Chapter 1

Introduction

The Fourier transform is an effective and efficient tool for the study of those func-
tions that may be represented by the sum of simpler trigonometric functions. The
aforesaid theory came into light from the work of Joseph Fourier (1822), who showed
that a periodic function can be expressed as the sum of trigonometric functions. The
origination of wavelet transform was initially developed by exploiting the theory of
Fourier transform. So, the wavelet transform enables us to provide the local and
global information of signal at a time. The entire wavelet theory is encompassed
by the theory of Fourier transformation. Many authors exploited Fourier trans-
form technique and developed continuous and discrete wavelet transform on various
functional spaces and studied many properties. This theory is useful in problems of
image processing, signal processing and other areas of mathematics and engineering.
Exploiting the theory of wavelet transform, the inversion formula, Parseval’s formula
and many other important results were discussed by many researchers and used this
theory in the problem of Sobolev type spaces which are very beneficial to solve the

higher-order partial differential equations and other problems of mathematics.
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Exploiting the theory of Fourier transform, the inversion formula of the continuous
wavelet transform and related results were discussed by Chui (2016), Pathak (2009)
and Levedeva et al. (2014, 2016) on L*(R)-space. Later on, the same formula was
considered by Weisz (2013, 2015) on LP-space, 1 < p < oo and Weiner-amalgam
spaces. Without taking the admissibility condition, the characterization of the in-
version formula of the continuous wavelet transform was derived by Postinikov et al.
(2014). In n—dimensional setting, the inversion formula of the continuous wavelet
transform was discussed by Daubechies (1992), Meyer (1992), Keinert (2003) and
Pathak (2009). Using the theory of window function and Fourier transform, Pandey
and Upadhyay (2015) studied continuous wavelet transformation in the classical
sense and obtained the inversion formula of continuous wavelet transform and other
important results. The characterizations of continuous wavelet transform of distri-
butions and its related results were investigated by Holschneider (1995) and Pathak
(2004). Later on, Pandey and Upadhyay (2019), found the inversion formula of
continuous wavelet transform of Schwartz tempered distributions by exploiting the

Fourier transform.

The Hankel transform is considered an important tool to find the solution of cylin-
drical boundary value problems. Researchers exploited the aforesaid theory and
explored the research works on Zemanian space and other functional spaces, and
found many important and interesting observations. The theory of Hankel convolu-
tion is heavily dependent on the Hankel transform technique. Using this technique,
Zemanian (1968), Betancor (1995), J. de Sousa Pinto (1985), Pathak (2003, 2011)
and others discussed the theory of Hankel convolution and studied many important
properties. The aforesaid theory is very important for the development of the Bessel

wavelet transform.
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Exploiting the theory of Hankel transform and Hankel convolution, which was in-

troduced by Haimo (1965), Hirschman (1960) and Cholewinski (1965), Pathak and

Dixit (2003) investigated the Bessel wavelet transform and discussed its various

properties. Later on, by considering the Zemanian theory of Hankel transform, the

continuous Bessel wavelet transform and its various properties were found by Upad-

hyay et al. (2012). Many results of the continuous Bessel wavelet transform are

obtained by Upadhyay and Singh (2015, 2017, 2018, 2020) by using the Zemanian

Hankel transform tool.

Motivated from the aforesaid results, in the present thesis, the author will consider

the following observations:

(i)

The inversion formula of the continuous wavelet transform of Schwartz tem-

pered distributions in S’(R™) will be investigated.

Exploiting the theory of Hankel transform, the continuity and boundedness
properties of continuous Bessel wavelet transform of distributions will be dis-

cussed in Sobolev type space and other spaces.

The characterizations of the continuous Bessel wavelet transform of distribu-

tions in Besov and Triebel-Lizorkin spaces will be given.

Using the representation of distributions in H L(R*)—space, the inversion for-
mula of the continuous Bessel wavelet transform will be obtained and its as-

sociated results derived.

The inversion formula of the continuous Bessel wavelet transform of distribu-

tions in 3, -space and its associated results will be discussed.

