TABLE OF CONTENTS

CERTIFICATE	ii
DECLARATION BY THE CANDIDATE	iii
COPYRIGHT TRANSFER CERTIFICATE	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vii
TABLE OF CONTENTS	ix
LIST OF FIGURES	xiv
LIST OF TABLES	xviii
LIST OF ABBREVIATIONS	XX
LIST OF SYMBOLS	XXV
CHAPTER 1: INTRODUCTION	1-29
1.1 REMOTE SENSING	1
1.2 MICROWAVE REMOTE SENSING	1
1.3 CLASSIFICATION OF MICROWAVE SPECTRUM	4
1.4 APPLICATIONS OF MICROWAVE REMOTE SENSING	5
1.5 MICROWAVE SPACE-BORNE OBSERVATIONS	6
1.6 SOIL MOISTURE: DEFINITION AND ITS SIGNIFICANCE	9
1.7 SOIL MOISTURE ESTIMATION	11
1.8 BIOPHYSICAL PARAMETERS	12
1.9 ZEROTH-ORDER RADIATIVE TRANSFER MODEL (RTM)	13
1.10 REVIEW OF LITERATURE	14
1.10.1 A review on SMAP soil moisture product	14
1.10.2 A review on estimation of soil moisture	17
1.10.3 A review on zeroth-order RTM	20
1.10.4 A review on Disaggregation of satellite soil moisture	22
1.10.5 A review on monitoring of Vegetation Water Content (VWC)	24

1.11 MOTIVATION OF THE STUDY	25
1.12 RESEARCH OBJECTIVES	27
1.13 ORGANISATION OF THESIS	27
CHAPTER 2: MATERIALS AND METHODOLOGY	31-52
2.1 SATELLITE DATASETS	31
2.1.1 SMAP	31
2.1.2 MODIS	32
2.1.3 Sentinel-1 SAR data	33
2.2 GROUND MEASUREMENTS	35
2.2.1 Steven's water soil sensor: Hydra Probe	35
2.2.2 Hydra GO	37
2.3 GROUND SAMPLING CAMPAIGN	37
2.3.1 From Oct-2017 to Apr-2018 (Ten Dates of seven months)	37
2.3.2 From Jan-2020 to Feb-2020 (Terminated in between due to COVID)	39
2.4 STUDY AREA	40
2.5 METHODOLOGY	42
2.5.1 Satellite soil moisture retrieval	42
2.5.2 Spatial disaggregation of soil moisture	47
CHAPTER – 3: ROUGHNESS CHARACTERIZATION AND DISAGGREGATION OF COARSE RESOLUTION SMAP SOIL MOISTURE USING SINGLE CHANNEL ALGORITHM	53-68
3.1 INTRODUCTION	53
3.2 DATASETS	55
3.3 METHODOLOGY	56
3.3.1 The Zeroth-order RTM model	56
3.3.2 Impact of surface roughness on soil surface reflectance	56
3.3.3 Spatial disaggregation soil moisture	57

3.4 RESULTS AND DISCUSSION	59
3.4.1 Assessment of SMAP L2 soil moisture and comparison with in-situ soil moisture datasets	59
3.4.2 Sensitivity analysis of surface roughness towards soil moisture	60
retrieval 3.4.3 Performance analysis of satellite soil moisture estimation and downscaling approach	62
3.5 CONCLUSION	67
CHAPTER – 4: IMPROVING SPATIAL REPRESENTATION OF SOIL MOISTURE THROUGH THE INCORPORATION OF AN IMPROVED SINGLE-CHANNEL ALGORITHM WITH DIFFERENT DOWNSCALING APPROACHES	69-86
4.1 INTRODUCTION	69
4.2 DATASETS	70
4.2.1 In-situ Measurements	70
4.2.2 SMAP Data	70
4.2.3 MODIS Data	71
4.3 METHODOLOGY	72
4.3.1 Satellite soil Moisture retrieval	72
4.4 RESULTS AND DISCUSSION	74
4.4.1 Comparison of SMAP L2 soil moisture and estimated soil moisture with the in-situ soil moisture datasets	74
4.4.2 Performance analysis of different downscaling algorithms using estimated soil moisture	76
4.4.3 Performance analysis of different downscaling algorithms using SMAP L2 soil moisture	78
4.4.4 Comparison of the performance of SMAP L2 soil moisture and the estimated soil moisture in the downscaling methods	81
4.4.5 Comparison with the active-passive microwave soil moisture product of SMAP	83
4.5 CONCLUSION	85
CHAPTER – 5: SPATIAL DOWNSCALING OF SOIL MOISTURE DATA USING A NEWLY DEVELOPED VEGETATION MODULATED SOIL MOISTURE INDEX	87-103

