Bibliography

[1] Ahmad, I., Jayswal, A., Al-Homidan, S. and Banerjee, J. (2018). Sufficiency and duality in interval-valued variational programming, Neural Computing and Applications, DOI: doi.org/10.1007/s00521-017-3307-y.
[2] Alefeld, G. and Mayer, G. (2000). Interval analysis: theory and applications, Journal of Computational and Applied Mathematics, 121, 421-464.
[3] Ansari, Q. H., Lalitha, C. S., Mehta, M. (2013). Generalized convexity, nonsmooth variational inequalities, and nonsmooth optimization. CRC Press.
[4] Apostolatos, N., \& Kulisch, U. (1967). Grundlagen einer Maschinenintervallarithmetik. Computing, 2(2), 89-104.
[5] Bao, Y., Zao, B., Bai, E. (2016). Directional differentiability of intervalvalued functions, Journal of Mathematics and Computer Science 16(4), 507515.
[6] Bede, B. and Gal, S. G. (2005). Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151, 581-599.
[7] Bhurjee, A. K. and Panda, G. (2012). Efficient solution of interval optimization problem, Mathematical Methods of Operations Research, 76, 273-288.
[8] Bhurjee, A. K. and Padhan, S. K. (2016). Optimality conditions and duality results for non-differentiable interval optimization problems, Journal of Applied Mathematics and Computing, 50(1-2), 59-71.
[9] Birge, J. R., Louveaux, F. (1997). Introduction to Stochastic Programming, Physica-Varlag, NY.
[10] Cambini, A. and Martein, L. (2008). Generalized Convexity and Optimization: Theory and Applications, Vol. 616, Springer Science \& Business Media, First Edition.
[11] Chalco-Cano, Y., Lodwick, W. A. and Rufian-Lizana A. (2013). Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optimization and Decision Making, 12, 305-322.
[12] Chalco-Cano, Y., Rufian-Lizana, A., Román-Flores H.and Jiménez-Gamero M. D. (2013). Calculus for interval-valued functions using generalized Hukuhara derivative and applications, Fuzzy Sets and Systems, 219, 49-67.
[13] Chalco-Cano, Y., Román-Flores, H., Jiménez-Gamero, M. D. (2011). Generalized derivative and π-derivative for set-valued functions, Information Sciences, 181(11), 2177-2188.
[14] Chen, S. H., Wu J. and Chen, Y. D. (2004), Interval optimization for uncertain structures, Finite Elements in Analysis and Design, 40, 1379-1398.
[15] Chanas, S., \& Kuchta, D. (1996). Multiobjective programming in optimization of interval objective functions-a generalized approach, European Journal of Operational Research, 94(3), 594-598.
[16] Chanas, S., \& Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients, Fuzzy sets and systems, 82(3), 299-305.
[17] Clarke, F. H. (1990). Optimization and Nonsmooth Analysis, Vol. 5, Siam, First Edition.
[18] Costa, T. M., Chalco-Cano, Y., Lodwick, W. A., and Silva, G. N. (2015). Generalized interval vector spaces and interval optimization, Information Sciences, 311, 74-85.
[19] Da Qingli, L. X. (1999). A satisfactory solution for interval number linear programming, Journal Of Systems Engineering, 2.
[20] Demyanov, V. F. (2002). The rise of nonsmooth analysis: its main tools, Cybernetics and Systems Analysis, 38(4), 527-547.
[21] de Miranda, J. C. S., Fichmann, L. (2005). A generalization of the concept of differentiability, Resenhas do Instituto de Matemática e Estatística da Universidade de São Paulo, 6(4), 397-427.
[22] Dutta, J. (2005). Generalized derivatives and nonsmooth optimization, a finite dimensional tour, Top, 13(2), 185-279.
[23] Delfour, M. C. (2012). Introduction to optimization and semidifferential calculus, Society for Industrial and Applied Mathematics.
[24] Gang, Q., \& Xiangqian, F. (2008). Ranking approaches for interval numbers in uncertain multiple attribute decision making problems. In 2008 27th Chinese Control Conference (pp. 280-284), IEEE.
[25] Ghosh, D., Ghosh, D., Bhuiya, S. K., and Patra, L. K. (2018). A saddle point characterization of efficient solutions for interval optimization problems, Journal of Applied Mathematics and Computing, 58(1-2), 193-217.
[26] Ghosh, D., Singh, A., Shukla, K. K., and Manchanda, K. (2019). Extended Karush-Kuhn-Tucker condition for constrained interval optimization problems and its application in support vector machines, Information Sciences, 504, 276-292.
[27] Ghosh, D., and Chakraborty, D., (2019). An Introduction to Analytical Fuzzy Plane Geometry, Studies in Fuzziness and Soft Computing, Volume No. 381, Springer.
[28] Ghosh, D., Chauhan, R. S., Mesiar, R., and Debnath, A. K. (2020). Generalized Hukuhara Gâteaux and Fréchet derivatives of interval-valued functions and their application in optimization with interval-valued functions, Information Sciences, 510, 317-340.
[29] Ghosh, D., Debnath, A. K., and Pedrycz, W. (2020). A variable and a fixed ordering of intervals and their application in optimization with intervalvalued functions, International Journal of Approximate Reasoning, 121, 187205.
[30] Ghosh, D. (2016). A Newton method for capturing efficient solutions of interval optimization problems, Opsearch, 53(3), 648-665.
[31] Ghosh, D. (2017). Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions, Journal of Applied Mathematics and Computing, 53, 709-731.
[32] Ghosh, D. (2017). A quasi-newton method with rank-two update to solve interval optimization problems, International Journal of Applied and Computational Mathematics 3 (3), 1719-1738.
[33] Guo, Y., Ye, G., Zhao, D., Liu, W. (2019). gH-Symmetrically derivative of interval-valued functions and applications in interval-ialued optimization, Symmetry, 11(10), 1203.
[34] Hansen, E. (1965). Interval arithmetic in matrix computations, Part I, Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis, 2(2), 308-320.
[35] Hernández, E. and Rodríguez-Marín, L. (2007), Nonconvex scalarization in set optimization with set-valued maps, Journal of Mathematical analysis and Applications 325(1), 1-18.
[36] Hiriart-Urruty, J. B. and Lemaréchal, C. (2012). Fundamentals of Convex Analysis, Springer Science \& Business Media, First Edition.
[37] Hukuhara, M. (1967). Intégration des applications measurables dont la valeur est un compact convexe, Funkcialaj Ekvacioj, 10, 205-223.
[38] Hoa, N. V. (2015). The initial value problem for interval-valued second-order differential equations under generalized H-differentiability, Information Sciences, 311, 119-148.
[39] Ishibuchi, H. and Tanaka, H. (1990). Multiobjective programming in optimization of the interval objective function, European Journal of Operational Research, 48(2), 219-225.
[40] Jayswal, A., Stancu-Minasian, I. and Ahmad, I. (2011). On sufficiency and duality for a class of interval-valued programming problems, Applied Mathematics and Computing, 218(8), 4119-4127.
[41] Jayswal, A., Stancu-Minasian, I. and Banerjee, J. (2016). Optimality conditions and duality for interval-valued optimization problems using convexifactors, Rendiconti del Circolo Matematico di Palermo 65(1), 17-32.
[42] Jahn, J. (2007). Introduction to the Theory of Nonlinear Optimization, Springer Science and Business Media, Third edition.
[43] Jayswal, A., Stancu-Minasian, I., and Ahmad, I. (2011). On sufficiency and duality for a class of interval-valued programming problems, Applied Mathematics and Computation, 218(8), 4119-4127.
[44] Jayswal, A., Stancu-Minasian, I., Banerjee, J., and Stancu, A. M. (2015). Sufficiency and duality for optimization problems involving interval-valued invex functions in parametric form, Operational Research, 15(1), 137-161.
[45] Kalani, H., Akbarzadeh-T, M. R., Akbarzadeh, A., Kardan, I. (2016). Interval-valued fuzzy derivatives and solution to interval-valued fuzzy differential equations, Journal of Intelligent \& Fuzzy Systems, 30(6), 3373-3384.
[46] Kall, P. (1976). Stochastic Linear Programming, Springer-Varlag, NY.
[47] Krückeberg, F. (1966). Numerische Intervallrechnung und deren Anwendung. Rhein.-westfäl, Inst. f. instrumentale Mathematik.
[48] Kumar, G., \& Ghosh, D. (2020). Interval Variational Inequalities, In Soft Computing for Problem Solving 2019 (pp. 309-321), Springer, Singapore.
[49] Landowski, M. (2015). Differences between Moore and RDM interval arithmetic, Intelligent Systems' 2014, 331-340.
[50] Liu, S. T. and Wang, R. T. (2007). A numerical solution method to interval quadratic programming, Applied Mathematics and Computation, 189(2), 1274-1281.
[51] Lodwick, W. A., Leal, U. A. S. and Silva, G. N. (2015). Multi-objective optimization in optimal control problem with interval-valued objective function, Proceeding Series of the Brazilian Society of Applied and Computational Mathematics 3(1), August 25, 2015.
[52] Lupulescu, V. (2013). Hukuhara differentiability of interval-valued functions and interval differential equations on time scales, Information Sciences, 248, 50-67.
[53] Lupulescu, V. (2015), Fractional calculus for interval-valued functions, Fuzzy Sets and Systems, 265, 63-85.
[54] Ma, L. H. (2002). Research on method and application of robust optimization for uncertain system. PhD diss., Zhejiang University.
[55] Markov, S. (1979). Calculus for interval functions of a real variable, Computing, 22(4), 325-337.
[56] Mayer, O. (1970). Algebraische und metrische Strukturen in der Intervallrechnung und einige Anwendungen, Computing, 5(2), 144-162.
[57] Moore, R. E. (1966). Interval Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.
[58] Moore, R. E., Kearfott, B. R. and Cloud, M. J. (2009). Introduction to Interval Analysis, Society for Industrial and Applied Mathematics.
[59] Moore, R. E. (1987). Method and Applications of Interval Analysis, Society for Industrial and Applied Mathematics, First Edition.
[60] Nickel, K. (1966). über die Notwendigkeit einer Fehlerschranken-Arithmetik für Rechenautomaten, Numerische Mathematik, 9(1), 69-79.
[61] Oliveira, C. and Antunes, C. H. (2007). Multiple objective linear programming models with interval coefficients-an illustrated overview, European Journal of Operational Research, 181(3), 1434-1463.
[62] Osuna-Gómez, R., Hernández-Jiménez, B., Chalco-Cano, Y., and RuizGarzón, G. (2017). New efficiency conditions for multiobjective intervalvalued programming problems, Information Sciences, 420, 235-248.
[63] Quan, Z., Zhiping, F., \& Dehui, P. (1995). A ranking approach for interval numbers in uncertain multiple attribute decision making problems. Systems Engineering Theory and Practice, 5(5), 129-133.
[64] Ramík, J., Vlach, M. (2001). Generalized Concavity in Optimization and Decision Making, Vol. 305, Kluwer Publ. Comp., Boston-Dordrecht-London.
[65] Rommelfanger, H., Hanuscheck, R., \& Wolf, J. (1989). Linear programming with fuzzy objectives, Fuzzy sets and systems, 29(1), 31-48.
[66] Schirotzek, W. (2007). Nonsmooth Analysis, Springer Science \& Business Media, First Edition.
[67] Sengupta, A., Pal, T. K., and Chakraborty, D. (2001). Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming, Fuzzy Sets and Systems, 119(1), 129-138.
[68] Sunaga, T. (1958). Theory of interval algebra and its application to numerical analysis. RAAG Memoirs, Ggujutsu Bunken Fukuy-Kai, Tokio, 29-48.
[69] Stefanini, L., Bede, B. (2014). Generalized fuzzy differentiability with LUparametric representation, Fuzzy Sets and Systems, 257, 184-203.
[70] Stefanini, L. (2008). A generalizetion of Hukuhara difference for interval and fuzzy arithmetic, Series on Advances in Soft Computating, 48.
[71] Stefanini, L. (2010). A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy sets and systems, 161(11), 1564-1584.
[72] Stefanini, L. (2008). A generalization of Hukuhara difference, In Soft Methods for Handling Variability and Imprecision, Advances in Soft Computing, pp. 203-210.
[73] Stefanini, L. and Bede, B. (2009). Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis, 71, 1311-1328.
[74] Stefanini, L. and Arana-Jiménez, M. (2019). Karush-Kuhn-Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability, Fuzzy Sets and Systems, 362, 1-34.
[75] Shapiro, A. (1990). On concepts of directional differentiability, Journal of optimization theory and applications, 66(3), 477-487.
[76] Sengupta, A., Pal, T. K., \& Chakraborty, D. (2001). Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming, Fuzzy Sets and systems, 119(1), 129-138.
[77] Tanaka, H., Okuda, T., \& Asai, K. (1973). Fuzzy mathematical programming, Transactions of the society of instrument and control engineers, 9(5), 607-613.
[78] Tao, J. and Zhang, Z. (2016). Properties of interval-valued function space under the $g H$-difference and their application to semi-linear interval differential
equations, Advances in Difference Equations, DOI 10.1186/s13662-016-07599.
[79] Shaocheng, T. (1994). Interval number and fuzzy number linear programmings, Fuzzy sets and systems, 66(3), 301-306.
[80] Van Hoa, N. (2015). The initial value problem for interval-valued secondorder differential equations under generalized H-differentiability, Information Sciences, 311, 119-148.
[81] Vajda, S. (2014). Probabilistic programming, Academic Press.
[82] Wang, H. and Zhang, R. (2015). Optimality conditions and duality for arcwise connected interval optimization problems, Opsearch, 52(4), 870-883.
[83] Warmus, M. (1956). Calculus of approximations. Bull. Acad. Pol. Sci. IV (5), 253-257.
[84] Wolfe, M. A. (2000). Interval mathematics, algebraic equations and optimization, Journal of Computational and Applied Mathematics, 124, 263-280.
[85] Wu, H. C. (2009). The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions, European Journal of Operational Research, 196(1), 49-60.
[86] Wu, H. C. (2018). Solving set optimization problems based on the concept of null set, Journal of Mathematical Analysis and Applications, 472(2), 17411761.
[87] Wu, H. C. (2010). Duality theory for optimization problems with intervalvalued objective function, Journal of Optimization Theory and Application, 144(3), 615-628.
[88] Wu, H. C. (2007). The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function, European Journal of Operational Research, 176, 46-59.
[89] Wu, H. C. (2008). On interval-valued non-linear programming problems, Journal of Mathematical Analysis and Applications, 338(1), 299-316.
[90] Yu, C., Liu, X. (2013). Four kinds of differentiable maps. International Journal of Pure and Applied Mathematics, 83(3), 465-475.
[91] Zhang, J., Liu, S., Li, L., Feng, Q. (2014). The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optimization Letters, 8(2), 607-631.
[92] Zhou, H. C. and Wang, Y. J. (2009). Optimality condition and mixed duality for interval-valued optimization, Fuzzy Information and Engineering, 2, 1315-1323.

