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A. Appendix A

A.1 Proof of the Lemma 1.4

Proof. As the part (ii) is clearly followed from part (i), we provide the proof only

for the part (i).

Let A = [a, ā] and B = [b, b̄].

Here we recall the representation (1.2) and

A	gH B =
[
min

{
a− b, a− b

}
,max

{
a− b, a− b

}]
.

Let A � B. Then, by Definition 1.4.2, we note that

A � B

=⇒ a+ t(ā− a) = a(t) ≤ b(t) = b+ t(b̄− b) for all t ∈ [0, 1]

=⇒ a(0) ≤ b(0) and ā(1) ≤ b̄(1)

=⇒ a ≤ b and ā ≤ b̄

=⇒ a− b ≤ 0 and ā− b̄ ≤ 0

=⇒ A	gH B � 0.

Conversely, let A	gH B � 0. Then, a− b ≤ 0 and ā− b̄ ≤ 0, i.e., a ≤ b and ā ≤ b̄.

Depending on b < ā or ā ≤ b, we break the analysis into two cases.

• Case 1. Let b < ā.

Then, a ≤ b < ā ≤ b̄. We prove that a(t) ≤ b(t) for all t ∈ [0, 1].

On contrary, let there exists t0 ∈ [0, 1], such that a(t0) > b(t0).

199
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Since a ≤ b and ā ≤ b̄, therefore t0 6= 0 and t0 6= 1. Thus, 1
t0
> 1.

Note that from a(t0) = a+ t0(ā− a), we have

ā = 1
t0
a(t0)−

(
1
t0
− 1
)
a.

Similarly

b̄ = 1
t0
b(t0)−

(
1
t0
− 1
)
b.

As a(t0) > b(t0), 1
t0
> 1 and a ≤ b, we see that

ā = 1
t0
a(t0)−

(
1
t0
− 1
)
a > 1

t0
b(t0)−

(
1
t0
− 1
)
b = b̄.

This is contradictory to ā ≤ b̄. Hence, for any t ∈ [0, 1], a(t) ≤ b(t). Thus, A � B.

• Case 2. Let ā ≤ b.

Since a(t) and b(t) are increasing functions, for any t ∈ [0, 1] we have

a(t) ≤ a(1) = ā ≤ b = b(0) ≤ b(t).

Hence, A � B and the proof is complete.

A.2 Proof of the Lemma 1.5

Proof. Let A = [a, a], B = [b, b], C = [c, c] and D = [d, d].

(i) Suppose the inequality B ⊀ A	gH (A	gH B) is not true. Then,

B ≺ A	gH (A	gH B). (A.1)

Now, we have the following two cases.
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• Case 1. If a− b ≤ a− b, then A	gH B = [a− b, a− b] and

A	gH (A	gH B) = [b, b] = B,

which is contradictory to (A.1).

• Case 2. If a − b < a − b, then A 	gH B = [a − b, a − b] and we have the

following two possibilities:

If A	gH (A	gH B) = [a− (a− b), a− (a− b)], by (A.1), we have

b ≤ a− (a− b) =⇒ a− b ≤ a− b,

which contradicts to a− b < a− b.

If A	gH (A	gH B) = [a− (a− b), a− (a− b)], by (A.1), we get

b ≤ a− (a− b) =⇒ a ≤ a =⇒ a = a,

and we have A	gH (A	gH B) = B, which contradicts (A.1).

Hence, from Case 1 and Case 2, we obtain B ⊀ A	gH (A	gH B).

(ii) Since

0 ≺ A =⇒ 0 ≤ a and 0 < a,

for any C ∈ I(R), we have

−c ≤ −c ≤ a− c and − c < a− c.
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Therefore, we obtain

[−c,−c] ≺ [min {a− c, a− c} ,max {a− c, a− c}]

=⇒ (−1)�C ≺ A	gH C.

Hence, for any B ∈ I(R), we have

B ⊀ A	gH C =⇒ B ⊀ (−1)�C.

(iii) We have the following four possible cases.

• Case 1. Let a− c ≥ a− c and c− b ≥ c− b. Then, a− b ≥ a− b and

(A	gH C)⊕ (C	gH B) = [a− c, a− c]⊕ [c− b, c− b]

=⇒ (A	gH C)⊕ (C	gH B) = [a− b, a− b] = A	gH B.

• Case 2. Let a− c ≤ a− c and c− b ≤ c− b. Therefore, a− b ≤ a− b and

(A	gH C)⊕ (C	gH B) = [a− c, a− c]⊕ [c− b, c− b]

=⇒ (A	gH C)⊕ (C	gH B) = [a− b, a− b] = A	gH B.

• Case 3. Let a− c < a− c and c− b > c− b. Therefore,

(A	gH C)⊕ (C	gH B) = [a− c, a− c]⊕ [c− b, c− b]

=⇒ (A	gH C)⊕ (C	gH B) = [a− c+ c− b, a− c+ c− b].

If possible, let

(A	gH C)⊕ (C	gH B) ≺ A	gH B. (A.2)
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If a− b ≥ a− b, then from (A.2) we get

[a− c+ c− b, a− c+ c− b] ≺ [a− b, a− b]

=⇒ a− c+ c− b ≤ a− b

=⇒ a− c ≤ a− c, which is an impossibility.

