Chapter 2

Continuous Wavelet Transform of

Schwartz Tempered Distributions

in S'(R")

2.1 Introduction

In the present chapter, we define a continuous wavelet transform of a Schwartz
tempered distribution f € S'(R") with wavelet kernel ¢ € S(R™) for real scale a # 0
and derive the corresponding wavelet inversion formula interpreting convergence in
the weak topology of S'(R") and its associated results. In [39], it is proved that a
window function ¥ (z) € L?(R") is a wavelet if and only if the integral of 1) along
each of the axes is zero; therefore, any ¢(x) € s(R") is a wavelet where s(R") is
a subspace of S(R"™) such that every element ¢ € s(R™) satisfies (1.3.2). As an
example, one can easily verify that the function given by

w(‘r) =T1T9... xnei(m%+$%+~-+x%)

19



Chapter 2. Continuous Wavelet Transform of Schwartz Tempered... 20

is a wavelet belonging to S(R").

If we take f(z) = c € S'(R"™), then the wavelet transform of a constant distribution
is zero. We thus realize that two elements of S’(R"”) having an equal wavelet trans-
form will differ by a constant in general. For proving the inversion formula of the
continuous wavelet transform, we found that the wavelet transform of a constant
distribution is zero and our wavelet inversion formula is not true for constant distri-
bution, but it is true for a non-constant distribution which is not equal to the sum

of a non-constant distribution with a non-zero constant distribution.

We organize chapter 2 in the following way:

Section 2.1 is introductory, where the brief information regarding the inversion for-
mula of the continuous wavelet transform is given. In Section 2.2, the structure
formula of generalized functions of slow growth is discussed. The wavelet transform
of tempered distributions is defined and its properties examined. Using these proper-
ties finally, the inversion formula of the continuous wavelet transform of distributions

is derived.

2.2 Wavelet transform of tempered distributions

in S'(R") and its inversion

In this section, the structure formula of generalized functions of slow growth, which
is given by V.S. Vladimirov [57], is discussed. Definitions and various properties of
the wavelet transform of tempered distributions are given; using these results, the

inversion formula of the continuous wavelet transform of distributions is investigated.

Definition 2.2.1. A function f(z) is said to be a function of slow growth in R" if,

for m > 0, we have
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[ 1@+ ) e < o0

and it determines a regular functional f in S’(R") by the formula

{f,¢) = . f(@)¢(x)dz, o€ SR"). (2.2.1)

It is easy to verify that the functional f defined by (2.2.1) exists for all ¢ € S(R")
and that it is linear as well as continuous on S(R™). So, the elements of S’(R") are

called tempered distributions or distributions of slow growth.

Theorem 2.2.2. If f € S'(R™), then there exists a continuous function g of slow

growth in R™ and an integer m > 0 such that

0
(9@;

f(z) = DDy ...D"g(x), D; (2.2.2)

or, equivalently,

f(z) = D"g(x) (D := D1D5Ds...D,,). (2.2.3)

The n-dimensional wavelet inversion formula for tempered distributions will now be
proved very simply by using the structure Formula (2.2.3). This structure formula
enables us to reduce the wavelet analysis problem relating to tempered distributions
to the classical wavelet analysis problem of L*(R™) functions. The wavelet inversion
formula of L*(R™) functions will be used quite successfully in order to derive the

wavelet inversion formula for the wavelet transform of tempered distributions.

Henceforth, we assume that a # 0 implies each of the component a; # 0 for all

1=1,2,3,...,n and a > 0 means each of the component a; of a is greater than zero.



Chapter 2. Continuous Wavelet Transform of Schwartz Tempered... 22

la| > € will mean that |a;| > € for all i = 1,2,3, ..., n.
Definition 2.2.3. Let (z) = ¥ (21, 29,...x,) € S(R"), then ¥(z) is a window
function and is a wavelet if and only if

oo

/w(xl,xg,...,xi,...xn)dxi:0, (Vi=1,2,3,...,n).

al az an,

Definition 2.2.4. We take 9 (”’CT_”) = (ml’bl  z2=by ’”"‘b”), where a;, b; are
real numbers and none of the @; is zero. Then the wavelet transform Wy (a,b) of

f € S’(R") with respect to the kernel ——1) (xT’b) is defined by

Vil

Wi(a,b) = <f(x), \/%Qb(%_b» (2.2.4)

where

la| = |ajazag . . . ay,| (a; #0 (1 =1,2,3,...,n)).

We now prove the following lemmas which will be used to prove the main inversion

formula.

Lemma 2.2.5. Let ¢ € S(R™) and ¢ be a wavelet belonging to S(R™).

L] [ ooty

acR™ beR™ teR™

= (=D2)" () |2=a, (V 2o € R").

This is called point-wise convergence of the wavelet inversion formula.

Proof. The proof of the Lemma can be seen from [37, Theorem 1, p. 4]. O



Chapter 2. Continuous Wavelet Transform of Schwartz Tempered... 23

Lemma 2.2.6. Let ¢ € S(R") and v be a wavelet belonging to S (R™). Then

o | | ] eoorewi(2)e(0) St

a€R™ beR™ teR™

converges to (—D,)" ¢(x) uniformly for all z € R™.
Proof. Let f(t) = (—D,)" ¢(t) and

fw) = ——, / (—Dy)"™ (t) e dt,

(2m)?

]Rn

be the Fourier transform of f(t) = (—D;)" ¢(t). In view of [39, Theorem 4.2, pp.

