Eslami (2007a) expanded the analysis of GL thermoelasticity theory to a functionally

graded sphere with inner surface symmetrically loaded with thermal shock, whereas Ab-

bas and Abd-alla (2008) investigated thermoelastic variations for an infinite orthotropic

elastic medium with a cylindrical cavity using the finite element method.

With the introduction to the three theories by Green and Naghdi (1991; 1992;

1993), several research work were focused on studying these theories in comparison

with previously established theories. Chandrasekharaiah (1996d) presented the set of

linearized governing equations for GN II thermoelasticity theory in terms of stress

and entropy-flux to discuss the uniqueness of the solution to the initial value prob-

lem. Chandrasekharaiah (1996a) also differently discussed the uniqueness of the mixed

initial-boundary value problem using the energy equation depending on temperature

and velocity fields. Further, Chandrasekharaiah (1996b) analyzed the one-dimensional

thermoelastic disturbances under the GN II theory when temperature and strain or

stress is suddenly applied at the boundary. The closed form solution for the physical

fields was derived here. Moreover, Chandrasekharaiah (1996c) articulated the behavior

of plane waves in the context of the GN II thermoelastic model. Chandrasekhara-

iah and Srinath (1997b) investigated the thermoelastic plane waves in an unbounded

body rotating with uniform angular velocity. Later, Dhaliwal et al. (1997) analyzed
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the thermoelastic interactions caused by continuous line heat source in the case of the

GN III thermoelastic theory and pointed out that this theory demonstrates the dif-

fusion type thermal wave propagation. Subsequently, Chandrasekharaiah and Srinath

(1997a), considered the GN II thermoelastic model and studied thermoelastic problem

in an isotropic and homogeneous infinite body with cylindrical cavity when acted upon

by step radial stress or temperature at the boundary. In 1998, Ieşan (1998) estab-

lished the fundamental solution based on Galerkin-type solution for an isotropic and

homogeneous body in the context of GN II thermoelasticity theory and also showed the

continuous dependence of solution on initial data and body loads. Chandrasekhara-

iah and Srinath (1998a; 1998b) analyzed homogeneous and isotropic unbounded bodies

when acted upon by a point heat source and continuous line heat source under the

GN II model. Ciarletta (1999) extended the GN II thermoelasticity theory to micro

thermoelasticity and then found the Galerkin-type solution for an isotropic and ho-

mogeneous medium. Later, Svanadze et al. (2006) derived the fundamental solution

based on the theory given by Ciarletta (1999). Quintanilla (1999) discussed the spa-

tial behavior of linear thermoelasticity theory without energy dissipation for isotropic

and homogeneous medium, where the author discussed the theorems on spatial energy

and decay estimates. Chandrasekharaiah and Srinath (2000) presented the thermoe-

lastic variation in the isotropic and homogeneous medium with a spherical cavity using

Laplace Transform technique under GN II theory. Misra et al. (2000) studied the

thermoelastic interactions under GN II thermoelastic model when ramp-type heating

is applied for two cases of boundary, namely traction free and rigid. Wang and Slattery

(2002) established the linear GN II thermoelasticity theory for the prestressed body,

i.e., the body that has received large deformation and is at nonuniform temperature.

Quintanilla (2002a), with the help of the linear theory of operators, discussed the well-

posedness of a problem of anisotropic medium under GN II theory. Sharma et al.

(2003) thoroughly studied the reflection of thermoelastic waves and reported the com-
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parison of numerical results of GN theory with previously established theories in terms

of the ratio of reflection coefficients and partition of energy. The authors discussed the

reflection for two types of surfaces, namely, stress-free surface and rigid surface. Quin-

tanilla and Straughan (2004) studied the complete non-linear version of GN II and GN