Further, if a− b ≤ a− b, then from (A.2), we have

[a− c+ c− b, a− c+ c− b] ≺ [a− b, a− b]

=⇒ a− c+ c− b ≤ a− b

=⇒ c− b ≤ c− b, which is an impossibility.

Thus, (A.2) is not true.

• Case 4. Let a− c > a− c and c− b < c− b. Proceeding as in Case 3 of (iii)

we can prove that (A.2) is not true. Hence,

(A	gH C)⊕ (C	gH B) ⊀ A	gH B.

(iv) If A ⊀ 0, then a ≥ 0. Since A � B, b ≥ 0. Thus, B ⊀ 0.

(v) According to the dominance of intervals, we have

A	gH B ⊀ 0

=⇒ max{a− b, a− b} ≥ 0

=⇒ a− b ≥ 0 or, a− b ≥ 0. (A.3)

Since C � B,

c ≤ b and c ≤ b =⇒ b− c ≥ 0 and b− c ≥ 0. (A.4)
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From (A.3) and (A.4), we have

either a− c ≥ 0 or a− c ≥ 0.

Therefore,

A	gH C ⊀ 0.

(vi) Since C � B, we have

c ≤ b and c ≤ b

=⇒ a− c ≥ a− b and a− c ≥ a− b

=⇒ [min{a− c, a− c},max{a− c, a− c}]

� [min{a− b, a− b},max{a− b, a− b}]

=⇒ A	gH B � A	gH C.

A.3 Proof of the Lemma 1.6

Proof. Let A = [a, a], B = [b, b], C = [c, c] and D = [d, d].

(i) If possible, let the inequality (i) be not true. Therefore, there exists a pair of

intervals A and B for which

‖A‖I(R) − ‖B‖I(R) > ‖A	gH B‖I(R).
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Then,

‖A‖I(R) > ‖A	gH B‖I(R) + ‖B‖I(R) ≥ ‖(A	gH B)⊕B‖I(R)

i.e., ‖A‖I(R) > ‖(A	gH B)⊕B‖I(R). (A.5)

According to the definition of gH-difference, we have

either A	gH B = [a− b, a− b] (A.6)

or A	gH B = [a− b, a− b]. (A.7)

If (A.6) is true, then

(A	gH B)⊕B = [a− b+ b, a− b+ b] = [a, a] = A

i.e., ‖A‖I(R) = ‖(A	gH B)⊕B‖I(R),

which contradicts (A.5).

If (A.7) is true, then

(A	gH B)⊕B = [a− b+ b, a− b+ b]. (A.8)

We now consider the following two cases.

• Case 1. Let ‖A‖I(R) = |a|.

Since a ≤ a and |a| ≥ |a|, a must be nonpositive, i.e., a ≤ 0.
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In view of the relations (A.5) and (A.8), we have

| a |> max{| a− b+ b |, | a− b+ b |}

i.e., | a |> | a− b+ b |. (A.9)

By (A.7), we have a− b ≤ a− b, or, a− b+ b ≤ a ≤ 0.

Therefore,

| a |≤| a− b+ b |,

which contradicts the relation (A.9).

• Case 2. Let ‖A‖I(R) = |a|.

Then, a ≥ 0 and from (A.5) and (A.8) we obtain

| a |> max{| a− b+ b |, | a− b+ b |}.

Thus,

| a |>| a− b+ b | . (A.10)

According to (A.7) we have a − b ≤ a − b, which implies 0 ≤ a ≤

a− b+ b.

Therefore,

| a |≤| a− b+ b |,

which contradicts the relation (A.10).

Hence, (i) must be true for all A, B ∈ I(R).
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(ii) If possible, let the inequality (ii) be not true. Therefore, there exist three

intervals A,B and C = [c, c] such that

‖A	gH B‖I(R) > ‖(A	gH C)⊕ (C	gH B)‖I(R). (A.11)

According to the definition of gH-difference of two intervals,

either A	gH B = [a− b, a− b] or A	gH B = [a− b, a− b]. (A.12)

Similarly,

either A	gH C = [a− c, a− c] or A	gH C = [a− c, a− c]

and

C	gH B = [c− b, c− b] or C	gH B = [c− b, c− b].

Then, one of the following holds true:

(a) (A	gH C)⊕ (C	gH B) = [a− b, a− b]

(b) (A	gH C)⊕ (C	gH B) = [a− c+ c− b, a− c+ c− b]

(c) (A	gH C)⊕ (C	gH B) = [a− c+ c− b, a− c+ c− b]

(d) (A	gH C)⊕ (C	gH B) = [a− b, a− b].

• Case 1. Let A 	gH B = [a − b, a − b] and ‖A	gH B‖I(R) = |a− b|. Then,

a− b ≤ 0.

(a) If (A	gH C)⊕ (C	gH B) = [a− b, a− b], then

‖(A	gH C)⊕ (C	gH B)‖I(R) = |a− b| = ‖A	gH B‖I(R),

which is a contradiction to the inequality (A.11).
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(b) Let (A 	gH C) ⊕ (C 	gH B) = [a − c + c − b, a − c + c − b]

which has came from the fact that A	gH C = [a− c, a− c] and

C	gH B = [c− b, c− b]. Thus,

a− c ≤ a− c and c− b ≤ c− b. (A.13)

From the inequality (A.11), we obtain

|a− b| > |a− c+ c− b| and |a− b| > |a− c+ c− b|. (A.14)

Since a− b ≤ 0, irrespective of (a− c+ c− b) is nonnegative or

nonpositive, we get from the first inequality of (A.14) that

a− b = −|a− b| < −|a− c+ c− b| ≤ a− c+ c− b.