A. Appendix A

A. 1 Proof of the Lemma 1.4

Proof. As the part (ii) is clearly followed from part (i), we provide the proof only for the part (i).

Let $\mathbf{A}=[\underline{a}, \bar{a}]$ and $\mathbf{B}=[\underline{b}, \bar{b}]$.
Here we recall the representation (1.2) and

$$
\mathbf{A} \ominus_{g H} \mathbf{B}=[\min \{\underline{a}-\underline{b}, \bar{a}-\bar{b}\}, \max \{\underline{a}-\underline{b}, \bar{a}-\bar{b}\}] .
$$

Let $\mathbf{A} \preceq \mathbf{B}$. Then, by Definition 1.4.2, we note that

$$
\begin{aligned}
& \mathbf{A} \preceq \mathbf{B} \\
\Longrightarrow & \underline{a}+t(\bar{a}-\underline{a})=a(t) \leq b(t)=\underline{b}+t(\bar{b}-\underline{b}) \text { for all } t \in[0,1] \\
\Longrightarrow & a(0) \leq b(0) \text { and } \bar{a}(1) \leq \bar{b}(1) \\
\Longrightarrow & \underline{a} \leq \underline{b} \text { and } \bar{a} \leq \bar{b} \\
\Longrightarrow & \underline{a}-\underline{b} \leq 0 \text { and } \bar{a}-\bar{b} \leq 0 \\
\Longrightarrow & \mathbf{A} \ominus_{g H} \mathbf{B} \preceq \mathbf{0} .
\end{aligned}
$$

Conversely, let $\mathbf{A} \ominus_{g H} \mathbf{B} \preceq \mathbf{0}$. Then, $\underline{a}-\underline{b} \leq 0$ and $\bar{a}-\bar{b} \leq 0$, i.e., $\underline{a} \leq \underline{b}$ and $\bar{a} \leq \bar{b}$.
Depending on $\underline{b}<\bar{a}$ or $\bar{a} \leq \underline{b}$, we break the analysis into two cases.

- Case 1. Let $\underline{b}<\bar{a}$.

Then, $\underline{a} \leq \underline{b}<\bar{a} \leq \bar{b}$. We prove that $a(t) \leq b(t)$ for all $t \in[0,1]$.
On contrary, let there exists $t_{0} \in[0,1]$, such that $a\left(t_{0}\right)>b\left(t_{0}\right)$.

Since $\underline{a} \leq \underline{b}$ and $\bar{a} \leq \bar{b}$, therefore $t_{0} \neq 0$ and $t_{0} \neq 1$. Thus, $\frac{1}{t_{0}}>1$.
Note that from $a\left(t_{0}\right)=\underline{a}+t_{0}(\bar{a}-\underline{a})$, we have

$$
\bar{a}=\frac{1}{t_{0}} a\left(t_{0}\right)-\left(\frac{1}{t_{0}}-1\right) \underline{a} .
$$

Similarly

$$
\bar{b}=\frac{1}{t_{0}} b\left(t_{0}\right)-\left(\frac{1}{t_{0}}-1\right) \underline{b} .
$$

As $a\left(t_{0}\right)>b\left(t_{0}\right), \frac{1}{t_{0}}>1$ and $\underline{a} \leq \underline{b}$, we see that

$$
\bar{a}=\frac{1}{t_{0}} a\left(t_{0}\right)-\left(\frac{1}{t_{0}}-1\right) \underline{a}>\frac{1}{t_{0}} b\left(t_{0}\right)-\left(\frac{1}{t_{0}}-1\right) \underline{b}=\bar{b} .
$$

This is contradictory to $\bar{a} \leq \bar{b}$. Hence, for any $t \in[0,1], a(t) \leq b(t)$. Thus, A $\preceq \mathbf{B}$.

- Case 2. Let $\bar{a} \leq \underline{b}$.

Since $a(t)$ and $b(t)$ are increasing functions, for any $t \in[0,1]$ we have

$$
a(t) \leq a(1)=\bar{a} \leq \underline{b}=b(0) \leq b(t) .
$$

Hence, $\mathbf{A} \preceq \mathbf{B}$ and the proof is complete.

A. 2 Proof of the Lemma 1.5

Proof. Let $\mathbf{A}=[\underline{a}, \bar{a}], \mathbf{B}=[\underline{b}, \bar{b}], \mathbf{C}=[\underline{c}, \bar{c}]$ and $\mathbf{D}=[\underline{d}, \bar{d}]$.
(i) Suppose the inequality $\mathbf{B} \nprec \mathbf{A} \ominus_{g H}\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right)$ is not true. Then,

$$
\begin{equation*}
\mathbf{B} \prec \mathbf{A} \ominus_{g H}\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) . \tag{A.1}
\end{equation*}
$$

Now, we have the following two cases.

- Case 1. If $\underline{a}-\underline{b} \leq \bar{a}-\bar{b}$, then $\mathbf{A} \ominus_{g H} \mathbf{B}=[\underline{a}-\underline{b}, \bar{a}-\bar{b}]$ and

$$
\mathbf{A} \ominus_{g H}\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right)=[\underline{b}, \bar{b}]=\mathbf{B},
$$

which is contradictory to (A.1).

- Case 2. If $\bar{a}-\bar{b}<\underline{a}-\underline{b}$, then $\mathbf{A} \ominus_{g H} \mathbf{B}=[\bar{a}-\bar{b}, \underline{a}-\underline{b}]$ and we have the following two possibilities:

If $\mathbf{A} \ominus_{g H}\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right)=[\underline{a}-(\bar{a}-\bar{b}), \bar{a}-(\underline{a}-\underline{b})]$, by (A.1), we have

$$
\bar{b} \leq \bar{a}-(\underline{a}-\underline{b}) \Longrightarrow \underline{a}-\underline{b} \leq \bar{a}-\bar{b},
$$

which contradicts to $\bar{a}-\bar{b}<\underline{a}-\underline{b}$.
If $\mathbf{A} \ominus_{g H}\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right)=[\bar{a}-(\underline{a}-\underline{b}), \underline{a}-(\bar{a}-\bar{b})]$, by (A.1), we get

$$
\bar{b} \leq \underline{a}-(\bar{a}-\bar{b}) \Longrightarrow \bar{a} \leq \underline{a} \Longrightarrow \bar{a}=\underline{a},
$$

and we have $\mathbf{A} \ominus_{g H}\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right)=\mathbf{B}$, which contradicts (A.1).

Hence, from Case 1 and Case 2, we obtain $\mathbf{B} \nprec \mathbf{A} \ominus_{g H}\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right)$.
(ii) Since

$$
\mathbf{0} \prec \mathbf{A} \Longrightarrow 0 \leq \underline{a} \text { and } 0<\bar{a},
$$

for any $\mathbf{C} \in I(\mathbb{R})$, we have

$$
-\bar{c} \leq-\underline{c} \leq \underline{a}-\underline{c} \text { and }-\bar{c}<\bar{a}-\bar{c} .
$$

Therefore, we obtain

$$
\begin{aligned}
& {[-\bar{c},-\underline{c}] \prec[\min \{\underline{a}-\underline{c}, \bar{a}-\bar{c}\}, \max \{\underline{a}-\underline{c}, \bar{a}-\bar{c}\}] } \\
\Longrightarrow & (-1) \odot \mathbf{C} \prec \mathbf{A} \ominus_{g H} \mathbf{C} .
\end{aligned}
$$

Hence, for any $\mathbf{B} \in I(\mathbb{R})$, we have

$$
\mathbf{B} \nprec \mathbf{A} \ominus_{g H} \mathbf{C} \Longrightarrow \mathbf{B} \nprec(-1) \odot \mathbf{C} .
$$

(iii) We have the following four possible cases.

