TABLE OF CONTENTS

CERTIFICATE	i
DECLARATION BY THE CANDIDATE	ii
CERTIFICATE BY THE SUPERVISOR(S)	ii
COPYRIGHT TRANSFER CERTIFICATE	iii
ACKNOWLEDGEMENT	iv-v
TABLE OF CONTENTS	vi-ix
LIST OF FIGURES	x-xii
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS	xiv-xv
ABSTRACT	xvi-xx
CHAPTER 1: INTRODUCTION	1-7
1.1 General	1
1.2 Objectives	4
1.3 Scope of work	5
1.4 Thesis Organization	7
CHAPTER 2: REVIEW OF LITERATURE	8-49
2.1 Mine subsidence	8
2.2 Causes of subsidence movements	9
2.2.1 Natural causes	9
2.2.2 Manmade causes	12
2.3 Mechanism of coal mine subsidence	12
2.4 Factors influencing subsidence movements	13
2.4.1 Geological factors	13
2.4.2 Mining factors	16
2.5 Impact of subsidence movements	18
2.5.1 Structural damage	20
2.5.2 Impact on soil properties	22
2.5.3 Impacts on agricultural lands	25

2.	5.3.1 Impacts on crop productivity	26
2.	5.3.2 Impacts on soil functions	30
2.5.4	Hydrologic impacts	32
2.5.5	Coal mine fires	35
2.5.6	Dissolved organic matter and organic carbon	36
2.5.7	Economic impacts	37
2.5.8	Other impacts	38
2.6 Subs	idence impact assessment using remote sensing technique	38
2.6.1	Remote sensing	38
2.6.2	Radiation-target interactions	41
2.6.3	Image analysis	44
2.	6.3.1 Digital image processing	44
2.	6.3.2 Data integration and analysis	46
2.6.4	Studies based on the effect of mining induced subsidence on the plants using	46
1	remote sensing techniques	
CHAPT	ER 3: IMPACT OF SUBSIDENCE - LABORATORY MODEL	50-78
3.1 Intro	duction	50
3.2 Mod	el setup	54
3.3 Resu	lts and discussion	58
3.3.1	Growth variables in control condition	58
3.3.2	Growth variables in subsidence condition	60
3.3.3	Effects of tensile strain	64
3.	3.3.1 Effects of tensile strain on biomass (BM)	65
3.	3.3.2 Effects of tensile strain on vegetation water content (VWC)	66
3.	3.3.3 Effects of tensile strain on chlorophyll content (SPAD value)	67
3.	3.3.4 Effects of tensile strain on soil moisture (SM)	68
3.	3.3.5 Effects of tensile strain on leaf area index (LAI)	69
3.	3.3.6 Effects of tensile strain on plant height (PH)	69
3.3.4	Effects of compressive strain	71
3.	3.4.1 Effects of compressive strain on biomass (BM)	71
2	3.4.2 Effects of compressive strain on vegetation water content (VWC)	72

3.3.4.3 Effects of compressive strain on chlorophyll content (SPAD value)	73
3.3.4.4 Effects of compressive strain on soil moisture (SM)	74
3.3.4.5 Effects of compressive strain on leaf area index (LAI)	75
3.3.4.6 Effects of compressive strain on plant height (PH)	75
3.4 Concluding remark	77
CHAPTER 4: IMPACT OF SUBSIDENCE ON THE PLANTS – FIELD	79-100
STUDY	
4.1 Introduction	79
4.2 Study area and field investigation	79
4.3 Impact on soil physicochemical properties	82
4.3.1 Soil sampling	83
4.3.2 Laboratory analysis	84
4.3.2.1 Soil physical (texture) and chemical analysis	85
4.3.3 Results and discussion	86
4.3.3.1 Change in available nitrogen (AN), available phosphorus (AP) and	86
available potassium (AK)	
4.3.3.2 Texture analysis (sand, silt and clay)	88
4.4 Impact on nutrient contents of plants	89
4.4.1 Leaf sampling	92
4.4.2 Laboratory analysis	92
4.4.3 Results and discussion	93
4.4.3.1 Change in the leaf nutrients of Shorea robusta (ShR) and Lantana	94
camara (LC) in tensile strain zone	
4.4.3.2 Change in the leaf nutrients of Shorea robusta (ShR) and Lantana	98
camara (LC) in compressive strain zone	
4.5 Concluding remark	99
CHAPTER 5: IMPACT OF SUBSIDENCE ON PLANTS - REMOTE SENSING	101-108
STUDY	
5.1 Introduction	101
5.2 Study area	102
5.3 Methodology	102

5.3.1 Satellite data	103
5.3.2 Image processing	103
5.4 Results and discussion	104
5.5 Concluding remark	107
CHAPTER 6: CONCLUSIONS AND FUTURE RECOMMENDATIONS	109-114
6.1 Conclusions	109
6.2 Future recommendations	114
REFERENCES	115-144
LIST OF PUBLICATIONS	145-147