Hence, c− b < c− b, which is a contradiction to the inequality

(A.13).

(c) If (A	gHC)⊕(C	gHB) = [a−c+c−b, a−c+c−b], then pro-

ceeding similar to the Case 1(b), we arrive at the contradicting

inequality a− c < a− c.

(d) If (A	gH C)⊕ (C	gH B) = [a− b, a− b], then

‖(A	gH C)⊕ (C	gH B)‖I(R) = |a− b| = ‖A	gH B‖I(R),

which is a contradiction to the inequality (A.11).

• Case 2. Let A 	gH B = [a − b, a − b] and ‖A	gH B‖I(R) = |a− b|. Then,

a− b ≥ 0.



Proof of the Lemma 1.6 209

(a) If (A	gH C)⊕ (C	gH B) = [a− b, a− b], then

‖(A	gH C)⊕ (C	gH B)‖I(R) = |a− b| = ‖A	gH B‖I(R),

which is a contradiction to the inequality (A.11).

(b) If (A	gHC)⊕(C	gHB) = [a−c+c−b, a−c+c−b], then pro-

ceeding similar to the Case 1(b), we arrive at the contradicting

inequality c− b > c− b.

(c) If (A 	gH C) ⊕ (C 	gH B) = [a − c + c − b, a − c + c − b],

then then proceeding similar to the Case 1(b), we arrive at the

contradicting inequality a− c > a− c.

(d) If (A	gH C)⊕ (C	gH B) = [a− b, a− b], the

‖(A	gH C)⊕ (C	gH B)‖I(R) = |a− b| = ‖A	gH B‖I(R),

which is a contradiction to the inequality (A.11).

• Case 3. Let A	gH B = [a− b, a− b] and ‖A	gH B‖I(R) = |a− b|.

All the four subcases for this case are similar to the Case 2.

• Case 4. Let A	gH B = [a− b, a− b] and ‖A	gH B‖I(R) = |a− b|.

All the four subcases for this case are similar to the Case 1.

We notice that in all the possible subcases of the above four possible cases we

arrive at a contradiction to the inequality (A.11). Therefore, for all A,B,C ∈

I(R),

‖A	gH B‖I(R) ≤ ‖(A	gH C)⊕ (C	gH B)‖I(R).

(iii) As ‖B	gH A‖I(R) = max{|b− a|, |b− a|}, we break the proof in two cases.
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• Case 1. If (L =) ‖B	gH A‖I(R) = |b− a|, then

|b− a| ≥ |b− a| =⇒ |b− a| ≥ b− a =⇒ b ≤ a+ L. (A.15)

Since b− a ≤ |b− a|, then

b ≤ a+ L. (A.16)

From (A.15) and (A.16), we have

B � A⊕ [L,L].

• Case 2. If (L =) ‖B	gH A‖I(R) = |b− a|, then

|b− a| ≤ |b− a| =⇒ b− a ≤ |b− a| =⇒ b ≤ a+ L. (A.17)

Since b− a ≤ |b− a|,

b ≤ a+ L. (A.18)

From (A.17) and (A.18), we obtain

B � A⊕ [L,L], where L = ‖B	gH A‖I(R).

(iv) If possible, let there exist A, B, C and D in I(R) such that

‖(A	gH B)	gH (C	gH D)‖I(R) > ‖A	gH C‖I(R) ⊕ ‖B	gH D‖I(R). (A.19)
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According to the definition of gH-difference of two intervals,

either A	gH B = [a− b, a− b] or A	gH B = [a− b, a− b], (A.20)

either C	gH D = [c− d, c− d] or C	gH D = [c− d, c− d],

either A	gH C = [a− c, a− c] or A	gH B = [a− c, a− c], (A.21)

and

either B	gH D = [b− d, b− d] or B	gH D = [b− d, b− d].

Then, one of the following holds true:

(a) (A	gH B)	gH (C	gH D) = [a− b− c+ d, a− b− c+ d]

(b) (A	gH B)	gH (C	gH D) = [a− b− c+ d, a− b− c+ d]

(c) (A	gH B)	gH (C	gH D) = [a− b− c+ d, a− b− c+ d]

(d) (A	gH B)	gH (C	gH D) = [a− b− c+ d, a− b− c+ d]

• Case 1. Let (A	gH B)	gH (C	gH D) = [a− b− c+ d, a− b− c+ d].

(a) If ‖(A	gH B)	gH (C	gH D)‖I(R) = |a− b− c+ d|, then from

equation (A.19), we have

|a− b− c+ d| > |a− c|+ |b− d| > |a− b− c+ d|,

which is impossible.

(b) If ‖(A	gH B)	gH (C	gH D)‖I(R) = |a− b− c+ d|, then from

equation (A.19), we have

|a− b− c+ d| > |a− c|+ |b− d| > |a− b− c+ d|,
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which is again impossible.

