Chapter 3

Continuous Bessel Wavelet

Transform of Distributions

3.1 Introduction

The Hankel transform played an important role to solve many problems of physics,
engineering and mathematical sciences. Zemanian [60-63], Koh [29, 30], Pathak et
al. [40, 41, 43, 44], Lee [31], Dube and Pandey [17], Betancor [2-4, 6] explored
the theory of Hankel transform on various function spaces and characterized many
results. Betancor and Marrero [7-10, 33], Betancor and Gonzélez [5], Betancor and
Rodriguez - Mesa [11, 12] studied properties of functional spaces by taking the theory
of Hankel transform and Hankel convolution. Aforesaid tools are also very effective

in the problems of wavelet theory.

In 2003, Pathak and Dixit [42] introduced the continuous Bessel wavelet transform
and studied its properties by exploiting the theory of Haimo [21], Hirschman [24]

and Cholewinski [15]. Later on, considering Zemanian theory of Hankel transform,
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Upadhyay et al. [51-56] investigated continuous Bessel wavelet transform and their

properties.

Motivated from the results of [46, 52, 56], our main concern in the present chapter
is to study continuous Bessel wavelet transform in H L(R*) by exploiting the Han-
kel transform and Hankel convolution. Later on, we shall study the boundedness

properties of continuous Bessel wavelet transform in LP-Sobolev type space.

3.2 The continuous Bessel wavelet transform of

distributions

In this section, the properties of continuous Bessel wavelet transform in distribu-
tional sense are discussed by using the Hankel transform technique.

The test function space H 4(RT x R*) is defined to be the space of all functions
¢ € C*(RT x R") such that for [, k,a, f € Ny and p > —%,

Vitas(®) = sup ‘akba (a_lDa)l (b_lDb)B (ab)_”_%qﬁ(b, a)| < oo. (3.2.1)
(ba)ERF xR+
kta<2(l+8+u+})

Lemma 3.2.1. If ¢ € H,(R") and k,1,6 € No, p > —3, then the relation

a” (a_lD(,,)l (w_lDw)(S (aw)_"’_% (hu) (aw)

_ I+k+26, 2025k
= (-1 w

* L _ k+s 1
X / {(awy) M s ipkgas (awy) y?H P2 20HREL (y =D Y0y W(y)}dy
0

holds for a,w € R*.
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Proof. By putting t = aw and using change of variable, we get the differentiation

a” (a_lDa)l (w_lDw)5 (aw)_”_% (hu) (aw)
= aa®W? (t71D) " 73 () (1)

[e.e]

k+26w2l

D) L () (y)dy

o0

k+25 2l

w S Ty () (1) 2 () dy

J, ¢
I

S|
— A2 k( 1)z+5/ H l+k+6yu+l+6ju+l+5( t)y u+2¢(y)dy
0

Using (1.7.7) and integrating by parts, the above expression yields

ak (a_lDa)l (w_lDw)6 (aw)_”_% (hu) (aw)
o5 < _ k4o el
w2l 20 k(_l)l+§/ tH l{(y lDy) + y“+l+k+25ju+l+k+25(yt)}y “+5w(y)dy
0

L o _ k+6 -1
w2l 20 k(_l)l+k+26/ tH lyu+l+k+25+1Ju+l+k+26(yt) ( 1D ) I zw(y)dy
0

= (AW ()2

>* o _ ks 1
X / (yt) " T sriras (yt) Y2220 (y 1D YT g2 (y ) dy.
0

O
Theorem 3.2.2. Let ¢ € H,(R"), then the continuous Bessel wavelet transform
(Byf) (b,a) is a continuous linear map from H,(R™) into ﬁM(RJr xRY) forp> -1

L
Proof. For f € H,(R*) and k,[, o, 8 € Ny and using (1.5.4), we get
"6 (a7 D,)" (b7 Dy)" (ab) ™3 (Byf) (b, a)
=a"0* (a”'D,)" (b7 Dy)” (ab) " / () BB (B f) (@) () ()
0
—d"(a7'D,) a3 / T (b7 Dy) " b T (bw)w ™ (hyuf) (w) (hyth) (aw)dw
0
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= (D) [0 (1P () ) () )