4770-4772], putting (—D;)™ ¢(t) = f(t), we have

& [ ] eoorena(h)e(=t) Lot

a€R™ beR™ teR”

o | ] s ) S

a€R™ beR™ teR™

o | [ g [ (S ()

a€R™ beR"™ teRn"

Using the definition of wavelet transform (1.3.4), we find

o [ ] [ enrses(Ste(2t) et

a€R™ beR™ teR™

_Ci¢/ /Wf(a,b)w(x;b> dll)acllZQ.

a€R™ beR"

Applying the Parseval relation (1.1.6), we get

o | ] [ e (e ()

a€R"™ beR™ teR™
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1 x—0b da
o / J e noRi(=S) e g
Since Fy{W¢(a,b)}(w (2m)2 \/Wf zZ (aw) and F;ﬂb( )(w) = |a|e™ ) (aw),

therefore the above expression yields

o | | [ e () () T

aER" beER™ ceR™

da

V/lala?

-5 / [ 12m) Vial i) alet i)

aGR” beR"

M\S

7 2

|al
aeR"beRn
[ (aw) ?
- Lwl d d
(Jd, Q/f )/|a| “}“’
beR™ a€R”
- ZUJQZ‘Cd
Cd, 27T 2 / f v
beR™
i | J)e o = @) = (D" oto)
Rn

here the convergence is in L*(R").

This convergence is also uniform by a Weicrstrass M-test because

e [ F e ol < s [ <

and f(w) € S(R"). O

Theorem 2.2.7. Let f € S'(R™) and Wy(a,b) be its wavelet transform defined by

Witah) = (5@ o (7)) (2.2.5)
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Then the inversion formula of the wavelet transform Wy(a,b) is given by

o | [ mene(R) GG 0) = e, (ees@) @26

R Rn

where the equality holds true almost everywhere.

Proof. Using the structure formula (2.2.3) for f, we find by distributional differen-

tiation that

wad) = (oo ——o(*0))

Vial "\ a

- <g<>( D" (7))

Here, we have

0 4
(=D,) = (—Dy,) (—Dy,) (—Dyy) ... (=Dy,), Dy, = . (1=1,2,3,...,n).
We thus obtain
m 1 —b
Wia.t) = (g (0" Z=v()) (227
_ 09 9
b b, Oby b,

Using (2.2.7), the left-hand side in (2.2.6) can be written as follows:

(g [ [ it (57) g ot0)
1

R™ R™

:5///@wszwav»$%$

teR™ acR™ beR™

~& [ [ ] [ owm i

teER™ acR™ beER™ z€R™
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[ ][] [ {pra( e e et

tER™ a€R™ zER™ beRn

(2.2.8)

We now evaluate the integral in the big bracket by parts to find from (2.2.8) that

— b\ dbda
(| [witewn(7) T o)

R™ R™

~g | [ [ el [T cmme(Sh a0 S

teER™ acR”™ x€R™ beR™

Using (—Dy)v ( ) Dy ( ) the above expression can be expressed as

( wa | [ witan(7) Fo o)

Rn Rn

5] ] [l ] S mre( el

fE]R" a€R™ reR" beRn

Inverting the order of integration with respect to a and t, the above expression yields

([ [ wrtesnm (7). o)

Rn R”

‘c% [ ] ][ s@i(2) deop () mdn Sa

a€R™ teR™ beR™ z€R™

& | | [ o) [ enr sy

aER” beR™ zcR" teR™

(2.2.9)

In order to justify the inversion of the order of integration with respect to a and t,
we first perform the integration in the region {(a,t) : |a| > €,a,t € R"}, invert the
order of integration and then let e — 0. This existence of the triple integral in terms

of b, a and t in (2.2.9) is proved by using the Plancherel theorem with respect to the
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variable b. Thus, by using

Cy = (21)" / 'wﬁj‘)‘ dw,

R

we notice that the variable a disappears from the denominator and every calculation
goes on smoothly. Since the functions ¢ and 1) are elements of S(R™), the Fubini’s
theorem can be applied in order to justify the above interchanges of the order of

integration.

Now, (2.2.9) can be written as follows:

(o [ [ wrenu(* b)%;w}

R” R”™

ng [ ] ] Eoorewn( e ()

a€R™ beR™ teR"

= (9(x), (=Dx)" ¢(x)), (2.2.10)

by means of the wavelet inversion formula in R™ [39, Theorem 4.2, pp. 4770-4772]
and Lemma 2.2.6. We note that the triple integral in the above expression converges

uniformly to (—D,)™ ¢(z), for all z € R".

Using the distributional differentiation, (2.2.3) and (2.2.10), we get

o [ [witanu(* b)%;,aﬁ( )

Rn R™
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2.3 Conclusions

In the present chapter, author discussed the continuous wavelet transform of Schwartz
tempered distribution f € S'(R") with the wavelet kernel ¢ € S(R") and derived
the corresponding wavelet inversion formula by interpreting convergence in the weak

topology of S"(R™).

The author found that the wavelet transform of a constant distribution is zero and
also that the wavelet inversion formula is not true for constant distribution, but it is
true for a non-constant distribution which is not equal to the sum of a non-constant
distribution with a non-zero constant distribution. The results and findings are

proved in the form of Lemmas and Theorems.

But our wavelet kernel chosen suffers from a drawback that all its moments of even

order will be zero and so using %b =t we have

[ i [ =

o

where 1(t) = te~"" in dimension n = 1.

So two functions having the same wavelet transform with respect to the kernel ¢ (x)

will differ by a polynomial

where at least one of ag, as, ... as,, is non-zero. Therefore, in order that the unique-
ness theorem for the inversion formula of the wavelet transform may be valid our
wavelet 1 should be so chosen that all its moments of order m > 1 should be

2

non-zero. One such wavelet is (1 + cx — 22%)e™™ where ¢ is an arbitrary nonzero