• Case 2. Let (A	gH B)	gH (C	gH D) = [a− b− c+ d, a− b− c+ d].

For this case, two subcases are similar to the Case 1 will lead to

impossibilities.

• Case 3. Let (A	gH B)	gH (C	gH D) = [a− b− c+d, a− b− c+d]. Then,

a− b ≤ a− b and c+ d ≤ c+ d. (A.22)

(a) If ‖(A	gH B)	gH (C	gH D)‖I(R) = |a− b− c + d|, then a−

b− c+ d ≥ 0. From equation (A.19), we have

|a− b− c+ d| > |a− c|+ |b− d| =⇒ c+ d > c+ d,

which is contradictory to (A.22).

(b) If ‖(A	gH B)	gH (C	gH D)‖I(R) = |a− b− c + d|, then a−

b− c+ d < 0. From equation (A.19), we have

−(a−b−c+d) = |a−b−c+d| > |a−c|+|b−d| =⇒ c+d > c+d,

which is again contradictory to (A.22).

• Case 4. Let (A	gH B)	gH (C	gH D) = [a− b− c+ d, a− b− c+ d].

All the two subcases for this case are similar to Case 3.

Hence, (A.19) is wrong, and thus the result follows.
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A.4 Proof of the Lemma 1.7

Proof. Let C = [c, c].

(i) If C � 0, then

c ≥ 0 and c ≥ 0

=⇒ |x|c+ |y|c ≥ |x+ y|c and |x|c+ |y|c ≥ |x+ y|c

=⇒ |x+ y| �C � |x| �C⊕ |y| �C.

(ii) If C � 0, then

c ≤ 0 and c ≤ 0

=⇒ |x|c+ |y|c ≤ |x+ y|c and |x|c+ |y|c ≤ |x+ y|c

=⇒ |x+ y| �C � |x| �C⊕ |y| �C.

(iii) If C ⊀ 0, then

c ≥ 0 =⇒ |x|c+ |y|c ≥ |x+ y|c =⇒ |x+ y| �C � |x| �C⊕ |y| �C.
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A.5 Proof of the Lemma 1.10

Proof. (i) If

F(x) ⊀ 0 for all x ∈ S, (A.23)

then due to linearity of F, we have

F(x) = (−1)� F(−x) � 0 for all x ∈ S (A.24)

since F(−x) ⊀ 0 by (A.23). From (A.23) and (A.24), it is clear that 0 and

F(x) are not comparable.

(ii) If F(x) � 0 for all x ∈ S, then due to linearity of F, we have F(x) = (−1) �

F(−x) � 0 for all x ∈ S.

Hence, F(x) = 0.



B. Appendix B

B.1 Proof of the Lemma 2.7

Proof. First we show that

F(λ(x1, x2)) = λ� F(x1, x2) for all λ ∈ R.

• Case 1. Let λ < 0. For this case, there are following four subcases.

(a) If x1 < 0 and x2 < 0, then λx1 > 0 and λx2 > 0. Therefore,

F(λ(x1, x2)) = (λx1)� [a, a]⊕ (λx2)� [b, b]

= [λx1a+ λx2b, λx1a+ λx2b]

= λ� ([x1a+ x2b, x1a+ x2b])

= λ� ([x1a, x1a]⊕ [x2b, x2b])

= λ� (x1 � [a, a]⊕ x2 � [b, b])

= λ� F(x1, x2).

(b) If x1 < 0 and x2 ≥ 0, then λx1 > 0 and λx2 ≤ 0. Thus,

F(λ(x1, x2)) = (λx1)� [a, a]⊕ (λx2)� [b, b]

= [λx1a+ λx2b, λx1a+ λx2b]

= λ� ([x1a+ x2b, x1a+ x2b])

= λ� ([x1a, x1a]⊕ [x2b, x2b])

= λ� (x1 � [a, a]⊕ x2 � [b, b])

215
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= λ� F(x1, x2).

(c) If x1 ≥ 0 and x2 < 0, then λx1 ≤ 0 and λx2 > 0. Therefore,

F(λ(x1, x2)) = (λx1)� [a, a]⊕ (λx2)� [b, b]

= [λx1a+ λx2b, λx1a+ λx2b]

= λ� ([x1a+ x2b, x1a+ x2b])

= λ� ([x1a, x1a]⊕ [x2b, x2b])

= λ� (x1 � [a, a]⊕ x2 � [b, b])

= λ� F(x1, x2).

(d) If x1 ≥ 0 and x2 ≥ 0, then λx1 ≤ 0 and λx2 ≤ 0. So,

F(λ(x1, x2)) = (λx1)� [a, a]⊕ (λx2)� [b, b]

= [λx1a+ λx2b, λx1a+ λx2b]

= λ� ([x1a+ x2b, x1a+ x2b])

= λ� ([x1a, x1a]⊕ [x2b, x2b])

= λ� (x1 � [a, a]⊕ x2 � [b, b])

= λ� F(x1, x2).