From Sneddon [49], Pathak [47], Pandey and Upadhyay [39], Zemanian [61, 63],

Betancor and Marrero [10], Macaulay-Owen [32], Wing [58], Kerr [28], Pathak and
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Dixit [42], Upadhyay et al. [56], Betancor et al. [9], Koh [29, 30], Hardy et al. [22]
and Triebel [50], we are giving some important definitions, formulae and properties

in the form of sections that will be used in the subsequent chapters.

1.1 The Fourier Transform

Motivated from the work of Sneddon [49], Pathak [47] and Pandey et al. [39], in this

section, various definitions and properties of the Fourier transform are given below:

The Fourier transform of a function f € L'(R") is defined by

flw) = (271),5 / =it (1)t (1.1.1)

If f € L*(R") and f € L*(R™), then the inverse Fourier transform of f is given by

1

f(t) = (QW)%

/ei(t’w)f(w)dw7 a.e. (1.1.2)

where (t,w) = tywy + tows + -+ - + tpwy,.

Properties of the Fourier transform

(I) Let f,g € L'(R") and ¢, ¢y € C, then
(erf + c29)(w) = e1f(W) + 2g(w), w € R” (linearity). (1.1.3)

(IT) Let f € L*(R™). For any fix a,b € R™ with a; # 0,7 = 1,2, - - - n, the functions
Tyf, Myf and D, f are defined by

(i) (Tyf)(x) = f(x+Db), € R” (translation operator)

(ii) (Myf)(x) = @b f(2), v € R" (modulation operator)
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(i) (Dof)(z) = |a|"2f (), zeR" (dilation operator)

a

a1’ az’ ’an

where |a| = |aiaz---a,| and (£) = ( ) By taking Fourier

transform of above expressions the following results hold
(iv) (Thf)(w) = (M f)(w), w € R”
(V) (Mpf)(w) = (T f)(w), w € R"
(vi) (D1f)(w) = (Daf)(w), w € R,

(ITIT) (Riemann-Lebesgue Lemma) Let f € L'(R™), then

A

(i) f is continuous on R”".
(it) limyy oo f(w) = 0.

(iii) f; — f in L'(R™) implies f; — f uniformly on R".

Fourier transform in L?(R")-space
From Pathak [47] and Pandey et al. [39], the Fourier transform and its inversion

formula in L?(R") are given by

. , 1 A
Flw) = §s—s / e f(t)at, (1.1.4)
(2m)2 J-n
for @ = (x1, 29, ,2p), w = (W1, ws, -+ ,w,) € R” and (z,w) = Tyw; + Tows + - - - +

Tpwn, N = (N1, Ng,---,N,). N — oo implies that each of the components of N
tend to oo independently of each other. This defines convergence in L?(R"™) and is
called the limit in the mean (I.2.m.).

The corresponding inversion formula of the Fourier transform is defined by

50 = ity [ o o (115)
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Let f,g € L?, then the Parseval’s relation holds

<f7 g>L2 = <f7 g)L2 (116)

and in particular if f = g, then

£l = 1 fIl22 (1.1.7)

where the inner product in L?(R") space is defined by

(g = | fOa@a (118)

Let f € L'(R") and g € LP(R"),1 < p < oo. Then the convolution of f and g is

defined by
(f xg)(x) = - f(@ = y)g(y)dy, (1.1.9)
for almost every x € R" with
1 *gllp < ILf gl (1.1.10)
Let f € LP(R™) and g € LY(R"),1 < p,q < r < oo, then from [47, p. 130] we have
1 % gl < £ llollglle: (1.1.11)

11,1
where = = = + = — 1.
- p+q

Let f,g € L'(R"™), then from [59, Proposition 4.1, p. 17| we get

SIS

(f % 9)(w) = 2m) f(w)g(w). (1.1.12)
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1.2 Schwartz space and Tempered Distributions

Schwartz testing function space S(R™) consists of C*° functions ¢ defined on R" and

satisfying the conditions

Yk () = sup |[2™| o*) ()] < oo, (1.2.1)