- Case 1. Let $\bar{a}-\bar{c} \geq \underline{a}-\underline{c}$ and $\bar{c}-\bar{b} \geq \underline{c}-\underline{b}$. Then, $\bar{a}-\bar{b} \geq \underline{a}-\underline{b}$ and

$$
\begin{aligned}
\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right) & =[\underline{a}-\underline{c}, \bar{a}-\bar{c}] \oplus[\underline{c}-\underline{b}, \bar{c}-\bar{b}] \\
\Longrightarrow \quad\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right) & =[\underline{a}-\underline{b}, \bar{a}-\bar{b}]=\mathbf{A} \ominus_{g H} \mathbf{B} .
\end{aligned}
$$

- Case 2. Let $\bar{a}-\bar{c} \leq \underline{a}-\underline{c}$ and $\bar{c}-\bar{b} \leq \underline{c}-\underline{b}$. Therefore, $\bar{a}-\bar{b} \leq \underline{a}-\underline{b}$ and

$$
\begin{aligned}
\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right) & =[\bar{a}-\bar{c}, \underline{a}-\underline{c}] \oplus[\bar{c}-\bar{b}, \underline{c}-\underline{b}] \\
\Longrightarrow \quad\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right) & =[\bar{a}-\bar{b}, \underline{a}-\underline{b}]=\mathbf{A} \ominus_{g H} \mathbf{B} .
\end{aligned}
$$

- Case 3. Let $\bar{a}-\bar{c}<\underline{a}-\underline{c}$ and $\bar{c}-\bar{b}>\underline{c}-\underline{b}$. Therefore,

$$
\begin{aligned}
\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right) & =[\bar{a}-\bar{c}, \underline{a}-\underline{c}] \oplus[\underline{c}-\underline{b}, \bar{c}-\bar{b}] \\
\Longrightarrow \quad\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right) & =[\bar{a}-\bar{c}+\underline{c}-\underline{b}, \underline{a}-\underline{c}+\bar{c}-\bar{b}] .
\end{aligned}
$$

If possible, let

$$
\begin{equation*}
\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right) \prec \mathbf{A} \ominus_{g H} \mathbf{B} . \tag{A.2}
\end{equation*}
$$

If $\bar{a}-\bar{b} \geq \underline{a}-\underline{b}$, then from (A.2) we get

$$
\begin{aligned}
& {[\bar{a}-\bar{c}+\underline{c}-\underline{b}, \underline{a}-\underline{c}+\bar{c}-\bar{b}] \prec[\underline{a}-\underline{b}, \bar{a}-\bar{b}] } \\
\Longrightarrow & \underline{a}-\underline{c}+\bar{c}-\bar{b} \leq \bar{a}-\bar{b} \\
\Longrightarrow & \underline{a}-\underline{c} \leq \bar{a}-\bar{c}, \text { which is an impossibility. }
\end{aligned}
$$

Further, if $\bar{a}-\bar{b} \leq \underline{a}-\underline{b}$, then from (A.2), we have

$$
\begin{aligned}
& {[\bar{a}-\bar{c}+\underline{c}-\underline{b}, \underline{a}-\underline{c}+\bar{c}-\bar{b}] \prec[\bar{a}-\bar{b}, \underline{a}-\underline{b}] } \\
\Longrightarrow & \underline{a}-\underline{c}+\bar{c}-\bar{b} \leq \underline{a}-\underline{b} \\
\Longrightarrow & \bar{c}-\bar{b} \leq \underline{c}-\underline{b}, \text { which is an impossibility. }
\end{aligned}
$$

Thus, (A.2) is not true.

- Case 4. Let $\bar{a}-\bar{c}>\underline{a}-\underline{c}$ and $\bar{c}-\bar{b}<\underline{c}-\underline{b}$. Proceeding as in Case 3 of (iii) we can prove that (A.2) is not true. Hence,

$$
\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right) \nprec \mathbf{A} \ominus_{g H} \mathbf{B} .
$$

(iv) If $\mathbf{A} \nprec \mathbf{0}$, then $\bar{a} \geq 0$. Since $\mathbf{A} \preceq \mathbf{B}, \bar{b} \geq 0$. Thus, $\mathbf{B} \nprec \mathbf{0}$.
(v) According to the dominance of intervals, we have

$$
\begin{align*}
& \mathbf{A} \ominus_{g H} \mathbf{B} \nprec \mathbf{0} \\
\Longrightarrow & \max \{\underline{a}-\underline{b}, \bar{a}-\bar{b}\} \geq 0 \\
\Longrightarrow & \underline{a}-\underline{b} \geq 0 \text { or, } \bar{a}-\bar{b} \geq 0 . \tag{A.3}
\end{align*}
$$

Since $\mathbf{C} \preceq \mathbf{B}$,

$$
\begin{equation*}
\underline{c} \leq \underline{b} \text { and } \bar{c} \leq \bar{b} \quad \Longrightarrow \quad \underline{b}-\underline{c} \geq 0 \text { and } \bar{b}-\bar{c} \geq 0 . \tag{A.4}
\end{equation*}
$$

From (A.3) and (A.4), we have

$$
\text { either } \underline{a}-\underline{c} \geq 0 \text { or } \bar{a}-\bar{c} \geq 0 .
$$

Therefore,

$$
\mathbf{A} \ominus_{g H} \mathbf{C} \nprec \mathbf{0} .
$$

(vi) Since $\mathbf{C} \preceq \mathbf{B}$, we have

$$
\begin{aligned}
& \underline{c} \leq \underline{b} \text { and } \bar{c} \leq \bar{b} \\
\Longrightarrow & \underline{a}-\underline{c} \geq \underline{a}-\underline{b} \text { and } \bar{a}-\bar{c} \geq \bar{a}-\bar{b} \\
\Longrightarrow & {[\min \{\underline{a}-\underline{c}, \bar{a}-\bar{c}\}, \max \{\underline{a}-\underline{c}, \bar{a}-\bar{c}\}] } \\
& \succeq[\min \{\underline{a}-\underline{b}, \bar{a}-\bar{b}\}, \max \{\underline{a}-\underline{b}, \bar{a}-\bar{b}\}] \\
\Longrightarrow & \mathbf{A} \ominus_{g H} \mathbf{B} \preceq \mathbf{A} \ominus_{g H} \mathbf{C} .
\end{aligned}
$$

A. 3 Proof of the Lemma 1.6

Proof. Let $\mathbf{A}=[\underline{a}, \bar{a}], \mathbf{B}=[\underline{b}, \bar{b}], \mathbf{C}=[\underline{c}, \bar{c}]$ and $\mathbf{D}=[\underline{d}, \bar{d}]$.
(i) If possible, let the inequality (i) be not true. Therefore, there exists a pair of intervals \mathbf{A} and \mathbf{B} for which

$$
\|\mathbf{A}\|_{I(\mathbb{R})}-\|\mathbf{B}\|_{I(\mathbb{R})}>\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})} .
$$

Then,

$$
\begin{align*}
& \|\mathbf{A}\|_{I(\mathbb{R})}>\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})}+\|\mathbf{B}\|_{I(\mathbb{R})} \geq\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \oplus \mathbf{B}\right\|_{I(\mathbb{R})} \\
\text { i.e., } & \|\mathbf{A}\|_{I(\mathbb{R})}>\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \oplus \mathbf{B}\right\|_{I(\mathbb{R}} . \tag{A.5}
\end{align*}
$$

According to the definition of $g H$-difference, we have

$$
\begin{align*}
& \text { either } \mathbf{A} \ominus_{g H} \mathbf{B}=[\underline{a}-\underline{b}, \bar{a}-\bar{b}] \tag{A.6}\\
& \text { or } \quad \mathbf{A} \ominus_{g H} \mathbf{B}=[\bar{a}-\bar{b}, \underline{a}-\underline{b}] \tag{A.7}
\end{align*}
$$

If (A.6) is true, then

$$
\begin{aligned}
& \quad\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \oplus \mathbf{B}=[\underline{a}-\underline{b}+\underline{b}, \bar{a}-\bar{b}+\bar{b}]=[\underline{a}, \bar{a}]=\mathbf{A} \\
& \text { i.e., }\|\mathbf{A}\|_{I(\mathbb{R})}=\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \oplus \mathbf{B}\right\|_{I(\mathbb{R})},
\end{aligned}
$$

which contradicts (A.5).

If (A.7) is true, then

$$
\begin{equation*}
\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \oplus \mathbf{B}=[\bar{a}-\bar{b}+\underline{b}, \underline{a}-\underline{b}+\bar{b}] . \tag{A.8}
\end{equation*}
$$

We now consider the following two cases.

- Case 1. Let $\|A\|_{I(\mathbb{R})}=|\underline{a}|$.

Since $\underline{a} \leq \bar{a}$ and $|\underline{a}| \geq|\bar{a}|, \underline{a}$ must be nonpositive, i.e., $\underline{a} \leq 0$.

In view of the relations (A.5) and (A.8), we have

$$
\begin{align*}
& \qquad|\underline{a}|>\max \{|\bar{a}-\bar{b}+\underline{b}|,|\underline{a}-\underline{b}+\bar{b}|\} \\
& \text { i.e., }|\underline{a}|>|\bar{a}-\bar{b}+\underline{b}| \tag{A.9}
\end{align*}
$$

By (A.7), we have $\bar{a}-\bar{b} \leq \underline{a}-\underline{b}$, or, $\bar{a}-\bar{b}+\underline{b} \leq \underline{a} \leq 0$.
Therefore,

$$
|\underline{a}| \leq|\bar{a}-\bar{b}+\underline{b}|,
$$

which contradicts the relation (A.9).

- Case 2. Let $\|A\|_{I(\mathbb{R})}=|\bar{a}|$.

Then, $\bar{a} \geq 0$ and from (A.5) and (A.8) we obtain

$$
|\bar{a}|>\max \{|\bar{a}-\bar{b}+\underline{b}|,|\underline{a}-\underline{b}+\bar{b}|\} .
$$

Thus,

$$
\begin{equation*}
|\bar{a}|>|\underline{a}-\underline{b}+\bar{b}| . \tag{A.10}
\end{equation*}
$$

According to (A.7) we have $\bar{a}-\bar{b} \leq \underline{a}-\underline{b}$, which implies $0 \leq \bar{a} \leq$ $\underline{a}-\underline{b}+\bar{b}$.

Therefore,

$$
|\bar{a}| \leq|\underline{a}-\underline{b}+\bar{b}|,
$$

which contradicts the relation (A.10).

Hence, (i) must be true for all $\mathbf{A}, \mathbf{B} \in I(\mathbb{R})$.
(ii) If possible, let the inequality (ii) be not true. Therefore, there exist three intervals \mathbf{A}, \mathbf{B} and $\mathbf{C}=[\underline{c}, \bar{c}]$ such that

$$
\begin{equation*}
\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})}>\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)\right\|_{I(\mathbb{R})} \tag{A.11}
\end{equation*}
$$

According to the definition of $g H$-difference of two intervals,

$$
\begin{equation*}
\text { either } \mathbf{A} \ominus_{g H} \mathbf{B}=[\underline{a}-\underline{b}, \bar{a}-\bar{b}] \text { or } \mathbf{A} \ominus_{g H} \mathbf{B}=[\bar{a}-\bar{b}, \underline{a}-\underline{b}] \text {. } \tag{A.12}
\end{equation*}
$$

Similarly,

$$
\text { either } \mathbf{A} \ominus_{g H} \mathbf{C}=[\underline{a}-\underline{c}, \bar{a}-\bar{c}] \quad \text { or } \quad \mathbf{A} \ominus_{g H} \mathbf{C}=[\bar{a}-\bar{c}, \underline{a}-\underline{c}]
$$

and

$$
\mathbf{C} \ominus_{g H} \mathbf{B}=[\underline{c}-\underline{b}, \bar{c}-\bar{b}] \quad \text { or } \quad \mathbf{C} \ominus_{g H} \mathbf{B}=[\bar{c}-\bar{b}, \underline{c}-\underline{b}] .
$$

Then, one of the following holds true:
(a) $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\underline{a}-\underline{b}, \bar{a}-\bar{b}]$
(b) $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\underline{a}-\underline{c}+\bar{c}-\bar{b}, \bar{a}-\bar{c}+\underline{c}-\underline{b}]$
(c) $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\bar{a}-\bar{c}+\underline{c}-\underline{b}, \underline{a}-\underline{c}+\bar{c}-\bar{b}]$
(d) $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\bar{a}-\bar{b}, \underline{a}-\underline{b}]$.