III thermoelasticity theories to analyze thermal and mechanical waves. Roychoudhuri

and Bandyopadhyay (2005) focused on analysis of time-harmonic plane thermoelastic

waves in the rotating medium in the context of the GN II model. They proceeded with

the perturbation method to find a solution to the dispersion equation and emphasized

the effect of rotation on phase velocity. On the other hand, Kumar and Sarthi (2006)

studied the reflection and refraction of thermoelastic waves at five different combina-

tions of the interface under thermoelasticity without energy dissipation and calculated

the amplitude ratio for an imperfect interface. Bagri and Eslami (2007b) considered

the unified set of partial differential equations of Lord-Shulman, Green-Lindsay, and

Green-Naghdi (II) thermoelasticity theories to analyze thermoelastic variations in a

thick functionally graded cylinder. The authors made a detailed comparison among

different theories and pointed out that in comparison to GL and GN theories, LS the-

ory predicted larger values for temperature waves. Mallik and Kanoria (2008) viewed

GN II and GN III thermoelastic models to study a two-dimensional problem for trans-

versely isotropic medium and made the comparison of physical fields between GN II

and GN III and later contrasted the numerical results for isotropic and transversely

isotropic material. Abbas and Othman (2009) and Abbas (2011) undertook a prob-

lem of tracing thermoelastic waves using finite element method under the Green and

Naghdi theory of type II and III for rotating homogeneous isotropic hollow cylinder and

a fiber-reinforced anisotropic half-space undergoing thermal shock, respectively. Chir-

iţă and Ciarletta (2010) presented variational theorem and reciprocity theorem in the

context of the GN II model for an inhomogeneous anisotropic medium with a center of

symmetry at each point. Mukhopadhyay and Kumar (2010b) employed the state-space
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approach to detect the thermoelastic variation under the boundary value problem for

GN III thermoelastic model. The authors undertook two kinds of boundary condi-

tions, namely zero stress with a sudden change in temperature and zero temperature

change with sudden variation in load. Sarkar and Lahiri (2012) investigated the GN II

thermoelasticity model in terms of three-dimensional problem using normal mode anal-

ysis applied to homogeneous isotropic thermoelastic medium with stress-free boundary

acted upon by time-dependent thermal conditions.

In the late 20th century, Chandrasekharaiah (1998) developed a thermoelasticity

theory based on dual-phase-lag heat conduction model of Tzou (1995b; 1995c). Het-

narski and Ignaczak (1999) reviewed the DPL thermoelastic model along with previ-

ously established generalized thermoelasticity theories to study the wave-like propa-

gation of the thermal signal. Quintanilla (2003) worked upon the stability conditions

in terms of phase-lags , τq and τθfor one-dimensional thermoelasticity problem. The

author thoroughly proved that the problem will be exponentially stable if τθ >
τq
2
and

there exist an unstable solution when τθ <
τq
2
. Later, Quintanilla (2004) considered

Lord-Shulman and dual-phase-lag thermoelasticity theories to evaluate structural sta-

bility when the relaxation parameters tend to zero. Further, Quintanilla and Racke

(2006) analyzed the dual-phase-lag thermoelasticity model by considering Eq. (1.3.15).

They firstly aimed to present conditions for well-posedness and stability for the problem

with more complicated boundary conditions, and then they discussed the spatial be-

havior of the thermoelastic solution for a semi-infinite cylinder. Roychoudhuri (2007b)

investigated a one-dimensional problem in which isotropic homogeneous half-space is

subjected to two types of boundary conditions, i.e., zero stress with thermal shock

and zero temperature with constant step input of stress. The author highlighted the

presence of two waves and discontinuities at the wavefront in the short-time approx-

imated analytical expressions of physical fields. Prasad et al. (2010) examined the

harmonic plane waves in the context of dual-phase-lag thermoelasticity theory. The
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authors presented the asymptotic expressions of wave characteristics, and numerically

expressed the results for very high and low frequency values. Mukhopadhyay et al.

(2011a) proved the propagation of thermal waves with finite speed via the domain of

influence. They showed the dependence of the domain of influence on two phase-lag

parameters and thermoelastic coupling constant. Abouelregal (2011) explored ther-

moelastic variations in the isotropic solid sphere with constrained boundary subjected

to constant heat-flux. They featured the effects of phase-lags, τq and τθ, and the com-

parison of results predicted by GL and DPL theories through graphical representation.