From all the subcases of Case 1, we have

F(λ(x1, x2)) = λ� F(x1, x2) for every λ < 0. (B.1)

• Case 2. Let λ ≥ 0.
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(a) If x1 ≥ 0 and x2 ≥ 0, then λx1 ≥ 0 and λx2 ≥ 0. Therefore,

F(λ(x1, x2)) = (λx1)� [a, a]⊕ (λx2)� [b, b]

= [λx1a+ λx2b, λx1a+ λx2b]

= λ� ([x1a+ x2b, x1a+ x2b])

= λ� (x1 � [a, a]⊕ x2 � [b, b])

= λ� F(x1, x2).

(b) If x1 ≥ 0 and x2 < 0, then λx1 ≥ 0 and λx2 ≤ 0. Hence,

F(λ(x1, x2)) = (λx1)� [a, a]⊕ (λx2)� [b, b]

= [λx1a+ λx2b, λx1a+ λx2b]

= λ� ([x1a+ x2b, x1a+ x2b])

= λ� (x1 � [a, a]⊕ x2 � [b, b])

= λ� F(x1, x2).

(c) If x1 < 0 and x2 ≥ 0, then λx1 ≤ 0 and λx2 ≥ 0. Thus,

F(λ(x1, x2)) = (λx1)� [a, a]⊕ (λx2)� [b, b]

= [λx1a+ λx2b, λx1a+ λx2b]

= λ� ([x1a+ x2b, x1a+ x2b])

= λ� (x1 � [a, a]⊕ x2 � [b, b])

= λ� F(x1, x2).
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(d) If x1 < 0 and x2 < 0, then λx1 ≤ 0 and λx2 ≤ 0. Therefore,

F(λ(x1, x2)) = (λx1)� [a, a]⊕ (λx2)� [b, b]

= [λx1a+ λx2b, λx1a+ λx2b]

= λ� ([x1a+ x2b, x1a+ x2b])

= λ� (x1 � [a, a]⊕ x2 � [b, b])

= λ� F(x1, x2).

Hence, from all the subcases of Case 2, we have

F(λ(x1, x2)) = λ� F(x1, x2) for every λ ≥ 0. (B.2)

Next, we show that

1. when x1 and x2 have the same sign, and y1 and y2 have the same sign,

F((x1, y1) + (x2, y2)) = F(x1, y1)⊕ F(x2, y2),

2. when x1 and x2 have different signs, and y1 and y2 have the same sign,

F((x1, y1) + (x2, y2)) and F(x1, y1)⊕ F(x2, y2) are not comparable,

3. when x1 and x2 have the same sign, and y1 and y2 have different signs,

F((x1, y1) + (x2, y2)) and F(x1, y1)⊕ F(x2, y2) are not comparable, and
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4. when x1 and x2 have different signs, and y1 and y2 have different signs, then

F((x1, y1) + (x2, y2)) and F(x1, y1)⊕ F(x2, y2) are not comparable.

• Case 1. Let x1 and x2 have the same sign, and y1 and y2 have the same sign. A

straightforward calculation proves that

F((x1, y1)+(x2, y2)) = (x1+x2)�[a, a]⊕(y1+y2)�[b, b] = F(x1, y1)⊕F(x2, y2).

• Case 2. Suppose that x1 and x2 have different signs, and y1 and y2 have the same

sign. Since y1 and y2 have the same sign, evidently,

(y1 + y2)� [b, b] = y1 � [b, b]⊕ y2 � [b, b].

Thus, to prove that

F((x1, y1) + (x2, y2)) and F(x1, y1)⊕ F(x2, y2) are not comparable

it is sufficient to prove that when x1 and x2 have different signs,

(x1 + x2)� [a, a] and x1 � [a, a]⊕ x2[a, a] are not comparable.

(a) For x1 > 0 and x2 < 0 with x1 + x2 < 0, we have

(x1 + x2)� [a, a] = [(x1 + x2)a, (x1 + x2)a]

and

x1 � [a, a]⊕ x2[a, a] = [x1a, x1a]⊕ [x2a, x2a]



Proof of the Lemma 2.7 220

= [x1a+ x2a, x1a+ x2a].

If possible let (x1+x2)�[a, a] and x1�[a, a]⊕x2[a, a] be comparable.

Then,

either (x1 + x2)a > x1a+ x2a and (x1 + x2)a > x1a+ x2a,

(B.3)

or (x1 + x2)a < x1a+ x2a and (x1 + x2)a < x1a+ x2a. (B.4)

If (x1 + x2)a > x1a+ x2a, then

x1a+ x2a > x1a+ x2a

or, x1a > x1a

or, x1a+ x2a > x1a+ x2a

or, x1a+ x2a > (x1 + x2)a,

which is a contradiction to the second inequality of (B.3).

If (x1 + x2)a < x1a+ x2a, then

x1a < x1a

or, x1a+ x2a < x1a+ x2a

or, x1a+ x2a < (x1 + x2)a,

which is a contradiction to the second inequality of (B.4).

Hence, none of (B.3) and (B.4) is true.

Thus, (x1 + x2)� [a, a] and x1� [a, a]⊕ x2[a, a] are not comparable.
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(b) For x2 > 0 and x1 < 0 with x1 + x2 < 0, the proof is similar to the

Case 2a.

(c) For x1 < 0 and x2 > 0 with x1 + x2 > 0, we have

(x1 + x2)� [a, a] = [(x1 + x2)a, (x1 + x2)a]

and

x1 � [a, a]⊕ x2 � [a, a] = [x1a, x1a]⊕ [x2a+ x2a]

= [x1a+ x2a, x1a+ x2a].