- Case 1. Let $\mathbf{A} \ominus_{g H} \mathbf{B}=[\underline{a}-\underline{b}, \bar{a}-\bar{b}]$ and $\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})}=|\underline{a}-\underline{b}|$. Then, $\underline{a}-\underline{b} \leq 0$.
(a) If $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\underline{a}-\underline{b}, \bar{a}-\bar{b}]$, then

$$
\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)\right\|_{I(\mathbb{R})}=|\underline{a}-\underline{b}|=\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})},
$$

which is a contradiction to the inequality (A.11).
(b) Let $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\underline{a}-\underline{c}+\bar{c}-\bar{b}, \bar{a}-\bar{c}+\underline{c}-\underline{b}]$ which has came from the fact that $\mathbf{A} \ominus_{g H} \mathbf{C}=[\underline{a}-\underline{c}, \bar{a}-\bar{c}]$ and $\mathbf{C} \ominus_{g H} \mathbf{B}=[\bar{c}-\bar{b}, \underline{c}-\underline{b}]$. Thus,

$$
\begin{equation*}
\underline{a}-\underline{c} \leq \bar{a}-\bar{c} \text { and } \bar{c}-\bar{b} \leq \underline{c}-\underline{b} . \tag{A.13}
\end{equation*}
$$

From the inequality (A.11), we obtain

$$
\begin{equation*}
|\underline{a}-\underline{b}|>|\underline{a}-\underline{c}+\bar{c}-\bar{b}| \text { and }|\underline{a}-\underline{b}|>|\bar{a}-\bar{c}+\underline{c}-\underline{b}| . \tag{A.14}
\end{equation*}
$$

Since $\underline{a}-\underline{b} \leq 0$, irrespective of $(\underline{a}-\underline{c}+\bar{c}-\bar{b})$ is nonnegative or nonpositive, we get from the first inequality of (A.14) that

$$
\underline{a}-\underline{b}=-|\underline{a}-\underline{b}|<-|\underline{a}-\underline{c}+\bar{c}-\bar{b}| \leq \underline{a}-\underline{c}+\bar{c}-\bar{b} .
$$

Hence, $\underline{c}-\underline{b}<\bar{c}-\bar{b}$, which is a contradiction to the inequality (A.13).
(c) If $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\bar{a}-\bar{c}+\underline{c}-\underline{b}, \underline{a}-\underline{c}+\bar{c}-\bar{b}]$, then proceeding similar to the Case 1(b), we arrive at the contradicting inequality $\underline{a}-\underline{c}<\bar{a}-\bar{c}$.
(d) If $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\bar{a}-\bar{b}, \underline{a}-\underline{b}]$, then

$$
\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)\right\|_{I(\mathbb{R})}=|\underline{a}-\underline{b}|=\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})},
$$

which is a contradiction to the inequality (A.11).

- Case 2. Let $\mathbf{A} \ominus_{g H} \mathbf{B}=[\underline{a}-\underline{b}, \bar{a}-\bar{b}]$ and $\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})}=|\bar{a}-\bar{b}|$. Then, $\bar{a}-\bar{b} \geq 0$.
(a) If $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\underline{a}-\underline{b}, \bar{a}-\bar{b}]$, then

$$
\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)\right\|_{I(\mathbb{R})}=|\bar{a}-\bar{b}|=\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})},
$$

which is a contradiction to the inequality (A.11).
(b) If $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\underline{a}-\underline{c}+\bar{c}-\bar{b}, \bar{a}-\bar{c}+\underline{c}-\underline{b}]$, then proceeding similar to the Case 1(b), we arrive at the contradicting inequality $\bar{c}-\bar{b}>\underline{c}-\underline{b}$.
(c) If $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\bar{a}-\bar{c}+\underline{c}-\underline{b}, \underline{a}-\underline{c}+\bar{c}-\bar{b}]$, then then proceeding similar to the Case 1(b), we arrive at the contradicting inequality $\bar{a}-\bar{c}>\underline{a}-\underline{c}$.
(d) If $\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)=[\bar{a}-\bar{b}, \underline{a}-\underline{b}]$, the

$$
\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)\right\|_{I(\mathbb{R})}=|\underline{a}-\underline{b}|=\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})},
$$

which is a contradiction to the inequality (A.11).

- Case 3. Let $\mathbf{A} \ominus_{g H} \mathbf{B}=[\bar{a}-\bar{b}, \underline{a}-\underline{b}]$ and $\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})}=|\bar{a}-\bar{b}|$.

All the four subcases for this case are similar to the Case 2.

- Case 4. Let $\mathbf{A} \ominus_{g H} \mathbf{B}=[\bar{a}-\bar{b}, \underline{a}-\underline{b}]$ and $\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})}=|\underline{a}-\underline{b}|$.

All the four subcases for this case are similar to the Case 1.

We notice that in all the possible subcases of the above four possible cases we arrive at a contradiction to the inequality (A.11). Therefore, for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in$ $I(\mathbb{R})$,

$$
\left\|\mathbf{A} \ominus_{g H} \mathbf{B}\right\|_{I(\mathbb{R})} \leq\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{C}\right) \oplus\left(\mathbf{C} \ominus_{g H} \mathbf{B}\right)\right\|_{I(\mathbb{R})} .
$$

(iii) As $\left\|\mathbf{B} \ominus_{g H} \mathbf{A}\right\|_{I(\mathbb{R})}=\max \{|\underline{b}-\underline{a}|,|\bar{b}-\bar{a}|\}$, we break the proof in two cases.

- Case 1. If $(L=)\left\|\mathbf{B} \ominus_{g H} \mathbf{A}\right\|_{I(\mathbb{R})}=|\underline{b}-\underline{a}|$, then

$$
\begin{equation*}
|\underline{b}-\underline{a}| \geq|\bar{b}-\bar{a}| \Longrightarrow|\underline{b}-\underline{a}| \geq \bar{b}-\bar{a} \Longrightarrow \bar{b} \leq \bar{a}+L . \tag{A.15}
\end{equation*}
$$

Since $\underline{b}-\underline{a} \leq|\underline{b}-\underline{a}|$, then

$$
\begin{equation*}
\underline{b} \leq \underline{a}+L . \tag{A.16}
\end{equation*}
$$

From (A.15) and (A.16), we have

$$
\mathbf{B} \preceq \mathbf{A} \oplus[L, L] .
$$

- Case 2. If $(L=)\left\|\mathbf{B} \ominus_{g H} \mathbf{A}\right\|_{I(\mathbb{R})}=|\bar{b}-\bar{a}|$, then

$$
\begin{equation*}
|\underline{b}-\underline{a}| \leq|\bar{b}-\bar{a}| \Longrightarrow \underline{b}-\underline{a} \leq|\bar{b}-\bar{a}| \Longrightarrow \underline{b} \leq \underline{a}+L . \tag{А.17}
\end{equation*}
$$

Since $\bar{b}-\bar{a} \leq|\bar{b}-\bar{a}|$,

$$
\begin{equation*}
\bar{b} \leq \bar{a}+L . \tag{A.18}
\end{equation*}
$$

From (A.17) and (A.18), we obtain

$$
\mathbf{B} \preceq \mathbf{A} \oplus[L, L], \text { where } L=\left\|\mathbf{B} \ominus_{g H} \mathbf{A}\right\|_{I(\mathbb{R})} .
$$

(iv) If possible, let there exist $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} in $I(\mathbb{R})$ such that

$$
\begin{equation*}
\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)\right\|_{I(\mathbb{R})}>\left\|\mathbf{A} \ominus_{g H} \mathbf{C}\right\|_{I(\mathbb{R})} \oplus\left\|\mathbf{B} \ominus_{g H} \mathbf{D}\right\|_{I(\mathbb{R})} . \tag{A.19}
\end{equation*}
$$

According to the definition of $g H$-difference of two intervals,

$$
\begin{equation*}
\text { either } \mathbf{A} \ominus_{g H} \mathbf{B}=[\underline{a}-\underline{b}, \bar{a}-\bar{b}] \quad \text { or } \quad \mathbf{A} \ominus_{g H} \mathbf{B}=[\bar{a}-\bar{b}, \underline{a}-\underline{b}] \text {, } \tag{A.20}
\end{equation*}
$$

either $\mathbf{C} \ominus_{g H} \mathbf{D}=[\underline{c}-\underline{d}, \bar{c}-\bar{d}]$ or $\mathbf{C} \ominus_{g H} \mathbf{D}=[\bar{c}-\bar{d}, \underline{c}-\underline{d}]$,
either $\mathbf{A} \ominus_{g H} \mathbf{C}=[\underline{a}-\underline{c}, \bar{a}-\bar{c}]$ or $\mathbf{A} \ominus_{g H} \mathbf{B}=[\bar{a}-\bar{c}, \underline{a}-\underline{c}]$,
and
either $\mathbf{B} \ominus_{g H} \mathbf{D}=[\underline{b}-\underline{d}, \bar{b}-\bar{d}]$ or $\quad \mathbf{B} \ominus_{g H} \mathbf{D}=[\bar{b}-\bar{d}, \underline{b}-\underline{d}]$.

Then, one of the following holds true:
(a) $\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)=[\underline{a}-\underline{b}-\underline{c}+\underline{d}, \bar{a}-\bar{b}-\bar{c}+\bar{d}]$
(b) $\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)=[\underline{a}-\underline{b}-\bar{c}+\bar{d}, \bar{a}-\bar{b}-\underline{c}+\underline{d}]$
(c) $\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)=[\bar{a}-\bar{b}-\bar{c}+\bar{d}, \underline{a}-\underline{b}-\underline{c}+\underline{d}]$
(d) $\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)=[\bar{a}-\bar{b}-\underline{c}+\underline{d}, \underline{a}-\underline{b}-\bar{c}+\bar{d}]$

- Case 1. Let $\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)=[\underline{a}-\underline{b}-\underline{c}+\underline{d}, \bar{a}-\bar{b}-\bar{c}+\bar{d}]$.
(a) If $\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)\right\|_{I(\mathbb{R})}=|\underline{a}-\underline{b}-\underline{c}+\underline{d}|$, then from equation (A.19), we have

$$
|\underline{a}-\underline{b}-\underline{c}+\underline{d}|>|\underline{a}-\underline{c}|+|\underline{b}-\underline{d}|>|\underline{a}-\underline{b}-\underline{c}+\underline{d}|,
$$

which is impossible.
(b) If $\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)\right\|_{I(\mathbb{R})}=|\bar{a}-\bar{b}-\bar{c}+\bar{d}|$, then from equation (A.19), we have

$$
|\bar{a}-\bar{b}-\bar{c}+\bar{d}|>|\bar{a}-\bar{c}|+|\bar{b}-\bar{d}|>|\bar{a}-\bar{b}-\bar{c}+\bar{d}|,
$$

which is again impossible.

- Case 2. Let $\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)=[\bar{a}-\bar{b}-\bar{c}+\bar{d}, \underline{a}-\underline{b}-\underline{c}+\underline{d}]$.

For this case, two subcases are similar to the Case 1 will lead to impossibilities.

- Case 3. Let $\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)=[\underline{a}-\underline{b}-\bar{c}+\bar{d}, \bar{a}-\bar{b}-\underline{c}+\underline{d}]$. Then,

$$
\begin{equation*}
\underline{a}-\underline{b} \leq \bar{a}-\bar{b} \text { and } \bar{c}+\bar{d} \leq \underline{c}+\underline{d} . \tag{A.22}
\end{equation*}
$$

(a) If $\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)\right\|_{I(\mathbb{R})}=|\bar{a}-\bar{b}-\underline{c}+\underline{d}|$, then $\bar{a}-$ $\bar{b}-\underline{c}+\underline{d} \geq 0$. From equation (A.19), we have

$$
|\bar{a}-\bar{b}-\underline{c}+\underline{d}|>|\bar{a}-\bar{c}|+|\bar{b}-\bar{d}| \Longrightarrow \bar{c}+\bar{d}>\underline{c}+\underline{d},
$$

which is contradictory to (A.22).
(b) If $\left\|\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)\right\|_{I(\mathbb{R})}=|\underline{a}-\underline{b}-\bar{c}+\bar{d}|$, then $\underline{a}-$ $\underline{b}-\bar{c}+\bar{d}<0$. From equation (A.19), we have

$$
-(\underline{a}-\underline{b}-\bar{c}+\bar{d})=|\underline{a}-\underline{b}-\bar{c}+\bar{d}|>|\underline{a}-\underline{c}|+|\underline{b}-\underline{d}| \Longrightarrow \bar{c}+\bar{d}>\underline{c}+\underline{d},
$$

which is again contradictory to (A.22).

- Case 4. Let $\left(\mathbf{A} \ominus_{g H} \mathbf{B}\right) \ominus_{g H}\left(\mathbf{C} \ominus_{g H} \mathbf{D}\right)=[\bar{a}-\bar{b}-\underline{c}+\underline{d}, \underline{a}-\underline{b}-\bar{c}+\bar{d}]$.