LIST OF FIGURES

Figure No.	Description	Page No.
1.1	Subsidence profile of surface due to extraction of coal	2
1.2	An overview of methodology adopted for this study	6
2.1	Danger to the life and property due to pot-hole	8
2.2	The mechanism of underground coal mining on land degradation	9
2.3	Schematic diagrams of the influences of coal mining on the	10
	environment	
2.4	Natural and anthropogenic (manmade) causes of subsidence	11
2.5	(a) Zone of influence around an opening (b) Strata disturbance and	13
	subsidence caused by mining	
2.6	Schematic diagram of the various factors influencing subsidence	14
	movements	
2.7	Various impacts of land subsidence	19
2.8	Effects of subsidence on surface structures	21
2.9	Subsidence basin observed in an agricultural field in the Witbank	27
	area, South Africa	
2.10	Schematic diagram showing the various ways of impacts of coal	28
	mining subsidence on agricultural productivity	
2.11	(a) Tension cracks associated with subsidence basin formation	30
	developed in an agricultural field in the Witbank area, South Africa	
	(b) Tension cracks representing secondary features of surface	
	subsidence	
2.12	Subsidence basin observed at the agricultural field of Hanwang coal	31
	mine, China	
2.13	Important stages in remote sensing	39
2.14	Three forms of interaction of the incoming incident energy	42
2.15	A schematic diagram showing the basic concept behind the	43
	calculation of NDVI	

3.1	Development of subsidence trough and strains with face advance	50
3.2	Laboratory based schematic model of the a) Control bed and b)	55
	Subsidence bed setups for subsidence simulation	
3.3	Outdoor crop beds used for the measurement of growth variables of	56
	wolf's peach	
3.4	Outdoor crop beds used for the measurement of growth variables of	56
	chickpea	
3.5	Measurements of data in the laboratory experiment	57
3.6	Percentage change in biomass with increasing tensile strain	65
3.7	Percentage change in vegetation water content with increasing tensile	66
	strain	
3.8	Percentage change in chlorophyll content (SPAD value) with	67
	increasing tensile strain	
3.9	Percentage change in soil moisture with increasing tensile strain	68
3.10	Percentage change in leaf area index with increasing tensile strain	69
3.11	Percentage change in plant height with increasing tensile strain	70
3.12	Percentage change in biomass with increasing compressive strain	72
3.13	Percentage change in vegetation water content with increasing	73
	compressive strain	
3.14	Percentage change in chlorophyll content (SPAD value) with	73
	increasing compressive strain	
3.15	Percentage change in soil moisture with increasing compressive	74
	strain	
3.16	Percentage change in leaf area index with increasing compressive	75
	strain	
3.17	Percentage change in plant height with increasing compressive strain	76
4.1	Location map of the study area	80
4.2	Tension cracks associated with subsidence basin observed in the	81
	study area	
4.3	Schematic diagram of subsidence profile showing sampling points	84
4.4	Sample collected from field in bags	85

4.5	Laboratory Testing	85
4.6	The percent change of AN, AP, AK, sand, silt and clay in tensile	87
	(TZ) and compressive (CZ) zones as compared to the undisturbed	
	zone	
4.7	Laboratory analysis of the leaves	93
4.8	The percent changes of leaf nutrients of Shorea robusta (ShR) in	95-96
	tensile (TZ) and compressive zones (CZ) as compared to the	
	undisturbed zone (UZ).	
4.9	The percent change of leaf nutrients of Lantana camara (LC) in	96-97
	tensile (TZ) and compressive (CZ) zones as compared to the	
	undisturbed zone (UZ).	
5.1	Methodology for the analysis of vegetation health (NDVI)	104
5.2	NDVI map of the damaged area in May 2014 and 2016	105

LIST OF TABLES

Table No.	Description	Page No
3.1	Data of chickpea crop with measurement dates in control condition	59
3.2	Data of wolf's peach crop with measurement dates in control	59
	condition	
3.3	Growth parameters of chickpea crop at tensile strain zone of	61
	subsidence bed	
3.4	Growth parameters of wolf's peach crop at tensile strain zone of	62
	subsidence bed	
3.5	Growth parameters of chickpea crop at compressive strain zone of	63
	subsidence bed	
3.6	Growth parameters of wolf's peach crop at compressive strain	64
	zone of subsidence bed	
4.1	Change in percentage of parameters in tensile and compressive	86
	zones against undisturbed zone	
4.2	Leaf nutrients of <i>Shorea robusta (ShR)</i> in subsided and unsubsided	94
	(or undisturbed) zones	
4.2		0.4
4.3	Leaf nutrients of Lantana camara (LC) in subsided and unsubsided	94
	zones	
5.1	Vegetation health changes from 2014 to 2016	106