If possible let (x1+x2)�[a, a] and x1�[a, a]⊕x2[a, a] be comparable.

Then,

either (x1 + x2)a > x1a+ x2a and (x1 + x2)a > x1a+ x2a, ,

(B.5)

or (x1 + x2)a < x1a+ x2a and (x1 + x2)a < x1a+ x2a (B.6)

If (x1 + x2)a > x1a+ x2a, then

x1a > x1a

or, x1a+ x2a > x1a+ x2a

or, x1a+ x2a > (x1 + x2)a,
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which is a contradiction to the second inequality of (B.5).

If (x1 + x2)a < x1a+ x2a, then

x1a < x1a

or, x1a+ x2a < x1a+ x2a

or, x1a+ x2a < (x1 + x2)a,

which is a contradiction to the second inequality of (B.6).

(d) For x2 < 0 and x1 > 0 with x1 + x2 > 0, the proof is similar to the

Case 2c.

• Case 3. Suppose that x1 and x2 have the same sign and y1 and y2 have different

signs. By interchanging the role of x1 and x2 with y1 and y2, we note

that this case is identical to the Case 2. Hence,

F((x1, y1) + (x2, y2)) and F(x1, y1)⊕ F(x2, y2) are not comparable

• Case 4. Suppose that x1 and x2 have different signs, and y1 and y2 have different

signs. For this case, only in the following two subcases, we prove that

F((x1, y1) + (x2, y2)) and F(x1, y1) ⊕ F(x2, y2) are not comparable. The

same conclusion can be proved analogously for all other possible subcases.

(a) Let x1 > 0 and x2 < 0 with x1 +x2 > 0, and y1 < 0 and y2 > 0 with

y1 + y2 < 0. Then, we have

(x1 + x2)� [a, a]⊕ (y1 + y2)� [b, b]

= [(x1 + x2)a+ (y1 + y2)b, (x1 + x2)a+ (y1 + y2)b]
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and

x1 � [a, a]⊕ y1 � [b, b]⊕ x2 � [a, a]⊕ y2 � [b, b]

= [x1a+ y1b+ x2a+ y2b, x1a+ y1b+ x2a+ y2b].

If possible let (x1 + x2)� [a, a]⊕ (y1 + y2)� [b, b] and x1 � [a, a]⊕

y1 � [b, b]⊕ x2 � [a, a]⊕ y2 � [b, b] be comparable. Then,

either


(x1 + x2)a+ (y1 + y2)b < x1a+ y1b+ x2a+ y2b

and (x1 + x2)a+ (y1 + y2)b < x1a+ y1b+ x2a+ y2b


(B.7)

or


(x1 + x2)a+ (y1 + y2)b > x1a+ y1b+ x2a+ y2b

and (x1 + x2)a+ (y1 + y2)b > x1a+ y1b+ x2a+ y2b.


(B.8)

If the first inequality of (B.7) holds, i.e., (x1 + x2)a + (y1 + y2)b <

x1a+ y1b+ x2a+ y2b, then

x2a+ y2b < y2b+ x2a

or, x1a+ x2a+ y1b+ y2b < (x1 + x2)a+ (y1 + y2)b,

which is a contradiction to the second inequality of (B.7).

If the second inequality of (B.8) holds, i.e., (x1 +x2)a+ (y1 + y2)b >

x1a+ y1b+ x2a+ y2b, then

x2a+ y2b > x2a+ y2b

or, x1a+ y1b+ x2a+ y2b > (x1 + x2)a+ (y1 + y2)b,
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which is a contradiction to the first inequality of (B.8).

Thus, neither (B.7) nor (B.8) is true, and hence (x1 + x2)� [a, a]⊕

(y1 + y2)� [b, b] and x1 � [a, a]⊕ y1 � [b, b]⊕ x2 � [a, a]⊕ y2 � [b, b]

are not comparable.

(b) Let x1 > 0 and x2 < 0 with x1 +x2 < 0, and y1 < 0 and y2 > 0 with

y1 + y2 < 0. Then, we have

(x1 + x2)� [a, a]⊕ (y1 + y2)� [b, b]

= [(x1 + x2)a+ (y1 + y2)b, (x1 + x2)a+ (y1 + y2)b]

and

x1 � [a, a]⊕ y1 � [b, b]⊕ x2 � [a, a]⊕ y2 � [b, b]

= [x1a+ y1b+ x2a+ y2b, x1a+ y1b+ x2a+ y2b].

If possible let (x1 + x2)� [a, a]⊕ (y1 + y2)� [b, b] and x1 � [a, a]⊕

y1 � [b, b]⊕ x2 � [a, a]⊕ y2 � [b, b] be comparable. Then,

either


(x1 + x2)a+ (y1 + y2)b < x1a+ y1b+ x2a+ y2b

and (x1 + x2)a+ (y1 + y2)b < x1a+ y1b+ x2a+ y2b


(B.9)

or


(x1 + x2)a+ (y1 + y2)b > x1a+ y1b+ x2a+ y2b

and (x1 + x2)a+ (y1 + y2)b > x1a+ y1b+ x2a+ y2b.