All the two subcases for this case are similar to Case 3.

Hence, (A.19) is wrong, and thus the result follows.

A. 4 Proof of the Lemma 1.7

Proof. Let $\mathbf{C}=[\underline{c}, \bar{c}]$.
(i) If $\mathbf{C} \succeq \mathbf{0}$, then

$$
\begin{aligned}
& \underline{c} \geq 0 \text { and } \bar{c} \geq 0 \\
\Longrightarrow & |x| \underline{c}+|y| \underline{c} \geq|x+y| \underline{c} \text { and }|x| \bar{c}+|y| \bar{c} \geq|x+y| \bar{c} \\
\Longrightarrow & |x+y| \odot \mathbf{C} \preceq|x| \odot \mathbf{C} \oplus|y| \odot \mathbf{C} .
\end{aligned}
$$

(ii) If $\mathbf{C} \preceq \mathbf{0}$, then

$$
\begin{aligned}
& \underline{c} \leq 0 \text { and } \bar{c} \leq 0 \\
\Longrightarrow & |x| \underline{c}+|y| \underline{c} \leq|x+y| \underline{c} \text { and }|x| \bar{c}+|y| \bar{c} \leq|x+y| \bar{c} \\
\Longrightarrow & |x+y| \odot \mathbf{C} \succeq|x| \odot \mathbf{C} \oplus|y| \odot \mathbf{C} .
\end{aligned}
$$

(iii) If $\mathbf{C} \nprec 0$, then

$$
\bar{c} \geq 0 \Longrightarrow|x| \bar{c}+|y| \bar{c} \geq|x+y| \bar{c} \Longrightarrow|x+y| \odot \mathbf{C} \nsucc|x| \odot \mathbf{C} \oplus|y| \odot \mathbf{C} .
$$

A. 5 Proof of the Lemma 1.10

Proof. (i) If

$$
\begin{equation*}
\mathbf{F}(x) \nprec \mathbf{0} \text { for all } x \in \mathcal{S}, \tag{A.23}
\end{equation*}
$$

then due to linearity of \mathbf{F}, we have

$$
\begin{equation*}
\mathbf{F}(x)=(-1) \odot \mathbf{F}(-x) \nsucc \mathbf{0} \text { for all } x \in \mathcal{S} \tag{A.24}
\end{equation*}
$$

since $\mathbf{F}(-x) \nprec \mathbf{0}$ by (A.23). From (A.23) and (A.24), it is clear that $\mathbf{0}$ and $\mathbf{F}(x)$ are not comparable.
(ii) If $\mathbf{F}(x) \preceq \mathbf{0}$ for all $x \in \mathcal{S}$, then due to linearity of \mathbf{F}, we have $\mathbf{F}(x)=(-1) \odot$ $\mathbf{F}(-x) \succeq \mathbf{0}$ for all $x \in \mathcal{S}$.

Hence, $\mathbf{F}(x)=\mathbf{0}$.

B. Appendix B

B. 1 Proof of the Lemma 2.7

Proof. First we show that

$$
\mathbf{F}\left(\lambda\left(x_{1}, x_{2}\right)\right)=\lambda \odot \mathbf{F}\left(x_{1}, x_{2}\right) \text { for all } \lambda \in \mathbb{R} .
$$

- Case 1. Let $\lambda<0$. For this case, there are following four subcases.
(a) If $x_{1}<0$ and $x_{2}<0$, then $\lambda x_{1}>0$ and $\lambda x_{2}>0$. Therefore,

$$
\begin{aligned}
\mathbf{F}\left(\lambda\left(x_{1}, x_{2}\right)\right) & =\left(\lambda x_{1}\right) \odot[\underline{a}, \bar{a}] \oplus\left(\lambda x_{2}\right) \odot[\underline{b}, \bar{b}] \\
& =\left[\lambda x_{1} \underline{a}+\lambda x_{2} \underline{b}, \lambda x_{1} \bar{a}+\lambda x_{2} \bar{b}\right] \\
& =\lambda \odot\left(\left[x_{1} \bar{a}+x_{2} \bar{b}, x_{1} \underline{a}+x_{2} \underline{b}\right]\right) \\
& =\lambda \odot\left(\left[x_{1} \bar{a}, x_{1} \underline{a}\right] \oplus\left[x_{2} \bar{b}, x_{2} \underline{b}\right]\right) \\
& =\lambda \odot\left(x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2} \odot[\underline{b}, \bar{b}]\right) \\
& =\lambda \odot \mathbf{F}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

(b) If $x_{1}<0$ and $x_{2} \geq 0$, then $\lambda x_{1}>0$ and $\lambda x_{2} \leq 0$. Thus,

$$
\begin{aligned}
\mathbf{F}\left(\lambda\left(x_{1}, x_{2}\right)\right) & =\left(\lambda x_{1}\right) \odot[\underline{a}, \bar{a}] \oplus\left(\lambda x_{2}\right) \odot[\underline{b}, \bar{b}] \\
& =\left[\lambda x_{1} \underline{a}+\lambda x_{2} \bar{b}, \lambda x_{1} \bar{a}+\lambda x_{2} \underline{b}\right] \\
& =\lambda \odot\left(\left[x_{1} \bar{a}+x_{2} \underline{b}, x_{1} \underline{a}+x_{2} \bar{b}\right]\right) \\
& =\lambda \odot\left(\left[x_{1} \bar{a}, x_{1} \underline{a}\right] \oplus\left[x_{2} \underline{b}, x_{2} \bar{b}\right]\right) \\
& =\lambda \odot\left(x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2} \odot[\underline{b}, \bar{b}]\right)
\end{aligned}
$$

$$
=\lambda \odot \mathbf{F}\left(x_{1}, x_{2}\right) .
$$

(c) If $x_{1} \geq 0$ and $x_{2}<0$, then $\lambda x_{1} \leq 0$ and $\lambda x_{2}>0$. Therefore,

$$
\begin{aligned}
\mathbf{F}\left(\lambda\left(x_{1}, x_{2}\right)\right) & =\left(\lambda x_{1}\right) \odot[\underline{a}, \bar{a}] \oplus\left(\lambda x_{2}\right) \odot[\underline{b}, \bar{b}] \\
& =\left[\lambda x_{1} \bar{a}+\lambda x_{2} \underline{b}, \lambda x_{1} \underline{a}+\lambda x_{2} \bar{b}\right] \\
& =\lambda \odot\left(\left[x_{1} \underline{a}+x_{2} \bar{b}, x_{1} \bar{a}+x_{2} \underline{b}\right]\right) \\
& =\lambda \odot\left(\left[x_{1} \underline{a}, x_{1} \bar{a}\right] \oplus\left[x_{2} \bar{b}, x_{2} \bar{b}\right]\right) \\
& =\lambda \odot\left(x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2} \odot[\underline{b}, \bar{b}]\right) \\
& =\lambda \odot \mathbf{F}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

(d) If $x_{1} \geq 0$ and $x_{2} \geq 0$, then $\lambda x_{1} \leq 0$ and $\lambda x_{2} \leq 0$. So,

$$
\begin{aligned}
\mathbf{F}\left(\lambda\left(x_{1}, x_{2}\right)\right) & =\left(\lambda x_{1}\right) \odot[\underline{a}, \bar{a}] \oplus\left(\lambda x_{2}\right) \odot[\underline{b}, \bar{b}] \\
& =\left[\lambda x_{1} \bar{a}+\lambda x_{2} \bar{b}, \lambda x_{1} \underline{a}+\lambda x_{2} \underline{b}\right] \\
& =\lambda \odot\left(\left[x_{1} \underline{a}+x_{2} \underline{b}, x_{1} \bar{a}+x_{2} \bar{b}\right]\right) \\
& =\lambda \odot\left(\left[x_{1} \underline{a}, x_{1} \bar{a}\right] \oplus\left[x_{2} \underline{b}, x_{2} \bar{b}\right]\right) \\
& =\lambda \odot\left(x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2} \odot[\underline{b}, \bar{b}]\right) \\
& =\lambda \odot \mathbf{F}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

From all the subcases of Case 1, we have

$$
\begin{equation*}
\mathbf{F}\left(\lambda\left(x_{1}, x_{2}\right)\right)=\lambda \odot \mathbf{F}\left(x_{1}, x_{2}\right) \text { for every } \lambda<0 \tag{B.1}
\end{equation*}
$$

- Case 2. Let $\lambda \geq 0$.
(a) If $x_{1} \geq 0$ and $x_{2} \geq 0$, then $\lambda x_{1} \geq 0$ and $\lambda x_{2} \geq 0$. Therefore,

$$
\begin{aligned}
\mathbf{F}\left(\lambda\left(x_{1}, x_{2}\right)\right) & =\left(\lambda x_{1}\right) \odot[\underline{a}, \bar{a}] \oplus\left(\lambda x_{2}\right) \odot[\underline{b}, \bar{b}] \\
& =\left[\lambda x_{1} \underline{a}+\lambda x_{2} \underline{b}, \lambda x_{1} \bar{a}+\lambda x_{2} \bar{b}\right] \\
& =\lambda \odot\left(\left[x_{1} \underline{a}+x_{2} \underline{b}, x_{1} \bar{a}+x_{2} \bar{b}\right]\right) \\
& =\lambda \odot\left(x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2} \odot[\underline{b}, \bar{b}]\right) \\
& =\lambda \odot \mathbf{F}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

(b) If $x_{1} \geq 0$ and $x_{2}<0$, then $\lambda x_{1} \geq 0$ and $\lambda x_{2} \leq 0$. Hence,

$$
\begin{aligned}
\mathbf{F}\left(\lambda\left(x_{1}, x_{2}\right)\right) & =\left(\lambda x_{1}\right) \odot[\underline{a}, \bar{a}] \oplus\left(\lambda x_{2}\right) \odot[\underline{b}, \bar{b}] \\
& =\left[\lambda x_{1} \underline{a}+\lambda x_{2} \bar{b}, \lambda x_{1} \bar{a}+\lambda x_{2} \underline{b}\right] \\
& =\lambda \odot\left(\left[x_{1} \underline{a}+x_{2} \bar{b}, x_{1} \bar{a}+x_{2} \underline{b}\right]\right) \\
& =\lambda \odot\left(x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2} \odot[\underline{b}, \bar{b}]\right) \\
& =\lambda \odot \mathbf{F}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

(c) If $x_{1}<0$ and $x_{2} \geq 0$, then $\lambda x_{1} \leq 0$ and $\lambda x_{2} \geq 0$. Thus,

$$
\begin{aligned}
\mathbf{F}\left(\lambda\left(x_{1}, x_{2}\right)\right) & =\left(\lambda x_{1}\right) \odot[\underline{a}, \bar{a}] \oplus\left(\lambda x_{2}\right) \odot[\underline{b}, \bar{b}] \\
& =\left[\lambda x_{1} \bar{a}+\lambda x_{2} \underline{b}, \lambda x_{1} \underline{a}+\lambda x_{2} \bar{b}\right] \\
& =\lambda \odot\left(\left[x_{1} \bar{a}+x_{2} \underline{b}, x_{1} \underline{a}+x_{2} \bar{b}\right]\right) \\
& =\lambda \odot\left(x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2} \odot[\underline{b}, \bar{b}]\right) \\
& =\lambda \odot \mathbf{F}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

(d) If $x_{1}<0$ and $x_{2}<0$, then $\lambda x_{1} \leq 0$ and $\lambda x_{2} \leq 0$. Therefore,

$$
\begin{aligned}
\mathbf{F}\left(\lambda\left(x_{1}, x_{2}\right)\right) & =\left(\lambda x_{1}\right) \odot[\underline{a}, \bar{a}] \oplus\left(\lambda x_{2}\right) \odot[\underline{b}, \bar{b}] \\
& =\left[\lambda x_{1} \bar{a}+\lambda x_{2} \bar{b}, \lambda x_{1} \underline{a}+\lambda x_{2} \underline{b}\right] \\
& =\lambda \odot\left(\left[x_{1} \bar{a}+x_{2} \bar{b}, x_{1} \underline{a}+x_{2} \underline{b}\right]\right) \\
& =\lambda \odot\left(x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2} \odot[\underline{b}, \bar{b}]\right) \\
& =\lambda \odot \mathbf{F}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Hence, from all the subcases of Case 2, we have

$$
\begin{equation*}
\mathbf{F}\left(\lambda\left(x_{1}, x_{2}\right)\right)=\lambda \odot \mathbf{F}\left(x_{1}, x_{2}\right) \text { for every } \lambda \geq 0 \tag{B.2}
\end{equation*}
$$