0

—d @) ot | (P ) () () () () o

0

Using (1.7.7) and integrating by parts, we have

d*b* (a7'D,)' (671 D,)" (ab) "% (B, f) (b, a)

a” (a_lDa)l a hz
X /Ooo(—l)ﬁb“ﬁ{(w1Dw)aw“+ﬁ+aJu+ﬁ+a(bW)}w2” (hyuf) (@) (hut) (aw)dw
at (ailDa)l a P2

x /0 “(_1)a+5 bW o (bw) (071 Dy) " W (R f) (@) () (aw)dew

[N

aF (a_lDa)l ar / (_1)a+6w2u+2ﬂ+a+1 (bw)_“_ﬁJu+5+a(bw)
0

x Z () D)™ e ) ) (o D) () () o

/ooo<—1)°‘+ﬁw2u+25+a+1(bw)_“_ﬂjwma(bw) > (f;){ (w7 D) () ()

6=0

x a” (a’lDa)l (olew)(S (aw) "2 (hut) (aw)}dw.

Taking Lemma 3.2.1, we get

a*b* (a7'D,)" (b7 Dy)” (ab) ™% (Byf) (b, a)

_ /:)o [(_1)a+5w2ﬂ+25+a+1(bw)fufﬁjwﬂa(bw)
0
. a a) w_lDw a—&w_'“_% (huf) (w) w2[—26—k(_1)l+k'+26
> (5) {en }

> L _ Y
X/ {0 Turrinras(yt) b, v 22 (y 71D, Ty “/)(y)dy] dw
0
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< (0%
_ 1 ot BHI+k+26
> (5)cn
6=0
> —y— a—k— — a—6 L
[ [ a2 (D) () ()}
0

o o _ ks 1
X / (awy) ™" Ty nros (awy )y R (7LD )T e 2¢(y)dy] dw.
0

Therefore

@ (a7 D,)' (67 D) () (Byf) (b, a)|

5=0 0

x| (@ D) T W (uf) ()] / () ks ()|

v ‘y2u+2l+26+k+1 (yilDy)kH yf’““%w(y)’ dy} d

; o = a—k— _ a—>6 _,,_1
: ( ) A [ [futr 280200k (D)™ 0 () )] B
0

6=0
X /

where A, , 3 and B, s are positive constants such that

YA (71 VI Ty (y) ’ dy} dw,

}(bw)_“_ﬁJMﬁm(bw)\ < Apeps and }(@Wy)_u_l*]u+l+k+26(@wy)‘ < Bpuiks-
Now, for

—k+1
u> and

k+a§2<l+5+u+%), ple(u+ﬁ+l—(5+

,02:E<,u+l+5+$>,
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we have

‘a’%a (a™'D,)" (b72Dy)" (ab)™% (Byf) (b, a)‘
3 () [AunsBuans [ |0+62)"7 071D w0 ) )]
5=0
[ D) )| ]
0
a o p1+2 n + 9 00 1
< (5) [AnaﬂBuzkst( " )VSma 5 (. )/0 mdw
=0
p2+2
+2\ , > 1
X Z (f’?r )VQTH(;W)/O 1+y2dy]
2 s 2 2
< (?) Z (pl N ) Z <p2 - ) ( ) Aﬂaaw@Bu,l,k,575m,a—6(hlif)’ygr,k—lﬁ(w)'
0

m=0 =0

By the definition of (3.2.1), we get

o p1+2 p2+2
o p1+2 p2+ 2\ /m\2
s BN = (5) X ("X (77) (5) Aesbans
6=0 0

m=0 r=

X /ygm,afﬁ(hﬂf)fygr,k+6(w)‘ (322)

This shows that By f(b,a) € H L(RT x R*T). The continuity of By f follows from
(3.2.2). O