TeR™

where |m|, |k| =0,1,2,... and

|ﬂ1’:: n11-+-7n2-+----%—7nn,

k| = ki + ko + -+ Ky,

M= ey

akn 8k:2 8"’1

8$n‘.'a$28$1 v

|z

oM (w) =

The topology over S(R") is generated by the sequence of semi-norms {ka}fﬁﬂ,‘ K=0-
These collections of semi-norms in (1.2.1) are separating which means that an ele-
ment ¢ € S(R™) is non-zero if and only if there exists at least one of the semi-norms
Vmk satisfying v, k(@) # 0. A sequence {¢, }52, in S(R") tends to ¢ in S(R") if and
only if v, (6, — @) — 0 as v goes to oo for each of the subscripts |m|, |k| =0,1,2, ...
, are as defined above. Now, one can verify that the function e~ (i+5+-+4) ¢ S(R")
and the sequence

v—1
v

e~ (H+3++17) (t+t5++t3)

converges to e~

in S(R") as v — o0.

The space of all continuous and linear functional on S(R") is called the space of

tempered distributions and denoted by S’(R™). A linear functional f is said to be
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continuous, if for any sequence of test functions {¢, },en that converges in S(R") to

zero, the sequence of numbers {(f, ¢,) }nen converges to zero.

The Dirac delta function §(¢) is defined here by
(0(t1 — a1,te — ag,tz3 —ag, ...ty — ay), d(t1,ta, ts, ..., ty)) = Pay, a0, a3, ..., ay,).
So, we have
(0(t1, Lo, bz, ... tpn), O(t1, by ts, ... 1)) = ¢(0,0,0,...,0), ¢ € S(R").

Clearly, d(ty,ts,...,1,) is a continuous linear functional on S(R™). Let f be a locally

integrable function on R, then f defines a distribution as follows:

(1) = | Fwond. o € SE. (122)

Distributions generated by a locally integrable functions are called regular distribu-
tions. d(t1,ts,...,t,) is not a regular distribution this implies that it is a singular

distribution.

Some useful results

(I) S(R™) is a dense subspace of LP(R"),1 < p < 0.

(II) The Fourier transform is a continuous isomorphism from S(R™) onto S(R");
its inverse, given by (1.1.2), is also a continuous isomorphism from S(R™) onto

S(R™).

(III) The Fourier transform f of f € S'(R") is defined by

(f.¢) == (f.9), ¢ € S(R). (1.2.3)
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And it is continuous isomorphism from S’(R") onto S'(R™).

1.3 Wavelet Transform

From Pathak [47] and Pandey et al. [39], various definitions and related results of
continuous wavelet transform are given by exploiting the Fourier transform tech-

nique.

A function ¢ € L*(R") which satisfies the admissibility condition
A 2
Cy = / de < 00, (1.3.1)

where |w| = |wiws - - - wy], is called a basic wavelet.
A function 1 € L?(R") is called a window function if it satisfies the following con-
ditions:

(1) z1(x), 20(x), ..., xpb(x) all belong to L*(R™).

(2) zzp(x) € LA(R™) for all 4,5 =1,2,...,n, i # J.

(3) mixpxjp(z) € L*(R™) for all 4,5,k = 1,2,...,n, i # j # k # i. Note that
i # j # k # i implies that i, j, k are all different, ¢ # j # k may imply that i
and k could be equal. In general, window function is defined by the following

way:

(4) m1z9m3 ... 20 (x) € LA(R™).

A window function v belonging to L?(R") is called wavelet if
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o0

(i) /w(xl,xg,a:g,,...,xi,...,a:n)dxi:0, (Vi=1,2,3,...,n) (1.3.2)

and it satisfics the admissibility condition

. [ (w)P?
(ii) Rn/ ™ dw < o0, (1.3.3)

where

~

w(w):r&(whw%“')wn); |W| :‘W1CU2...Q_)H‘
and @(w) is the Fourier transform of ¢(x) = ¢(x1, 29, ..., x,).

Let f € L*(R") and v € L?*(R") be a basic wavelet, then the continuous wavelet

transform of f is defined by

Wy (a,b) t_b dt, (1.3.4)
w/| n
where |a| = |a1a2 .. .a/n|7 a; 3& Ofori = 1’ 27 SN ) and ( b) — (tl{:lbl , t2{:21727 e ,tna—nbn).