Next, we show that

1. when x_{1} and x_{2} have the same sign, and y_{1} and y_{2} have the same sign,

$$
\mathbf{F}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right)=\mathbf{F}\left(x_{1}, y_{1}\right) \oplus \mathbf{F}\left(x_{2}, y_{2}\right),
$$

2. when x_{1} and x_{2} have different signs, and y_{1} and y_{2} have the same sign,

$$
\mathbf{F}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right) \text { and } \mathbf{F}\left(x_{1}, y_{1}\right) \oplus \mathbf{F}\left(x_{2}, y_{2}\right) \text { are not comparable, }
$$

3. when x_{1} and x_{2} have the same sign, and y_{1} and y_{2} have different signs,

$$
\mathbf{F}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right) \text { and } \mathbf{F}\left(x_{1}, y_{1}\right) \oplus \mathbf{F}\left(x_{2}, y_{2}\right) \text { are not comparable, and }
$$

4. when x_{1} and x_{2} have different signs, and y_{1} and y_{2} have different signs, then

$$
\mathbf{F}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right) \text { and } \mathbf{F}\left(x_{1}, y_{1}\right) \oplus \mathbf{F}\left(x_{2}, y_{2}\right) \text { are not comparable. }
$$

- Case 1. Let x_{1} and x_{2} have the same sign, and y_{1} and y_{2} have the same sign. A straightforward calculation proves that

$$
\mathbf{F}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right)=\left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}] \oplus\left(y_{1}+y_{2}\right) \odot[\underline{b}, \bar{b}]=\mathbf{F}\left(x_{1}, y_{1}\right) \oplus \mathbf{F}\left(x_{2}, y_{2}\right) .
$$

- Case 2. Suppose that x_{1} and x_{2} have different signs, and y_{1} and y_{2} have the same sign. Since y_{1} and y_{2} have the same sign, evidently,

$$
\left(y_{1}+y_{2}\right) \odot[\underline{b}, \bar{b}]=y_{1} \odot[\underline{b}, \bar{b}] \oplus y_{2} \odot[\underline{b}, \bar{b}] .
$$

Thus, to prove that

$$
\mathbf{F}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right) \text { and } \mathbf{F}\left(x_{1}, y_{1}\right) \oplus \mathbf{F}\left(x_{2}, y_{2}\right) \text { are not comparable }
$$

it is sufficient to prove that when x_{1} and x_{2} have different signs,

$$
\left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}] \text { and } x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2}[\underline{a}, \bar{a}] \text { are not comparable. }
$$

(a) For $x_{1}>0$ and $x_{2}<0$ with $x_{1}+x_{2}<0$, we have

$$
\left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}]=\left[\left(x_{1}+x_{2}\right) \bar{a},\left(x_{1}+x_{2}\right) \underline{a}\right]
$$

and

$$
x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2}[\underline{a}, \bar{a}]=\left[x_{1} \underline{a}, x_{1} \bar{a}\right] \oplus\left[x_{2} \bar{a}, x_{2} \underline{a}\right]
$$

$$
=\left[x_{1} \underline{a}+x_{2} \bar{a}, x_{1} \bar{a}+x_{2} \underline{a}\right] .
$$

If possible let $\left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}]$ and $x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2}[\underline{a}, \bar{a}]$ be comparable.
Then,

$$
\begin{align*}
& \text { either }\left(x_{1}+x_{2}\right) \bar{a}>x_{1} \underline{a}+x_{2} \bar{a} \text { and }\left(x_{1}+x_{2}\right) \underline{a}>x_{1} \bar{a}+x_{2} \underline{a} \text {, } \tag{B.3}\\
& \text { or }\left(x_{1}+x_{2}\right) \bar{a}<x_{1} \underline{a}+x_{2} \bar{a} \text { and }\left(x_{1}+x_{2}\right) \underline{a}<x_{1} \bar{a}+x_{2} \underline{a} . \tag{B.4}
\end{align*}
$$

If $\left(x_{1}+x_{2}\right) \bar{a}>x_{1} \underline{a}+x_{2} \bar{a}$, then

$$
\begin{array}{ll}
& x_{1} \bar{a}+x_{2} \bar{a}>x_{1} \underline{a}+x_{2} \bar{a} \\
\text { or, } & x_{1} \bar{a}>x_{1} \underline{a} \\
\text { or, } & x_{1} \bar{a}+x_{2} \underline{a}>x_{1} \underline{a}+x_{2} \underline{a} \\
\text { or, } & x_{1} \bar{a}+x_{2} \underline{a}>\left(x_{1}+x_{2}\right) \underline{a},
\end{array}
$$

which is a contradiction to the second inequality of (B.3). If $\left(x_{1}+x_{2}\right) \bar{a}<x_{1} \underline{a}+x_{2} \bar{a}$, then

$$
\begin{array}{ll}
& x_{1} \bar{a}<x_{1} \underline{a} \\
\text { or, } & x_{1} \bar{a}+x_{2} \underline{a}<x_{1} \underline{a}+x_{2} \underline{a} \\
\text { or, } & x_{1} \bar{a}+x_{2} \underline{a}<\left(x_{1}+x_{2}\right) \underline{a},
\end{array}
$$

which is a contradiction to the second inequality of (B.4).
Hence, none of (B.3) and (B.4) is true.
Thus, $\left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}]$ and $x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2}[\underline{a}, \bar{a}]$ are not comparable.
(b) For $x_{2}>0$ and $x_{1}<0$ with $x_{1}+x_{2}<0$, the proof is similar to the Case 2a.
(c) For $x_{1}<0$ and $x_{2}>0$ with $x_{1}+x_{2}>0$, we have

$$
\left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}]=\left[\left(x_{1}+x_{2}\right) \underline{a},\left(x_{1}+x_{2}\right) \bar{a}\right]
$$

and

$$
\begin{aligned}
x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2} \odot[\underline{a}, \bar{a}] & =\left[x_{1} \bar{a}, x_{1} \underline{a}\right] \oplus\left[x_{2} \underline{a}+x_{2} \bar{a}\right] \\
& =\left[x_{1} \bar{a}+x_{2} \underline{a}, x_{1} \underline{a}+x_{2} \bar{a}\right] .
\end{aligned}
$$

If possible let $\left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}]$ and $x_{1} \odot[\underline{a}, \bar{a}] \oplus x_{2}[\underline{a}, \bar{a}]$ be comparable. Then,

$$
\begin{equation*}
\text { either }\left(x_{1}+x_{2}\right) \underline{a}>x_{1} \bar{a}+x_{2} \underline{a} \text { and }\left(x_{1}+x_{2}\right) \bar{a}>x_{1} \underline{a}+x_{2} \bar{a}, \tag{B.5}
\end{equation*}
$$

If $\left(x_{1}+x_{2}\right) \underline{a}>x_{1} \bar{a}+x_{2} \underline{a}$, then

$$
\begin{array}{cl}
& x_{1} \underline{a}>x_{1} \bar{a} \\
\text { or, } & x_{1} \underline{a}+x_{2} \bar{a}>x_{1} \bar{a}+x_{2} \bar{a} \\
\text { or, } & x_{1} \underline{a}+x_{2} \bar{a}>\left(x_{1}+x_{2}\right) \bar{a},
\end{array}
$$

which is a contradiction to the second inequality of (B.5).
If $\left(x_{1}+x_{2}\right) \underline{a}<x_{1} \bar{a}+x_{2} \underline{a}$, then

$$
\begin{aligned}
& x_{1} \underline{a}<x_{1} \bar{a} \\
\text { or, } & x_{1} \underline{a}+x_{2} \bar{a}<x_{1} \bar{a}+x_{2} \bar{a} \\
\text { or, } & x_{1} \underline{a}+x_{2} \bar{a}<\left(x_{1}+x_{2}\right) \bar{a},
\end{aligned}
$$

which is a contradiction to the second inequality of (B.6).
(d) For $x_{2}<0$ and $x_{1}>0$ with $x_{1}+x_{2}>0$, the proof is similar to the Case 2c.

- Case 3. Suppose that x_{1} and x_{2} have the same sign and y_{1} and y_{2} have different signs. By interchanging the role of x_{1} and x_{2} with y_{1} and y_{2}, we note that this case is identical to the Case 2. Hence,

$$
\mathbf{F}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right) \text { and } \mathbf{F}\left(x_{1}, y_{1}\right) \oplus \mathbf{F}\left(x_{2}, y_{2}\right) \text { are not comparable }
$$

- Case 4. Suppose that x_{1} and x_{2} have different signs, and y_{1} and y_{2} have different signs. For this case, only in the following two subcases, we prove that $\mathbf{F}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right)$ and $\mathbf{F}\left(x_{1}, y_{1}\right) \oplus \mathbf{F}\left(x_{2}, y_{2}\right)$ are not comparable. The same conclusion can be proved analogously for all other possible subcases.
(a) Let $x_{1}>0$ and $x_{2}<0$ with $x_{1}+x_{2}>0$, and $y_{1}<0$ and $y_{2}>0$ with $y_{1}+y_{2}<0$. Then, we have

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}] \oplus\left(y_{1}+y_{2}\right) \odot[\underline{b}, \bar{b}] \\
= & {\left[\left(x_{1}+x_{2}\right) \underline{a}+\left(y_{1}+y_{2}\right) \bar{b},\left(x_{1}+x_{2}\right) \bar{a}+\left(y_{1}+y_{2}\right) \underline{b}\right] }
\end{aligned}
$$

and

$$
\begin{aligned}
& x_{1} \odot[\underline{a}, \bar{a}] \oplus y_{1} \odot[\underline{b}, \bar{b}] \oplus x_{2} \odot[\underline{a}, \bar{a}] \oplus y_{2} \odot[\underline{b}, \bar{b}] \\
= & {\left[x_{1} \underline{a}+y_{1} \bar{b}+x_{2} \bar{a}+y_{2} \underline{b}, x_{1} \bar{a}+y_{1} \underline{b}+x_{2} \underline{a}+y_{2} \bar{b}\right] . }
\end{aligned}
$$

If possible let $\left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}] \oplus\left(y_{1}+y_{2}\right) \odot[\underline{b}, \bar{b}]$ and $x_{1} \odot[\underline{a}, \bar{a}] \oplus$ $y_{1} \odot[\underline{b}, \bar{b}] \oplus x_{2} \odot[\underline{a}, \bar{a}] \oplus y_{2} \odot[\underline{b}, \bar{b}]$ be comparable. Then,

$$
\begin{align*}
& \text { either }\left\{\begin{array}{r}
\left(x_{1}+x_{2}\right) \underline{a}+\left(y_{1}+y_{2}\right) \bar{b}<x_{1} \underline{a}+y_{1} \bar{b}+x_{2} \bar{a}+y_{2} \underline{b} \\
\text { and }\left(x_{1}+x_{2}\right) \bar{a}+\left(y_{1}+y_{2}\right) \underline{b}<x_{1} \bar{a}+y_{1} \underline{b}+x_{2} \underline{a}+y_{2} \bar{b}
\end{array}\right\} \\
& \text { or }\left\{\begin{array}{l}
\left(x_{1}+x_{2}\right) \underline{a}+\left(y_{1}+y_{2}\right) \bar{b}>x_{1} \underline{a}+y_{1} \bar{b}+x_{2} \bar{a}+y_{2} \underline{b} \\
\text { and }\left(x_{1}+x_{2}\right) \bar{a}+\left(y_{1}+y_{2}\right) \underline{b}>x_{1} \bar{a}+y_{1} \underline{b}+x_{2} \underline{a}+y_{2} \bar{b} .
\end{array}\right\} \tag{B.7}
\end{align*}
$$

If the first inequality of (B.7) holds, i.e., $\left(x_{1}+x_{2}\right) \underline{a}+\left(y_{1}+y_{2}\right) \bar{b}<$ $x_{1} \underline{a}+y_{1} \bar{b}+x_{2} \bar{a}+y_{2} \underline{b}$, then

$$
\begin{aligned}
& x_{2} \underline{a}+y_{2} \bar{b}<y_{2} \underline{b}+x_{2} \bar{a} \\
\text { or, } & x_{1} \bar{a}+x_{2} \underline{a}+y_{1} \underline{b}+y_{2} \bar{b}<\left(x_{1}+x_{2}\right) \bar{a}+\left(y_{1}+y_{2}\right) \underline{b},
\end{aligned}
$$

which is a contradiction to the second inequality of (B.7).