Definition 3.2.3. Let ﬁL<R+ x R™) be the dual of IS{IH(RJr x RT), then the gener-

alized Bessel wavelet transform BT of T' € H ,(RT x RY) is defined by
(ByT,¢) = (T, Byo), ¢ € Hy(RT). (3.2.3)

Theorem 3.2.4. Let ¢p € H,(RT), then the generalized Bessel wavelet transform

By, is a continuous linear map from 1_‘:;7[’1,(]1?r x R*) into H|,(RT) for p > —1.
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Proof. From (3.2.3), we have
(BT, ¢) = (T, Byo) V¢ € H,(RY), (3.2.4)

where T' € ﬁ;(R* x R) and ¢ € H,(RT). From (3.2.4), BT is that functional on
H,(R") which assigns to each ¢ € H,(R") the same number that T € ﬁL(R* x RT)
assigns to Byp € H, (Rt x RT).

We see that ByT € H, (R*). For any ¢,0 € H,(R") and «, 8 € C,

(BT, a¢ + 80) = (T, By (ap + (0)) = (T, aBy¢ + SBy0)

=a(B,T,¢)+B(B,T.9).

This implies that BT is a linear functional on H,(R"). Further, let {¢,}n2;
converges to zero in H,(R*). Then by Theorem 3.2.2, as n — oo, By, —

0 in ﬁu(R+ x R*). Therefore
<prT, ¢n) = (T, Byon) — 0, as n — oco.

Hence, the above expression shows that B{bT is a linear continuous functional on
H,(RT).
Thus B, is a mapping from H L(RT x RT) into H},(R*). We now prove that By is

linear and continuous. Let 17,715 € ﬁL(RJF xR*), ¢ € H,(R"), and o, f € C. Then

(By (T + 1), ¢) = (aTy + BTs, Byo)
a (17, B¢¢> + B (T4, B¢¢>
a (BT, ¢) + B(ByTs, ¢)

= (aB,T\,¢) + (BB,T3, ¢) .
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The last expression implies that By, is linear. For continuity of By, let {T,,};2, €

2l

f[;(R* x RT) such that T,, — 0 in ﬁL(R—i_ x R*). Then for every ¢ € H,(RT)
<B;Tn, ¢) = (T, Byo) — 0,88 n — o0,

so that
B,T, — 0 in H/(RY).
Hence, B, is continuous. O

Definition 3.2.5. Let ¢ € H,(R™) be Bessel wavelet. Assume that h,y € C°(R")

such that

1y |70 = sup(1+w) ™™ | (W' Dy) " w72 (hyth) (w)] < oo, (3.2.5)
’ wel

where m € R,0 < p <1 and a € Nj.
Consider the test function space H ,i (Rt xR™), defined to be the space of all functions
¢ € C=(R* x R") such that for [, k,o, 8 € Ny and pp > —1,

VZ,g,a,gW) = sup ‘ak’b“ (a_lD,,,)l (b_lD;,)ﬁ (ab)_"’_%qﬁ(b, a)| < oo. (3.2.6)
(b,a)eRT xRt
kta<2(l+8+p+1)
k+2a<m

Theorem 3.2.6. Let v € H,(RT) and (3.2.5) is satisfied, then the continuous
Bessel wavelet transform (Byf) (b, a) is a continuous linear map from H,(RT) into

H(R" x R") for p > —3.

Proof. Proceeding as in the proof of Theorem 3.2.2, for f € H,(R*) and k,[,a, 3 €

Ny, we have
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a* b (a7 D,)" (b7 Dy)” (ab) ™% (Byf) (b, a)
X ?)
[ [0 psaltw) {25080 @ADL () 0}
x a* (a7'D,)" (w™'D.)" (aw) ™% (b)) (aw)}dw
-3 (5)
[ [0 ) {11 (D) e () ()

X {t’““(S (t7' D) 2 (hy) (t)} }dw.

t=aw

Therefore

‘akba (a™'D,)" (b71Dy)" (ab) ™3 (Byf) (b, a)

<30 (5) 7 10 gt rsssssasici
=0 0

[ (@7DL) T W () @) |42 (671 0) T () (1)

. ] dw.