Let Wy(a,b) be wavelet transform of f € L*(R"), then the Fourier transform of

Wy(a,b) with respect to variable b is given by

F{W;(a,b)} H 12a;] 2 f (w)h (w) (1.3.5)

from Pandey and Upadhyay [39, pp. 4771-4772].

Let f € L*(R") and ¢ € L*(R™) be a basic wavelet, then the inversion of the

continuous wavelet transform in classical sense is
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1 1 xr —
r@) =g [ ] witanlerie(*

where Wy(a,b) is defined as in (1.3.4) and |a| = |ajas---a,|, a; # 0 for i =

b) dbda

Ja

a,beR" (1.3.6)

1.4 Hankel Transform

From Zemanian [63], Betancor and Marrero [10], Pathak [47] and Macaulay-Owen

[32], the definitions, properties and formulae of the Hankel transform are discussed.

Let f € L*(R"), then the Hankel transform is defined by

W) = | @) Ian o), 5z =3 (1.4.1)

where J,, denotes the Bessel function of first kind and of order f.

If f e LY(RY) and h,f € L'(R*), then the inverse Hankel transform is given by

Fa) = [ e o)y, for = =3, (1.4.2)

Let 2#t2 f(z) € LY(R*Y) and z#t2g(x) € L*(R'), then the Hankel convolution is

defined by
(f#9)(z /f (129)(y)dy, (1.4.3)

where

(729)(y) = 9(x,y) = /OOOQ(Z)DM(x,y,z)dz (1.4.4)

is the Hankel translation.
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D, (x,y, z) is a basic function which is defined by
Dy(,y,2) = / 13 () 2 T, () (yt) 2 S (yt) ()2 T, (2)dt, x,y, 2 € RT (1.4.5)
0
and holds the following properties:

(i) D, (x,y,z) >0, z,y,z € R. (1.4.6)

(i) /0 h 13 (2t)2.0,(2t) Dy, y, 2)dz = (xt)2 J,(xt) (yt) 2 J,u(yt), t € R
(1.4.7)
(iid) /Ooo Dy(z,y, 2)2#+dz = % (1.4.8)
If 2472 f(x) € L*(RY) and 2#*2g(z) € LY(R"), then
hu(f#9)(@) = 27" 2 b f (@) g (). (1.4.9)

From Wing [58] and Kerr 28], for y1 > —2, the Hankel transform of function f €
L*(R™) is defined by

(hf)(y) = ki / (a9} To(ay) f () d. (1.4.10)

and the corresponding inverse Hankel transform is

fa) = i / (a9 Ty f (9)dy. (L4.11)

where [.i.m. denote convergence in L?(R™T).
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hy is isometric on L*(R*), h,'h,f = f, then the Parseval’s formula of the Hankel

transformation for f,g € L*(R") is given by

/ f(@)g(a)de = / 0, )W) (kg )y, (1.4.12)

1.5 Bessel Wavelet Transform

In this section, from the concept of Pathak and Dixit [42] and Upadhyay et al. [56],

definition and properties of the continuous Bessel wavelet transform are given below:
A function ¢ € L?*(R") is called the basic Bessel wavelet if it satisfies the admissi-

bility condition

Cpp = /000 () (@) B dw < oo, > —1. (1.5.1)

w2/1+2 2
The continuous Bessel wavelet transform of a function f € L*(R") with respect to

the basic Bessel wavelet ¢ € L*(R") is defined by

a a

B = [ emtaa=at [ (5 2)a (15.2)

where

/ Y(z )dz (1.5.3)

The relationship of (Byf) (b, a) with the Hankel transformation of f and ¢ is

N

(Bof) () = [0 00 (uf) () () (a)de, (15)

Wherea>0,b>0and,u2—%.
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Remark 1.5.1. A function ¢ € L*(R") is called the “Bessel” wavelet because the
Bessel functions of first kind of order p is heavily involved to construct the wavelet.

It can be clarified from (1.4.5) and (1.5.3).