If the second inequality of (B.8) holds, i.e., $\left(x_{1}+x_{2}\right) \bar{a}+\left(y_{1}+y_{2}\right) \underline{b}>$ $x_{1} \bar{a}+y_{1} \underline{b}+x_{2} \underline{a}+y_{2} \bar{b}$, then

$$
\begin{aligned}
& x_{2} \bar{a}+y_{2} \underline{b}>x_{2} \underline{a}+y_{2} \bar{b} \\
\text { or, } & x_{1} \underline{a}+y_{1} \bar{b}+x_{2} \bar{a}+y_{2} \underline{b}>\left(x_{1}+x_{2}\right) \underline{a}+\left(y_{1}+y_{2}\right) \bar{b},
\end{aligned}
$$

which is a contradiction to the first inequality of (B.8).

Thus, neither (B.7) nor (B.8) is true, and hence $\left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}] \oplus$ $\left(y_{1}+y_{2}\right) \odot[\underline{b}, \bar{b}]$ and $x_{1} \odot[\underline{a}, \bar{a}] \oplus y_{1} \odot[\underline{b}, \bar{b}] \oplus x_{2} \odot[\underline{a}, \bar{a}] \oplus y_{2} \odot[\underline{b}, \bar{b}]$ are not comparable.
(b) Let $x_{1}>0$ and $x_{2}<0$ with $x_{1}+x_{2}<0$, and $y_{1}<0$ and $y_{2}>0$ with $y_{1}+y_{2}<0$. Then, we have

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}] \oplus\left(y_{1}+y_{2}\right) \odot[\underline{b}, \bar{b}] \\
= & {\left[\left(x_{1}+x_{2}\right) \bar{a}+\left(y_{1}+y_{2}\right) \bar{b},\left(x_{1}+x_{2}\right) \underline{a}+\left(y_{1}+y_{2}\right) \underline{b}\right] }
\end{aligned}
$$

and

$$
\begin{aligned}
& x_{1} \odot[\underline{a}, \bar{a}] \oplus y_{1} \odot[\underline{b}, \bar{b}] \oplus x_{2} \odot[\underline{a}, \bar{a}] \oplus y_{2} \odot[\underline{b}, \bar{b}] \\
= & {\left[x_{1} \underline{a}+y_{1} \bar{b}+x_{2} \bar{a}+y_{2} \underline{b}, x_{1} \bar{a}+y_{1} \underline{b}+x_{2} \underline{a}+y_{2} \bar{b}\right] . }
\end{aligned}
$$

If possible let $\left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}] \oplus\left(y_{1}+y_{2}\right) \odot[\underline{b}, \bar{b}]$ and $x_{1} \odot[\underline{a}, \bar{a}] \oplus$ $y_{1} \odot[\underline{b}, \bar{b}] \oplus x_{2} \odot[\underline{a}, \bar{a}] \oplus y_{2} \odot[\underline{b}, \bar{b}]$ be comparable. Then,

$$
\begin{align*}
& \text { either }\left\{\begin{array}{r}
\left(x_{1}+x_{2}\right) \bar{a}+\left(y_{1}+y_{2}\right) \bar{b}<x_{1} \underline{a}+y_{1} \bar{b}+x_{2} \bar{a}+y_{2} \underline{b} \\
\text { and }\left(x_{1}+x_{2}\right) \underline{a}+\left(y_{1}+y_{2}\right) \underline{b}<x_{1} \bar{a}+y_{1} \underline{b}+x_{2} \underline{a}+y_{2} \bar{b}
\end{array}\right\} \\
& \text { or }\left\{\begin{array}{l}
\left(x_{1}+x_{2}\right) \bar{a}+\left(y_{1}+y_{2}\right) \bar{b}>x_{1} \underline{a}+y_{1} \bar{b}+x_{2} \bar{a}+y_{2} \underline{b} \\
\text { and }\left(x_{1}+x_{2}\right) \underline{a}+\left(y_{1}+y_{2}\right) \underline{b}>x_{1} \bar{a}+y_{1} \underline{b}+x_{2} \underline{a}+y_{2} \bar{b} .
\end{array}\right\} \tag{B.10}
\end{align*}
$$

If the first inequality of (B.9) holds, i.e., $\left(x_{1}+x_{2}\right) \bar{a}+\left(y_{1}+y_{2}\right) \bar{b}<$ $x_{1} \underline{a}+y_{1} \bar{b}+x_{2} \bar{a}+y_{2} \underline{b}$, then

$$
\begin{aligned}
& x_{1} \bar{a}+y_{2} \bar{b}<x_{1} \underline{a}+y_{2} \underline{b} \\
\text { or, } & x_{1} \bar{a}+y_{1} \underline{b}+x_{2} \underline{a}+y_{2} \bar{b}<\left(x_{1}+x_{2}\right) \underline{a}+\left(y_{1}+y_{2}\right) \underline{b},
\end{aligned}
$$

which is a contradiction to the second inequality of (B.9).

If the second inequality of (B.10) holds,i.e., $\left(x_{1}+x_{2}\right) \underline{a}+\left(y_{1}+y_{2}\right) \underline{b}>$ $x_{1} \bar{a}+y_{1} \underline{b}+x_{2} \underline{a}+y_{2} \bar{b}$, then

$$
\begin{aligned}
& x_{1} \underline{a}+y_{2} \underline{b}>x_{1} \bar{a}+y_{2} \bar{b} \\
\text { or, } & x_{1} \underline{a}+y_{1} \bar{b}+x_{2} \bar{a}+y_{2} \underline{b}>\left(x_{1}+x_{2}\right) \bar{a}+\left(y_{1}+y_{2}\right) \bar{b},
\end{aligned}
$$

which is a contradiction to the first inequality of (B.10).

Thus, neither (B.9) nor (B.10) is true, and hence $\left(x_{1}+x_{2}\right) \odot[\underline{a}, \bar{a}] \oplus$ $\left(y_{1}+y_{2}\right) \odot[\underline{b}, \bar{b}]$ and $x_{1} \odot[\underline{a}, \bar{a}] \oplus y_{1} \odot[\underline{b}, \bar{b}] \oplus x_{2} \odot[\underline{a}, \bar{a}] \oplus y_{2} \odot[\underline{b}, \bar{b}]$ are not comparable.

From (B.1), (B.2) and four cases after (B.2), we see that \mathbf{F} is a linear IVF.

C. Appendix C

C. 1 Proof of the Lemma 3.1

Proof. (i) Since

$$
\begin{gathered}
\limsup _{x \rightarrow \bar{x}}(\underline{f}(x)+\underline{g}(x)) \leq \limsup _{x \rightarrow \bar{x}} \underline{f}(x)+\limsup _{x \rightarrow \bar{x}} \underline{g}(x) \text { and } \\
\limsup _{x \rightarrow \bar{x}}(\bar{f}(x)+\bar{g}(x)) \leq \limsup _{x \rightarrow \bar{x}} \bar{f}(x)+\limsup _{x \rightarrow \bar{x}} \bar{g}(x),
\end{gathered}
$$

then

$$
\begin{aligned}
& {\left[\limsup _{x \rightarrow \bar{x}}(\underline{f}(x)+\underline{g}(x)), \limsup _{x \rightarrow \bar{x}}(\bar{f}(x)+\bar{g}(x))\right] } \\
\preceq & {\left[\limsup _{x \rightarrow \bar{x}} \underline{f}(x), \limsup _{x \rightarrow \bar{x}} \bar{f}(x)\right] \oplus\left[\limsup _{x \rightarrow \bar{x}} \underline{g}(x), \limsup _{x \rightarrow \bar{x}} \bar{g}(x)\right], }
\end{aligned}
$$

which implies $\limsup _{x \rightarrow \bar{x}}(\mathbf{F}(x) \oplus \mathbf{G}(x)) \preceq \limsup _{x \rightarrow \bar{x}} \mathbf{F}(x) \oplus \limsup _{x \rightarrow \bar{x}} \mathbf{G}(x)$.
(ii) Since \underline{f} and \bar{f} are real-valued functions, for any $\lambda \geq 0$, we have

$$
\begin{equation*}
\limsup _{x \rightarrow \bar{x}}(\lambda \underline{f}(x))=\lambda \limsup _{x \rightarrow \bar{x}} \underline{f}(x) \text { and } \limsup _{x \rightarrow \bar{x}}(\lambda \bar{f}(x))=\lambda \limsup _{x \rightarrow \bar{x}} \bar{f}(x) . \tag{C.1}
\end{equation*}
$$

Hence, for any $\lambda \geq 0$,

$$
\begin{aligned}
\limsup _{x \rightarrow \bar{x}}(\lambda \odot \mathbf{F}(x)) & =\left[\limsup _{x \rightarrow \bar{x}}(\lambda \underline{f}(x)), \limsup _{x \rightarrow \bar{x}}(\lambda \bar{f}(x))\right] \\
& =\lambda \odot \limsup _{x \rightarrow \bar{x}} \mathbf{F}(x) \text { by }(\text { C.1) } .
\end{aligned}
$$

(iii) Let f be a real-valued function. Then, $\left|\limsup _{x \rightarrow \bar{x}} f(x)\right| \leq \limsup _{x \rightarrow \bar{x}}|f(x)|$. By the definition of norm on $I(\mathbb{R})$,

$$
\begin{aligned}
\left\|\limsup _{x \rightarrow \bar{x}} \mathbf{F}(x)\right\|_{I(\mathbb{R})} & =\max \left\{\left|\limsup _{x \rightarrow \bar{x}} \underline{f}(x)\right|,\left|\limsup _{x \rightarrow \bar{x}} \bar{f}(x)\right|\right\} \\
& \leq \limsup _{x \rightarrow \bar{x}}\|\mathbf{F}(x)\|_{I(\mathbb{R})} .
\end{aligned}
$$