Using (3.2.5), we get

a6 (a7 D) (67 Dy)” (ab) 7 (Bf) (b, 0)
(0% « ”
<3 (5 )t D
=0

% /OO ‘w2u+2l+26+a+1—k—26 (W_IDUJ)&_(S w—,u,—% (huf) (W)‘ (1 + aw)k+25+m—p(l+6)dw,
0

where D, . 5 is positive constant such that |(bw) ™, 1 510 (bw)| < Das.

For 2u+ 20+ 2804+ a+1—k—20 > 0and k+25+m — p(l +6) < 0, the last
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expression can be written as

a6 (a7 D) (073 (ab) 7 (B ) (0, 0)
< Dy ( )nhﬂwuw
0

0=
X / ’(1 + w2)”+l+5+%_k_§ (w_lDw)a_5 w3 (huf) (w)‘ dw
0

< Dues Y (5 ) I0IE
6=0
[ e ) )

p1+2

«@ a P1+2 00 1
S Du,a,ﬁz (6)||hu¢||ul+5 ( r ) 2ra é( Mf)/ 1+w2dw
6=0 r=0

a o p1+2 P 4+ 9
1
S Du,a,ﬁz (5)||h#¢||yl+6 ( r )2 27“a 5( #f)
6=0

r=0

dw

14+ w?

Whereple(M—kH—/B#—%l_k—@.

Thus, we have

o p1+2
T « p1+2
i Bof) = 500an 3 (5) 2 (" Il s ).
6=0 r=0

Hence, for m < —k — 2o and k+a§2(l+5+u+%) ,Bwf(b,a)EHi(R+xR+)

and continuity of B, f follows from the above inequality. O
Definition 3.2.7. Let (H)(R* x R") be the dual of H}(R* x R¥), then for T' €
(H)'(R* x RY) the generalized Bessel wavelet transform By, is defined by

(ByT.¢) = (T.Byo), ¢ € H,(RY). (3:2.7)

Theorem 3.2.8. Let ¢ € H,(RT), then the generalized Bessel wavelet transform

B, is a continuous linear map from (H))'(RT x R*) into H;,(R*) for p > —1.
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Proof. From (3.2.7), we have

(ByT,¢) = (T, By9), ¢ € H,(R"), (3.2.8)

where T € (H})'(RT x RY), and ¢ € H,(RT). From (3.2.8), B, T is that functional
on H,(R") which assigns to each ¢ € H,(R") the same number that T' € (H)'(R* x
R*) assigns to By¢ € Hy(R* x RT).

We see that ByT € H,(R*). For any ¢,0 € H,(R"), and a, 3 € C

(ByT,ap+ p0) = (T, By(ap + 0)) = (T, aBy¢ + 8Byd) = a (BT, ¢) + 5{B,T.0) .

This implies that BT is a linear functional on H,(R").
Let {4, }52, converges to zero in H,(R*). Then by Theorem 3.2.6, as n — oo, By¢, —
0in Hj(R" x R*). Thercfore,

<B;T, ¢n> = (T, By¢n) — 0.

Hence, BT is a lincar continuous functional on H,(R™).

Thus By, is a mapping from (H})'(R* x R*) into H,,(R*). We now prove that B,
is linear and continuous. Now, we take ¢ € H,(R*), T}, T, € (H,)'(R* x RT), and

a, € C. Then

(By(aTy + pTy),¢) = (oTy + Ty, Byo) = a (T1, Byp) + B (Ts, Byo)
a(ByTi, ¢) + B( BTy, ¢)

(aByTy,¢) + (BB,Ts, 0) .