(B.10)
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If the first inequality of (B.9) holds, i.e., (x1 + x2)a + (y1 + y2)b <

x1a+ y1b+ x2a+ y2b, then

x1a+ y2b < x1a+ y2b

or, x1a+ y1b+ x2a+ y2b < (x1 + x2)a+ (y1 + y2)b,

which is a contradiction to the second inequality of (B.9).

If the second inequality of (B.10) holds,i.e., (x1 +x2)a+(y1 +y2)b >

x1a+ y1b+ x2a+ y2b, then

x1a+ y2b > x1a+ y2b

or, x1a+ y1b+ x2a+ y2b > (x1 + x2)a+ (y1 + y2)b,

which is a contradiction to the first inequality of (B.10).

Thus, neither (B.9) nor (B.10) is true, and hence (x1 +x2)� [a, a]⊕

(y1 + y2)� [b, b] and x1 � [a, a]⊕ y1 � [b, b]⊕ x2 � [a, a]⊕ y2 � [b, b]

are not comparable.

From (B.1), (B.2) and four cases after (B.2), we see that F is a linear IVF.





C. Appendix C

C.1 Proof of the Lemma 3.1

Proof. (i) Since

lim sup
x→x̄

(
f(x) + g(x)

)
≤ lim sup

x→x̄
f(x) + lim sup

x→x̄
g(x) and

lim sup
x→x̄

(
f(x) + g(x)

)
≤ lim sup

x→x̄
f(x) + lim sup

x→x̄
g(x),

then

[
lim sup
x→x̄

(f(x) + g(x)), lim sup
x→x̄

(
f(x) + g(x)

)]
�

[
lim sup
x→x̄

f(x), lim sup
x→x̄

f(x)

]
⊕
[
lim sup
x→x̄

g(x), lim sup
x→x̄

g(x)

]
,

which implies lim sup
x→x̄

(F(x)⊕G(x)) � lim sup
x→x̄

F(x)⊕ lim sup
x→x̄

G(x).

(ii) Since f and f are real-valued functions, for any λ ≥ 0, we have

lim sup
x→x̄

(
λf(x)

)
= λ lim sup

x→x̄
f(x) and lim sup

x→x̄

(
λf(x)

)
= λ lim sup

x→x̄
f(x). (C.1)

Hence, for any λ ≥ 0,

lim sup
x→x̄

(λ� F(x)) =

[
lim sup
x→x̄

(
λf(x)

)
, lim sup

x→x̄

(
λf(x)

)]
= λ� lim sup

x→x̄
F(x) by (C.1).
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(iii) Let f be a real-valued function. Then,

∣∣∣∣lim sup
x→x̄

f(x)

∣∣∣∣ ≤ lim sup
x→x̄

|f(x)|. By the

definition of norm on I(R),

∥∥∥∥lim sup
x→x̄

F(x)

∥∥∥∥
I(R)

= max

{∣∣∣∣lim sup
x→x̄

f(x)

∣∣∣∣ , ∣∣∣∣lim sup
x→x̄

f(x)

∣∣∣∣}
≤ lim sup

x→x̄
‖F(x)‖I(R).

C.2 Proof of the Lemma 3.2

Proof. Since f and f are upper Clarke differentiable at x̄. Therefore, both of the

following limits

lim sup
x→x̄
λ→0+

1

λ
l1(λ) and lim sup

x→x̄
λ→0+

1

λ
l2(λ)

exist, where l1(λ) = f(x+ λh)− f(x) and l2(λ) = f(x+ λh)− f(x). Thus,

lim sup
x→x̄
λ→0+

1

λ
(l1(λ) + l2(λ)) and lim sup

x→x̄
λ→0+

1

λ
|l1(λ)− l2(λ)| exist

=⇒ lim sup
x→x̄
λ→0+

1

2λ

(
l1(λ) + l2(λ)− |l1(λ)− l2(λ)|

)
and

lim sup
x→x̄
λ→0+

1

2λ

(
l1(λ) + l2(λ) + |l1(λ)− l2(λ)|

)
exist

=⇒ lim sup
x→x̄
λ→0+

1

λ
(min {l1(λ), l2(λ)}) and lim sup

x→x̄
λ→0+

1

λ
(max {l1(λ), l2(λ)}) exist

=⇒ lim sup
x→x̄
λ→0+

1

λ
�
[

min {l1(λ), l2(λ)} ,max {l1(λ), l2(λ)}
]

exists

=⇒ lim sup
x→x̄
λ→0+

1

λ
� (F(x+ λh)	gH F(x)) exists.

Hence, F is upper gH-Clarke differentiable IVF at x̄ ∈ S.
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C.3 Proof of the Lemma 3.3

Proof. (i) Let F be gH-continuous at x̄ ∈ S. Thus, for any d ∈ Rn such that

x̄+ d ∈ S,

lim
‖d‖→0

(F(x̄+ d)	gH F(x̄)) = 0,

which implies

lim
‖d‖→0

(f(x̄+ d)− f(x̄))→ 0 and lim
‖d‖→0

(f(x̄+ d)− f(x̄))→ 0,

i.e., f and f are continuous at x̄ ∈ S.

Conversely, let the functions f and f be continuous at x̄ ∈ S. If possible, let

F be not gH-continuous at x̄. Then, as ‖d‖ → 0, (F(x̄ + d) 	gH F(x̄)) 6→ 0.