5.1 INTRODUCTION	87
5.2 DATASETS	89
5.2.1 In-situ measurements	89
5.2.2 Space-borne data	90
5.3 METHODOLOGY	91
5.4 RESULTS AND DISCUSSION	92
5.4.1 Relationship of SMAP soil moisture with MODIS LST and NDVI	92
5.4.2 Evaluation of SMAP soil moisture with in-situ measurements	94
5.4.3 Evaluation of downscaled results with the in-situ measurements	96
5.4.4 Spatial and Temporal distribution of downscaled soil moisture	99
5.5 CONCLUSIONS	102
CHAPTER – 6: ASSESSMENT OF VEGETATION WATER CONTENT USING SENTINEL-1 DUAL-POLARIZED SAR DATA FOR THE RETRIEVAL OF SMAP SOIL MOISTURE	105-128
6.1 INTRODUCTION	105
6.2 DATASETS	107
6.2.1 In-situ measurements	107
6.2.2 Satellite data	108
6.3 METHODOLOGY	109
6.3.1 Pre-processing of Sentinel-1 Polarimetric SAR data	109
6.3.2 Assessment of VWC using DPRVI, RVI, and Cross- and co- Polarized Ratio through multiple regression approaches	112
6.3.3 SCA for the retrieval of soil moisture content	117
6.4 RESULTS AND DISCUSSION	118
6.4.1 Temporal variation of Sentinel-1 and SMAP derived data products along with ground measurements	118
6.4.2 VWC estimation using DPRVI, RVI, and CCR by machine learning techniques	119
6.4.3 Assessment of Soil moisture by using SCA incorporated with estimated VWC and its comparison with SMAP L2 soil moisture	123

6.4.4 Variation of estimated VWC and assessed soil moisture for the whole time series of the study	126
6.5 CONCLUSION	127
CHAPTER – 7: OVERALL CONCLUSION AND FUTURE PLAN	129-131
7.1 OVERALL CONCLUSION	129
7.2 FUTURE PLAN	130
REFERENCES	133
LIST OF PUBLICATIONS	147

LIST OF FIGURES

Figure 1.1 Passive microwave remote sensing processes.
Figure 1.2 Active microwave remote sensing.
Figure 1.3 Soil Profile.
Figure 1.4 Accuracy of all proposed SMAP L2 soil moisture retrieval algorithms that were
estimated in 2015.
Figure 2.1 Hydra Probe soil sensor installed in the agricultural field of BHU36
Figure 2.2 The Hydra Go soil sensor
Figure 2.3 Overview of the field sampling plan. 38
Figure 2.4 Soil moisture values corresponding to different Grids
Figure 2.5 Whisker plot for the in-situ measurements of soil moisture
Figure 2.6 Range of VWC for five days of 2020.
Figure 2.7 Variation of soil moisture for five days of 2020
Figure 2.8 Location of the study area in India along with RGB image of Sentinel-1, and
Land cover map
Figure 2.9 Formulation of Tau-Omega model. 43
Figure 3.1 Flow chart of the methodology of soil moisture retrieval and downscaling58
Figure 3.2 Whisker plot for (a) SMAP Level – 2 soil moisture (36 km) (b) SMAP Level –
2 soil moisture (9 km) (c) Hydra probe soil moisture with dry and wet seasons of the year
201860
Figure 3.3 RMSE of the estimated soil moisture and ODSM at different roughness values
for (a) April, 2018 and (b) December, 201863
Figure 3.4 Taylor diagram at three resolutions for (a, b, c) April, 2018 and (d, e, f)
December, 2018

Figure 3.5 Comparison of estimated soil moisture (36 and 9 km) and ODSM with the in-
situ soil moisture for (a) Dry season (b) Wet season
Figure 3.6 Spatial distribution of (a) LST, (b) NDVI, and (c) estimated soil moisture on 18
April 2018 according to the field observations67
Figure 3.7 Scatter plot for the validation of soil moisture downscaling algorithm on the
spatial scale
Figure 4.1 Temporal variations of MODIS LST, NDVI and SMAP Brightness temperature.
72
Figure 4.2 Schematic diagram representing the improvement in SCA and the downscaling
of estSM through E_SCA and SMAP soil moisture74
Figure 4.3 Comparison of SMAP L2 and estimated soil moisture with the in-situ soil
moisture for eight grids
Figure 4.4 Spatial comparison of downscaled estSM (y-axis) using Dispatch, ATI, and
Triangle method with the in-situ soil moisture (x-axis) for the selected eight grids77
Figure 4.5 Spatial comparison of downscaled SMAP soil moisture (y-axis) using Dispatch,
ATI, and Triangle method with the in-situ soil moisture (x-axis) for the selected eight grids.
80
Figure 4.6 Spatial maps of (a) SMAP L2 soil moisture, (b) estSM and downscaled and
downscaled SMAP L2 soil moisture using (c) ATI (c) Dispatch and (d) Triangle method,
downscaled estSM using (d) ATI (g) Dispatch and (h) Triangle method83
Figure 4.7 Comparison between downscaled estSM using ATI and active-passive
microwave soil moisture product of SMAP85
Figure 5.1 Description of the ground sampling plan (a) The true colour image with the
location of sampling points (red dots), (b) MODIS land cover map of the selected region.
90