This shows that By, is lincar.
For continuity of B, let {T,,}72, € (I,)'(R* x R*) such that T, — 0in (H})'(R" x



Chapter 3. Continuous Bessel Wawvelet Transform of Distributions 42

RT). Then for every ¢ € H,(R")
<B;Tn, <;$> = (T,, By¢) — 0, as n — oo,

so that

BT, — 0 in H,(R").

Hence, B/, is continuous. O
T

3.3 The Bessel wavelet transform on [LP- Sobolev

space

In this section, we study continuous Bessel wavelet transform on the LP- Sobolev

type space.

Definition 3.3.1. For —oo < s < 00, p > —3 and 1 < p < oo, then LP-Sobolev

space H7 is defined to be set of all f € H,,(R™) such that

If]

Hy? = Hw%_“_%h“fHL , w € RT. (331)

For 1 < p,p’ < oo and —oo < s < 00, the space W*? of all measurable functions g
p

on Rt x RT such that

1
7

lg(b, @)l e = (/OOO (/OOO 1g(b, a)[? db)l;la“"'lda)p < 0. (3.3.2)
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Lemma 3.3.2. Let ¢ € H,(R") be the Bessel wavelet and f € H) (R*) then for

1 <p < oo, we have

W () ()| de,

[ [ e @t ne| da =y [
(3.3.3)

where

> d
Cito= [ 1) @)= a0 (3:3.4)

Proof. By Fubini’s theorem, we have

[t @ (@) ade) [ e

W ()W) d,

where

O

Theorem 3.3.3. Lel the Bessel wavelet v satisfies the admissibility condition (3.3.4).

Then the continuous Bessel wavelet transform is a bounded linear operator from
s, ; s,p 1 1 _

HP(RY) into WP (RT xRT) for 1 <p<2,0+ =1 and for all s € R. Also, for

all f € HP(RT) we have

||f||H,i’pl = ”Bd’f(b? a’)”u/ps:l" 9
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forallsERandlgpSQ,%—FI%:l.

Proof. From (1.5.4), we have
hy [By f(b,a)] (w) = w72 (hut) (aw) (hyf ) (). (3.3.5)

p \»
db)

For 1 <p<2, % + z% =1, using [16] and (3.3.5) we get

(/Omwwf(b,anpdb)’l’ ([

< ([Tt @t @)

b o ™2 (hyth) (aw) (hy, f) (@) (0)

S—

where D, > 0 is a constant. Multiplying both sides by a=*~! and integrating from

0 to oo, we find

!

/OOO ( /0 B, a)v’db) .

S

<oy [([ fr it e d) e
From Lemma 3.3.2, we get
[ ([ imeswars) " o < (D | kb .
This implies that
1Bof (0.0) o < Dy (C) ] (3.3.6)
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Further, from [16] and (3.3.5) for 1 <p < 2, % + 1% =1, we get

1
v

(/ooo 74 () ) () )| dw) = ( | Bl dw)

<D, (/OO By f (b, a>|pdb)” ,

s—1

3 o

where D, > 0 is a constant. Multiplying both sides by ¢™*~" and integrating from

0 to oo, we find
/000 (/Ooo ’wfpfé(huzp)(aw)(huf)(w)

<oy [ [ 1Bustar ) oo

From Lemma 3.3.2, we get

o
s.p/ =
| P
Criv /0 ‘w

This yields

pl
dw) a *da

IR

IR

N[

(huf) (w)

" < (D) /0 ) ( /0 ) | By f(b,a)[” db) a"*"‘da.

D
||f||H[L1’/ < —pi ”Bﬂ)f(ba a)HW;J/ . (337)
(Cs,p/> P’
TR
From (3.3.6) and (3.3.7), we get the results. 0

3.4 Conclusions

In the present chapter, author introduced the Bessel wavelet transform in distribu-
tional sense and studied many properties related to the Bessel wavelet transform

in distributions. In this chapter, author also applied the theory of Bessel wavelet
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transform in Sobolev space and found boundedness property of the aforesaid trans-

form.

Kokosk