1.6 Zemanian Spaces and Their Duals

In this section, from Zemanian [61, 63] and Betancor et al. [9], the definitions of

various test function spaces are given below:

H, is the space of all complex-valued function ¢ € C*(R™) such that

1 1
x® (x_le)B:z:_“_§¢(x)‘ < 00, w> —3 a,feNy  (1.6.1)

755(@ = Sup

zERT

and H L denotes its dual.

From Zemanian [60, 63|, generalized Hankel transform is given by

(Wf.0) = (F.huo), ¢ € H (RY), f € H,RY), (16.2)

where h, and hj, are automorphism on H, and Hj,.

For p € R and ¢ > 0, the space 8, . consists of all complex-valued function ¢ &

C*°(R*) such that ¢(z) = 0, for x > ¢ and

" (¢) = sup (m‘le)kx‘“‘%qb(x)‘ < oo, keN,, (1.6.3)

rERT

when endowed with the topology generated by the family of seminorms {7} }ren,,
Buc becomes a Fréchet space. It is clear that 3, . C 5,4 provided that ¢ < d. This

fact allows to define 3, = Uoﬂ”’c as the inductive limit of {f,c}es0. 5],
c> ’

and f3,

denote duals of 3, . and 3,, respectively.
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Let n =y +iw, y,w € R and p,c € R with ¢ > 0. Then ® is an element of %, . if

and only if 7]_“_%@ is an even entire function of 7 such that

(@) = sup [P 3 d(n)| < 00, k € Ny (1.6.4)
n

The topology of %, . is the one generated by using the seminorms azk, k=0,1,2,3,---
From Zemanian [61, p. 682, p. 685], it is clear that %, . is a Fréchet space and
e C ¥, qfor c <d. In view of the above fact, %], = go%’c is the inductive limit

of %,

le, ¢ > 0. The dual space of %, is @u’ which is the space of all continuous linear

functional on %/,-space.

1.7 Some Useful Results

From Zemanian [61], Koh [29, 30], Hardy et al. [22] and Triebel [50], useful results

and inequalities are discussed in this section.

From Hardy et al. [22, Theorem 201], for p > 1, the Minkowski integral inequality

S e

From [50], for 1 < p < 00, 1 < ¢ < oo and if {fx(2)}72, is a sequence of complex-

is given by

[e.o]

§/OOO{ f,f(x)};dx. (1.7.1)

k=0

SAL

valued Borel measurable function on R, then

1l e,y = (/Oo x%l(i |fk(a;)|Q)gda;)fl’, (1.7.2)
0 k=0

il = ( (/OOO P2 fy()? da ) 3 (1.7.3)

k=0



Chapter 1. Introduction 16

with

k(@) = Sl;p|fk($)|, (1.7.4)

and f(x) = (fo(a:), fi(@), fa(z), ..., fe(x), .. > = {fe(2)}2, € Iy, then

1

1f (@), = (Z\fk ) ||fchLg:</Ooox2“+1|fk(x)\pd$)p. (1.7.5)

From Zemanian [63] and Koh [29], we have
D,z J,(zy) = —yx ™" J 1 (zy). (1.7.6)

D', (wy) =yt L (zy). (1.7.7)

For S, ., = D2 — 4’1151, the Bessel operator

hy (Spa®) = —y*huo, (1.7.8)

and the Bessel differential operator of order n be
7) = 3 AP (o D) e f (), (1.7.9)

where A; are constants depending on j and .

m

(¢7'D)" (flx) gle) = > (”) (7' D,)" f(z) (27" D,)" " g(x).  (1.7.10)

m=0

Theorem 1.7.1. For every x € RY, the mapping ¢ — 1,¢ is continuous from H,

into itself.

Theorem 1.7.2. For every x € RT, the mapping ¢ — S,,¢ is continuous from H,

into itself.
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Theorem 1.7.3. For every x € R*, the mapping ¢ — 7,¢ is continuous from Biua

into Buats-
Theorem 1.7.4. For p > —%, h, is an isomorphism from B, onto %,.

Theorem 1.7.5. For u > —%, hy is an isomorphism from f3, onto %,.

KoKk