Therefore, as ‖d‖ → 0 at least one of the functions (f(x̄ + d) − f(x̄)) and

(f(x̄ + d) − f(x̄)) does not tend to 0. So it is clear that at least one of the

functions f and f is not continuous at x̄. This contradicts the assumption that

the functions f and f both are continuous at x̄. Hence, F is gH-continuous at x̄.

(ii) Let F be gH-Lipschitz continuous on S. Thus, there exists K > 0 such that

for any x, y ∈ X we have

‖F(x)	gH F(y)‖I(R) ≤ K‖x− y‖

=⇒
∣∣f(x)− f(y)

∣∣ ≤ K‖x− y‖ and
∣∣f(x)− f(y)

∣∣ ≤ K‖x− y‖.

Hence, f and f are Lipschitz continuous on S.

Conversely, let the functions f and f be Lipschitz continuous on S. Thus,
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there exist K1, K2 > 0 such that for all x, y ∈ S,

∣∣f(x)− f(y)
∣∣ ≤ K1‖x− y‖ and

∣∣f(x)− f(y)
∣∣ ≤ K2‖x− y‖

=⇒ max
{∣∣f(x)− f(y)

∣∣ , ∣∣f(x)− f(y)
∣∣} ≤ K̄‖x− y‖,

(where K̄ = max{K1, K2})

=⇒ ‖F(x)	gH F(y)‖I(R) ≤ K̄‖x− y‖.

Hence, F is gH-Lipschitz continuous IVF on S.

(iii) Let F be gH-Lipschitz continuous on S. Then, there exists an K > 0 such

that for all x, y ∈ S, we have

‖F(y)	gH F(x)‖I(R) ≤ K‖y − x‖.

For h = y − x ∈ S,

‖F(x+ h)	gH F(x)‖I(R) ≤ K‖h‖

=⇒ lim
‖h‖→0

‖F(x+ h)	gH F(x)‖I(R) = 0

=⇒ lim
‖h‖→0

(F(x+ h)	gH F(x)) = 0.

Hence, F is gH-continuous at x ∈ S.



D. Appendix D

D.1 Proof of the Lemma 4.1

Proof. Since f and f are Hadamard semidifferentiable at x̄, both of the following

limits

lim
λ→0+
h→v

1

λ
l1(λ, h) and lim

λ→0+
h→v

1

λ
l2(λ, h)

exist, where l1(λ, h) = f(x+ λh)− f(x) and l2(λ, h) = f(x+ λh)− f(x). Thus,

lim
λ→0+
h→v

1

λ
(l1(λ, h) + l2(λ, h)) and lim

λ→0+
h→v

1

λ
|l1(λ, h)− l2(λ, h)| exist

=⇒ lim
λ→0+
h→v

1

2λ

(
l1(λ, h) + l2(λ, h)− |l1(λ, h)− l2(λ, h)|

)
and

lim
λ→0+
h→v

1

2λ

(
l1(λ, h) + l2(λ, h) + |l1(λ, h)− l2(λ, h)|

)
exist

=⇒ lim
λ→0+
h→v

1

λ
(min {l1(λ, h), l2(λ, h)}) and lim

λ→0+
h→v

1

λ
(max {l1(λ, h), l2(λ, h)}) exist

=⇒ lim
λ→0+
h→v

1

λ
�
[

min {l1(λ, h), l2(λ, h)} ,max {l1(λ, h), l2(λ, h)}
]

exists

=⇒ lim
λ→0+
h→v

1

λ
� (F(x+ λh)	gH F(x)) exists.
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Hence, F is gH-Hadamard semidifferentiable IVF at x̄ ∈ S, and

FH ′(x̄)(v)

= lim
λ→0+
h→v

1

λ
� (F(x+ λh)	gH F(x))

= lim
λ→0+
h→v

1

λ
�
[

min {l1(λ, h), l2(λ, h)} ,max {l1(λ, h), l2(λ, h)}
]

=

[
min

{
lim
λ→0+
h→v

1

λ
l1(λ, h), lim

λ→0+
h→v

1

λ
l2(λ, h)

}
,max

{
lim
λ→0+
h→v

1

λ
l1(λ, h), lim

λ→0+
h→v

1

λ
l2(λ, h)

}]
=

[
min

{
f

H ′(x̄)(v), fH ′(x̄)(v)
}
,max

{
f

H ′(x̄)(v), fH ′(x̄)(v)
}]

D.2 Proof of the Lemma 4.8

Proof. Let F be semiconvex on S. Then, there exists a monotonic increasing IVF

E : R+ → I(R+) such that E(δ)→ 0 as δ → 0+ and

F(λ1x1 + λ2x2) � λ1 � F(x1)⊕ λ2 � F(x2)⊕ λ1λ2‖x− y‖ � E (‖x− y‖)

for all x, y ∈ S and λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1.

Let E(δ) = [e(δ), e(δ)]. Then, e and e are monotonic increasing real-valued function,

by Remark 2.4.1, such that

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2)⊕ λ1λ2‖x− y‖e (‖x− y‖)

and

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2)⊕ λ1λ2‖x− y‖e (‖x− y‖)
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for all x, y ∈ S and λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1.

Hence, f and f are semiconvex on S.
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