CONTENTS

Acknowledgements Contents List of figures List of tables List of acronyms Preface	X Xii XVi XXV XXVii XXViii
Chapter 1	
1. Introduction and literature review	1-26
1.1 Introduction	1
1.2 Literature review	7
1.2.1 Waveguide/Horn applicator design	8
1.2.2 Planar applicator design	14
1.3 Modelling and simulations	18
1.4 Motivation and objective of the thesis	19
1.5 Organization of the thesis	21
Chapter 2	
2. Water-loaded conventional metal diagonal horn terminated in	27-54
bio-medium/bio-media	
2.1 Introduction	27
2.2 Design and/or fabrication of water-loaded conventional metal diagonal horns (MDHs)	28
2.3 Water-loaded conventional MDH terminated in phantom muscle	31
2.3.1 Analysis of electric field and specific absorption rate (SAR) in phantom muscle in direct contact with water-loaded conventional MDH	32
2.3.2 Experimental technique for measuring electric field	36
components in phantom muscle in direct contact with a water-loaded conventional MDH designed at 2450 MHz	
2.3.3 Results and discussion	39
2.3.3.1 Applicators' characteristics	39
2.3.3.2 Simulated SAR distributions in phantom muscle medium	40
2.3.3.3 Theoretical SAR distributions in phantom muscle medium	40
2.3.3.4 Experimental SAR distribution in phantom muscle medium at 2450 MHz	40
2.3.3.5 Comparison of simulated, theoretical and/or experimental SAR distributions	41
2.4 Simulation study on water-loaded conventional MDH terminated in tri-layered bio-media without and with tumor	44
2.4.1 SAR distributions without and with tumor	45
2.4.2 Temperature distributions without and with tumor	48

Chapter 3	
3. Water-loaded improved metal diagonal horn terminated in bio-	55-84
medium/bio-media	
3.1 Introduction	55
3.2 Design and/or fabrication of water-loaded improved metal	56
diagonal horns (MDHs)	
3.3 Water-loaded improved MDH terminated in phantom muscle	58
3.3.1 Analysis of electric field and specific absorption rate (SAR) in phantom muscle in direct contact with water-loaded improved MDH	59
3.3.2 Results and discussion	63
3.3.2.1 Applicators' characteristics	63
3.3.2.2 Aperture electric field distributions and SAR distributions	64
in phantom muscle	
3.3.2.2.1 Simulated aperture electric field distribution	64
3.3.2.2.2 Theoretical aperture electric field distribution	65
3.3.2.2.3 Simulated SAR distributions in phantom muscle	68
medium	
3.3.2.2.4 Theoretical SAR distributions in phantom muscle medium	70
3.3.2.2.5 Experimental SAR distribution in phantom muscle medium at 2450 MHz	70
3.3.2.2.6 Comparison of simulated, theoretical and/or experimental SAR distributions	71
3.4 Simulation study on water-loaded improved MDH terminated in	73
tri-layered bio-media without and with tumor	
3.4.1 SAR distributions without and with tumor	74
3.4.2 Temperature distributions without and with tumor	76
3.5 Chapter summary	84
Chapter 4 4. Water leaded metal disloctric well diagonal horn terminated in	85-106
4. Water-loaded metal-dielectric wall diagonal-horn terminated in bio-medium/bio-media	05-100
4.1 Introduction	85
4.2 Design and/or fabrication of water-loaded metal-dielectric wall	85 85
diagonal horns (MDWDHs)	03
4.3 Water-loaded MDWDH terminated in phantom muscle	88
4.3.1 Results and discussion	88
4.3.1.1 Applicators' characteristics	88
4.3.1.2 Simulated electric field distributions	89
4.3.1.3 SAR distributions in phantom muscle medium	90
4.3.1.3.1 Simulated SAR distributions at 2450 and 915 MHz	90

4.3.1.3.2 Experimental SAR distribution at 2450 MHz	93
4.3.1.3.3 Comparison of simulated and/or experimental SAR	93
distributions	
4.4 Simulation study on water-loaded MDWDH terminated in tri-	95
layered bio-media without and with tumor	
4.4.1 SAR distributions without and with tumor	96
4.4.2 Temperature distributions without and with tumor	98
4.5 Chapter summary	106
Chapter 5	
5. Conformal microstrip slot antenna with an AMC reflector in	107-142
close proximity with bio-medium/bio-media	
5.1 Introduction	107
5.2 Antenna configuration	109
5.3 Iteration steps involved in the design of proposed antenna and	110
performance comparison with the conventional rectangular patch	
antenna	440
5.3.1 Reflection coefficient-frequency characteristics	110
5.3.2 SAR distributions	113
5.3.3 Electric field distributions	114
5.4 AMC configuration and its reflection phase profile	115 117
5.5 Antenna along with AMC in close proximity with phantom bio- medium	11/
5.5.1 Results and discussions	119
5.5.1.1 Reflection coefficient-frequency characteristics	119
5.5.1.2 Electric field distributions	120
5.5.1.3 SAR distributions	121
5.5.1.3.1 Simulated SAR distributions	121
5.5.1.3.2 Experimental SAR distributions	121
5.5.1.3.3 Comparison of simulated and experimental SAR	121
distributions	
5.5.1.4 Comparison of antenna-AMC/PEC reflector	123
5.5.1.5 Effects of bending	126
5.5.1.5.1 Effects of system curvature on E-field distribution	127
5.5.1.5.2 Effects of system's curvature on input reflection	127
coefficient	
5.5.1.5.3 Effect of system's radius of curvature on SAR	128
distribution in the homogeneous bio-medium (muscle)	
5.6 Simulation study of the performance of proposed applicator in	129
close proximity with tri-layered bio-model	
5.6.1 SAR distribution without and with tumor	130
5.6.2 Effects of system curvature on E-field distribution	133
5.6.3 Temperature distributions without and with tumor	134
5.7 Simulation study of the performance of proposed applicator in	136
close proximity with five-layered cylindrical bio-model	

5.7.1 E-field distributions	136
5.7.2 SAR distributions without and with tumor	137
5.7.3 Temperature distributions without and with tumor	140
5.8 Conclusion	142
Chapter 6	
6. Conclusions and Scope for Further Work	143-152
6.1 Conclusions	143
6.2 Limitations and scope for further work	151
Appendix-A	153-155
Appendix-B	156-159
Appendix-C	160-161
Appendix-D	162-164
References	165-175
List of publications	176-177