Singh (2013) analyzed thermoelastic plane wave propagation in a transversely isotropic

medium under DPL thermoelastic model. Zenkour et al. (2013) considered the solid

half-space with temperature-dependent material properties to study the reflection of

thermoelastic waves under dual-phase-lag thermoelasticity theory. Further, Kothari

and Mukhopadhyay (2013a) and Mukhopadhyay et al. (2014) studied uniqueness, reci-

procity theorem, and variational principle for the linear theory of thermoelasticity in

anisotropic medium and showed the behavior of thermoelastic waves when the medium

is subjected to thermal shock. On the other hand, El-Karamany and Ezzat (2014)

discussed the same theorems with a different approach for inhomogeneous anisotropic

solid and also proved a continuous dependence of the solution on initial data and sup-

ply terms by using dissipative inequality. Abouelregal and Abo-Dahab (2015) picked

up a two-dimensional problem for the rigidly fixed surface when subjected to thermal

shock and compared the results with that of LS and classical thermoelasticity theo-

ries. In the context of DPL thermoelasticity, Sarkar (2017) used normal mode analysis

and an eigenvalue approach to investigate a three-dimensional half space problem with

temperature-dependent material properties and a stress-free boundary subjected to a

time-dependent heat source.

Three-phase-lag thermoelasticity theory (TPL) given by Roychoudhuri (2007a) was

investigated by Kumar and Mukhopadhyay (2009) for a problem of an infinite medium
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with a cylindrical cavity. The authors undertook the problem of stress-free boundary

acted upon by step input in temperature and obtained the solution using the Laplace

transformation technique. Using the solution, the authors analytically and numerically

compared the two models, namely GN-III and three-phase-lag models. Further, Kar

and Kanoria (2009) discussed the TPL thermoelasticity theory for an orthotropic func-

tionally graded hollow sphere to compare the results with Green-Naghdi theories and

showed the differences in nature of physical fields due to the presence of functionally

graded material. Mukhopadhyay and Kumar (2010a) did a combined study for three

thermoelastic models namely DPL, TPL, and GN-III models for a thick plate sub-

jected to the axisymmetric temperature distribution. The authors employed Laplace

and Hankel transform techniques to find the solution of the problem and analyzed the

discontinuities in field variables with the help of Boley’s theorem. Mukhopadhyay et

al. (2010) demonstrated the representation of the Galerkin-type solution of the coupled

system of equations for TPL theory. They further obtained the Galerkin type solution

of quations for steady oscillations, using which a general solution for steady oscillations

was also derived. Further, Kothari et al. (2010) considered TPL model and found the

fundamental solutions in presence of concentrated body force and heat sources with the

aid of Galerkin-type representation of solution of the problem. Moreover, the behavior

of harmonic plane thermoelastic waves in the presence of three phase-lags in an isotropic

homogeneous medium was studied by Kumar and Mukhopadhyay (2010). Furthermore,

Kumar and Chawla (2011) traced the occurrences of elastic and thermal waves in an

anisotropic medium under dual-phase-lag and three-phase-lag thermoelasticity theories

by numerically computing the wave characteristics. Prasad et al. (2011) explored an

infinite isotropic homogeneous solid for thermoelastic vibrations experienced due to a

continuous line heat source at the boundary of the medium. The authors highlighted

the effects of heat source through analytical expressions of different field variables and

pointed out the similarities and dissimilarities of results with respect to the correspond-
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ing results predicted by previous theories for copper material. El-Karamany and Ezzat

(2013) extended the three-phase-lag thermoelasticity theory to micropolar thermoelas-

ticity theory for an anisotropic and inhomogeneous medium. The authors proved the

uniqueness and variational principle for the considered problem and also discussed the

results of continuous dependence on initial data. Later, Kothari and Mukhopadhyay

(2013b) considered a functionally graded hollow disk to pursue a combined study of

GN II, DPL, and TPL thermoelasticity theories using Laplace transform and finite

element method. Moreover, Akbarzdeh et al. (2014) reported a unified study of differ-

ent theories for a problem of functionally graded infinite hollow cylinder with material

properties varying along the radial direction as per power-law distribution. Recently,

the domain of influence results for three-phase-lag thermoelasticity theory has been

investigated by Kumar and Kumar (2015).