Figure 5.2 Correlation matrix plot for MODIS LST and NDVI with SMAP soil moisture.
94
Figure 5.3 Temporal variation of average MODIS LST and NDVI for the chosen study
area and time series95
Figure 5.4 Scatter plot between SMAP soil moisture and the in-situ soil moisture
observations
Figure 5.5 Temporal variation of average SMAP and ground truth soil moisture with
precipitation over selected study area from October 2017 to April 201897
Figure 5.6 The Taylor diagram presenting the comparison of different downscaling
algorithms
Figure 5.7 Scatter plots of downscaled soil moisture estimates based on different
downscaling methods at 1 km vs. in situ soil moisture measurements100
Figure 5.8 CPFs of downscaled SMAP soil moisture (with Triangle, Dispatch, T* and
VMSMI methods), and ground observations
Figure 5.9 Temporal variation of ground soil moisture and the downscaled soil moisture
using different algorithms
Figure 5.10 Spatial maps of 9 km SMAP soil moisture data (a), and 1 km downscaled soil
moisture data (b) – (e)
Figure 6.1 Flow chart for the estimation and validation procedure of VWC and soil
moisture in this study112
Figure 6.2 Structure of ANFIS model with single input and single output
Figure 6.3 Temporal behaviours of (a) different vegetation indices (DPRVI, RVI, CCR)
along with in-situ VWC and (b) SMAP derived data products along with the in-situ soil
moisture 120

Figure 6.4 Comparison of different combinations for VWC estimation by the Taylor
diagram. 122
Figure 6.5 Comparison between estimated and Ground truth VWC for different
combinations of vegetation indices and machine learning algorithm123
Figure 6.6 Spatial distribution of estimated VWC using different combinations of
vegetation indices and machine learning algorithms
Figure 6.7 Comparison of estimated soil moisture and SMAP L2 soil moisture with in-situ
soil moisture
Figure 6.8 Spatial distribution pattern of SMAP L2 soil moisture and estimated soil
moisture using different combinations of vegetation indices and machine learning
approaches
Figure 6.9 Spatial maps of (a) VWC estimated by DPRVI_SVR and (b) Soil moisture
estimated by DPRVI_SVR in SCA for the five dates of 2020

LIST OF TABLES

Table 1.1 Classification of microwave frequency bands
Table 1.2 A comprehensive list of all microwave operating satellites. 6
Table 2.1 Wavelength range for Band 1 to 7 of MODIS data product (MOD09GA)33
Table 2.2 Satellite data used in the study. 34
Table 2.3 Description of the eight in-situ grids. 38
Table 3.1 Performance statistics of the estimated soil moisture (at 36 km and 9 km), ODSM
(1 km) at different roughness and of SMAP L2 soil moisture for both the seasons62
Table 4.1 The statistical comparison between SMAP L2 and estimated soil moisture with
the ground truth soil moisture in terms of correlation coefficient (R), RMSE, bias, and
slope
Table 4.2 Performance analysis of different downscaling algorithms including Dispatch,
Triangle, and ATI when used with estSM, in terms of Correlation coefficient (R), RMSE,
bias, and slope. The Correlation between MODIS derived land surface parameters (LST
and N NDVI), and in-situ soil moisture is also presented in the second and third columns,
respectively
Table 4.3 Performance analysis of different downscaling algorithms including Dispatch,
Triangle, and ATI when used with SMAP soil moisture, in terms of Correlation coefficient
(R), RMSE, bias, and slope81
Table 4.4 The available dates of SMAPL2_SM_SP data product along with the ground
data sampling
Table 5.1 Results comparison summary for the 1 km downscaled soil moisture and SMAP
9 km soil moisture vs. in situ soil moisture
Table 6.1 Description of datasets used in the study. 110

Table 6.2 Statistical analysis of VWC retrieval using different vegetation indices	and
machine learning algorithm.	.121
Table 6.3 Statistical analysis of retrieved soil moisture and SMAP L2 soil moisture	with
in-situ soil moisture	126