Continuous and gradual mathematical analyses of different thermoelasticity the-

ories aid in judging the application of the theories in real-time scenarios. Recently,

Mukhopadhyay et al. (2016; 2017) studied various models of thermoelasticity theory

and showed that these models can be treated within the common structural framework

of evolutionary equations. By considering the flexibility of the structural perspective,

they obtained well-posedness results for a large class of generalized models allowing

for more general material properties such as anisotropies, inhomogeneities, etc. The

recently proposed generalized thermoelasticity theories namely, Quintanilla’s theory

(2011) and modified Green-Lindsay theory (2018) are yet to receive attention of re-

searchers. Few recent studies using these theories can be mentioned as follows. Kant

and Mukhopadhyay (2016) discussed the behavior of the physical fields in the thermoe-

lastic setup of a thick plate under Quintanilla’s heat conduction model using potential

function approach along with Laplace and Hankel transform. On the other hand, Ku-

mar and Mukhopadhyay (2016) used the state space approach to tackle a boundary

value problem in this context due to sudden temperature change and zero stress at
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the boundary surface of an elastic half space. Later on, Kumar and Mukhopadhyay

(2017) analyzed the effects of temperature-dependent material properties on thermoe-

lastic interactions in a spherical shell with three different boundary conditions. Further,

Kumari and Mukhopadhyay (2017b) presented the fundamental solutions for the cases

of a concentrated heat source and a concentrated body force in the isotropic and ho-

mogeneous unbounded medium under forward in time version (1.3.25) of Quintanilla’s

model. In order to analyze the continuous dependence of the solution on initial data

and study the exponential decay of solution, Quintanilla (2018) made a qualitative

analysis on MGL thermoelasticity theory. Singh and Mukhopadhyay (2020) considered

isotropic homogeneous unbounded medium with a cylindrical cavity to explore MGL

theory along with LS and GL thermoelasticity theories. The authors presented here

the analytical results using short-time approximation and highlighted some important

findings.

1.5 Objective of the Thesis

The main objective of the present thesis is to investigate some recently developed gen-

eralized thermoelasticity theories using mathematical tools and studying some unsolved

problems involving thermomechanical interactions. In order to understand various as-

pects of the thermoelasticity theories from the view point of their real-time applicabil-

ity, the mathematical examination of the theories can be worth pursuing. The thesis

is broadly divided into three parts on the basis of the generalized thermoelasticity the-

ories. The first part deals with the thermoelasticity theory developed on the basis of

Quintanilla’s heat conduction law (2011). The second part explores the novel thermoe-

lastic model, namely the modified Green-Lindsay (MGL) model presented by Yu et al.

(2018). Lastly, the thesis deals with the dual-phase-lag (DPL) thermoelasticity theory

to explore its behavior in random and natural conditions. Moreover, the last part ex-
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tends the DPL theory on the basis of non-local heat conduction model (Tzou and Guo

(2010)). As illustrated in previous sections, out of these three theories, the second one

is based on Fourier’s heat conduction law while the others involve non-Fourier law.

Focusing on various aspects of these theories, it is aimed at understanding the

behavior of physical fields involved in various problems of coupled thermoelasticity when

the conventional theory is modified using either altered heat conduction law or other

altered constitutive relations. Galerkin-type representation of the models is articulated

for the models, which is further applicable in finding the solution of the boundary

value problems. Furthermore, the propagation of plane waves is investigated in details

to highlight the characteristics of elastic-mode and thermal-mode waves generated in

the medium. Some specific problems involving coupled thermoelastic interactions have

been investigated in detailed way and thorough comparisons among the predictions

by the present theories and by previously established theories have been highlighted.

The present analysis of different thermomechanical problems illustrates all the essential

aspects of the recently introduced generalized thermoelasticity theories, which serve the

purpose of the thesis.
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