C. 2 Proof of the Lemma 3.2

Proof. Since \underline{f} and \bar{f} are upper Clarke differentiable at \bar{x}. Therefore, both of the following limits

$$
\underset{\substack{x \rightarrow \bar{x} \\ \lambda \rightarrow 0+}}{\limsup } \frac{1}{\lambda} l_{1}(\lambda) \text { and } \limsup _{\substack{x \rightarrow \bar{x} \\ \lambda \rightarrow 0+}} \frac{1}{\lambda} l_{2}(\lambda)
$$

exist, where $l_{1}(\lambda)=\underline{f}(x+\lambda h)-\underline{f}(x)$ and $l_{2}(\lambda)=\bar{f}(x+\lambda h)-\bar{f}(x)$. Thus,

$$
\begin{aligned}
& \limsup _{\substack{x \rightarrow \bar{x} \\
\lambda \rightarrow 0+}} \frac{1}{\lambda}\left(l_{1}(\lambda)+l_{2}(\lambda)\right) \text { and } \limsup _{\substack{x \rightarrow \bar{x} \\
\lambda \rightarrow 0+}} \frac{1}{\lambda}\left|l_{1}(\lambda)-l_{2}(\lambda)\right| \text { exist } \\
& \Longrightarrow \quad \limsup _{\substack{x \rightarrow \bar{x} \\
\lambda \rightarrow 0+}} \frac{1}{2 \lambda}\left(l_{1}(\lambda)+l_{2}(\lambda)-\left|l_{1}(\lambda)-l_{2}(\lambda)\right|\right) \text { and } \\
& \limsup _{\substack{x \rightarrow \bar{x} \\
\lambda \rightarrow 0+}} \frac{1}{2 \lambda}\left(l_{1}(\lambda)+l_{2}(\lambda)+\left|l_{1}(\lambda)-l_{2}(\lambda)\right|\right) \text { exist } \\
& \Longrightarrow \limsup _{\substack{x \rightarrow \bar{x} \\
\lambda \rightarrow 0+}} \frac{1}{\lambda}\left(\min \left\{l_{1}(\lambda), l_{2}(\lambda)\right\}\right) \text { and } \limsup _{\substack{x \rightarrow \bar{x} \\
\lambda \rightarrow 0+}} \frac{1}{\lambda}\left(\max \left\{l_{1}(\lambda), l_{2}(\lambda)\right\}\right) \text { exist } \\
& \Longrightarrow \quad \underset{\substack{x \rightarrow \bar{x} \\
\lambda \rightarrow 0+}}{\limsup } \frac{1}{\lambda} \odot\left[\min \left\{l_{1}(\lambda), l_{2}(\lambda)\right\}, \max \left\{l_{1}(\lambda), l_{2}(\lambda)\right\}\right] \text { exists } \\
& \Longrightarrow \limsup _{\substack{x \rightarrow \bar{x} \\
\lambda \rightarrow 0+}} \frac{1}{\lambda} \odot\left(\mathbf{F}(x+\lambda h) \ominus_{g H} \mathbf{F}(x)\right) \text { exists. }
\end{aligned}
$$

Hence, \mathbf{F} is upper $g H$-Clarke differentiable IVF at $\bar{x} \in \mathcal{S}$.

C. 3 Proof of the Lemma 3.3

Proof. (i) Let \mathbf{F} be $g H$-continuous at $\bar{x} \in \mathcal{S}$. Thus, for any $d \in \mathbb{R}^{n}$ such that $\bar{x}+d \in \mathcal{S}$,

$$
\lim _{\|d\| \rightarrow 0}\left(\mathbf{F}(\bar{x}+d) \ominus_{g H} \mathbf{F}(\bar{x})\right)=\mathbf{0}
$$

which implies

$$
\lim _{\|d\| \rightarrow 0}(\underline{f}(\bar{x}+d)-\underline{f}(\bar{x})) \rightarrow 0 \text { and } \lim _{\|d\| \rightarrow 0}(\bar{f}(\bar{x}+d)-\bar{f}(\bar{x})) \rightarrow 0,
$$

i.e., \underline{f} and \bar{f} are continuous at $\bar{x} \in \mathcal{S}$.

Conversely, let the functions \underline{f} and \bar{f} be continuous at $\bar{x} \in \mathcal{S}$. If possible, let \mathbf{F} be not $g H$-continuous at \bar{x}. Then, as $\|d\| \rightarrow 0,\left(\mathbf{F}(\bar{x}+d) \ominus_{g H} \mathbf{F}(\bar{x})\right) \nrightarrow \mathbf{0}$. Therefore, as $\|d\| \rightarrow 0$ at least one of the functions $(\underline{f}(\bar{x}+d)-\underline{f}(\bar{x}))$ and $(\bar{f}(\bar{x}+d)-\bar{f}(\bar{x}))$ does not tend to 0 . So it is clear that at least one of the functions \underline{f} and \bar{f} is not continuous at \bar{x}. This contradicts the assumption that the functions \underline{f} and \bar{f} both are continuous at \bar{x}. Hence, \mathbf{F} is $g H$-continuous at \bar{x}.
(ii) Let \mathbf{F} be $g H$-Lipschitz continuous on \mathcal{S}. Thus, there exists $K>0$ such that for any $x, y \in \mathcal{X}$ we have

$$
\begin{aligned}
& \left\|\mathbf{F}(x) \ominus_{g H} \mathbf{F}(y)\right\|_{I(\mathbb{R})} \leq K\|x-y\| \\
\Longrightarrow & |\underline{f}(x)-\underline{f}(y)| \leq K\|x-y\| \text { and }|\bar{f}(x)-\bar{f}(y)| \leq K\|x-y\| .
\end{aligned}
$$

Hence, \underline{f} and \bar{f} are Lipschitz continuous on \mathcal{S}.
Conversely, let the functions \underline{f} and \bar{f} be Lipschitz continuous on \mathcal{S}. Thus,
there exist $K_{1}, K_{2}>0$ such that for all $x, y \in \mathcal{S}$,

$$
\begin{aligned}
& |\underline{f}(x)-\underline{f}(y)| \leq K_{1}\|x-y\| \text { and }|\bar{f}(x)-\bar{f}(y)| \leq K_{2}\|x-y\| \\
\Longrightarrow \quad & \max \{|\underline{f}(x)-\underline{f}(y)|,|\bar{f}(x)-\bar{f}(y)|\} \leq \bar{K}\|x-y\|, \\
& \left(\text { where } \bar{K}=\max \left\{K_{1}, K_{2}\right\}\right) \\
\Longrightarrow & \left\|\mathbf{F}(x) \ominus_{g H} \mathbf{F}(y)\right\|_{I(\mathbb{R})} \leq \bar{K}\|x-y\| .
\end{aligned}
$$

Hence, \mathbf{F} is $g H$-Lipschitz continuous IVF on \mathcal{S}.
(iii) Let \mathbf{F} be $g H$-Lipschitz continuous on \mathcal{S}. Then, there exists an $K>0$ such that for all $x, y \in \mathcal{S}$, we have

$$
\left\|\mathbf{F}(y) \ominus_{g H} \mathbf{F}(x)\right\|_{I(\mathbb{R})} \leq K\|y-x\| .
$$

For $h=y-x \in \mathcal{S}$,

$$
\begin{aligned}
& \left\|\mathbf{F}(x+h) \ominus_{g H} \mathbf{F}(x)\right\|_{I(\mathbb{R})} \leq K\|h\| \\
\Longrightarrow & \lim _{\|h\| \rightarrow 0}\left\|\mathbf{F}(x+h) \ominus_{g H} \mathbf{F}(x)\right\|_{I(\mathbb{R})}=0 \\
\Longrightarrow & \lim _{\|h\| \rightarrow 0}\left(\mathbf{F}(x+h) \ominus_{g H} \mathbf{F}(x)\right)=\mathbf{0} .
\end{aligned}
$$

Hence, \mathbf{F} is $g H$-continuous at $x \in \mathcal{S}$.

D. Appendix D

D.1 Proof of the Lemma 4.1

Proof. Since \underline{f} and \bar{f} are Hadamard semidifferentiable at \bar{x}, both of the following limits

$$
\lim _{\substack{\lambda \rightarrow 0+\\ h \rightarrow v}} \frac{1}{\lambda} l_{1}(\lambda, h) \text { and } \lim _{\substack{\lambda \rightarrow 0+\\ h \rightarrow v}} \frac{1}{\lambda} l_{2}(\lambda, h)
$$

exist, where $l_{1}(\lambda, h)=\underline{f}(x+\lambda h)-\underline{f}(x)$ and $l_{2}(\lambda, h)=\bar{f}(x+\lambda h)-\bar{f}(x)$. Thus,

$$
\begin{aligned}
& \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda}\left(l_{1}(\lambda, h)+l_{2}(\lambda, h)\right) \text { and } \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda}\left|l_{1}(\lambda, h)-l_{2}(\lambda, h)\right| \text { exist } \\
\Longrightarrow & \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{2 \lambda}\left(l_{1}(\lambda, h)+l_{2}(\lambda, h)-\left|l_{1}(\lambda, h)-l_{2}(\lambda, h)\right|\right) \text { and } \\
& \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{2 \lambda}\left(l_{1}(\lambda, h)+l_{2}(\lambda, h)+\left|l_{1}(\lambda, h)-l_{2}(\lambda, h)\right|\right) \text { exist } \\
\Longrightarrow & \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda}\left(\min \left\{l_{1}(\lambda, h), l_{2}(\lambda, h)\right\}\right) \text { and } \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda}\left(\max \left\{l_{1}(\lambda, h), l_{2}(\lambda, h)\right\}\right) \text { exist } \\
\Longrightarrow & \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda} \odot\left[\min \left\{l_{1}(\lambda, h), l_{2}(\lambda, h)\right\}, \max \left\{l_{1}(\lambda, h), l_{2}(\lambda, h)\right\}\right] \text { exists } \\
\Longrightarrow & \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda} \odot\left(\mathbf{F}(x+\lambda h) \ominus_{g H} \mathbf{F}(x)\right) \text { exists. }
\end{aligned}
$$

Hence, \mathbf{F} is $g H$-Hadamard semidifferentiable IVF at $\bar{x} \in \mathcal{S}$, and

$$
\begin{aligned}
& \mathbf{F}_{\mathscr{H}}(\bar{x})(v) \\
= & \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda} \odot\left(\mathbf{F}(x+\lambda h) \ominus_{g H} \mathbf{F}(x)\right) \\
= & \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda} \odot\left[\min \left\{l_{1}(\lambda, h), l_{2}(\lambda, h)\right\}, \max \left\{l_{1}(\lambda, h), l_{2}(\lambda, h)\right\}\right] \\
= & {\left[\min \left\{\lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda} l_{1}(\lambda, h), \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda} l_{2}(\lambda, h)\right\}, \max \left\{\lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda} l_{1}(\lambda, h), \lim _{\substack{\lambda \rightarrow 0+\\
h \rightarrow v}} \frac{1}{\lambda} l_{2}(\lambda, h)\right\}\right] } \\
= & {\left[\min \left\{\underline{f}_{\mathscr{H}^{\prime}}(\bar{x})(v), \bar{f}_{\mathscr{H}^{\prime}}(\bar{x})(v)\right\}, \max \left\{\underline{f}_{\mathscr{H}^{\prime}}(\bar{x})(v), \bar{f}_{\mathscr{H}^{\prime}}(\bar{x})(v)\right\}\right] }
\end{aligned}
$$

D. 2 Proof of the Lemma 4.8

Proof. Let \mathbf{F} be semiconvex on \mathcal{S}. Then, there exists a monotonic increasing IVF $\mathbf{E}: \mathbb{R}_{+} \rightarrow I\left(\mathbb{R}_{+}\right)$such that $\mathbf{E}(\delta) \rightarrow \mathbf{0}$ as $\delta \rightarrow 0+$ and

$$
\mathbf{F}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) \preceq \lambda_{1} \odot \mathbf{F}\left(x_{1}\right) \oplus \lambda_{2} \odot \mathbf{F}\left(x_{2}\right) \oplus \lambda_{1} \lambda_{2}\|x-y\| \odot \mathbf{E}(\|x-y\|)
$$

for all $x, y \in \mathcal{S}$ and $\lambda_{1}, \lambda_{2} \in[0,1]$ with $\lambda_{1}+\lambda_{2}=1$.
Let $\mathbf{E}(\delta)=[\underline{e}(\delta), \bar{e}(\delta)]$. Then, \underline{e} and \bar{e} are monotonic increasing real-valued function, by Remark 2.4.1, such that

$$
\underline{f}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) \leq \lambda_{1} \underline{f}\left(x_{1}\right)+\lambda_{2} \underline{f}\left(x_{2}\right) \oplus \lambda_{1} \lambda_{2}\|x-y\| \underline{e}(\|x-y\|)
$$

and

$$
\bar{f}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}\right) \leq \lambda_{1} \bar{f}\left(x_{1}\right)+\lambda_{2} \bar{f}\left(x_{2}\right) \oplus \lambda_{1} \lambda_{2}\|x-y\| \bar{e}(\|x-y\|)
$$

for all $x, y \in \mathcal{S}$ and $\lambda_{1}, \lambda_{2} \in[0,1]$ with $\lambda_{1}+\lambda_{2}=1$.
Hence, \underline{f} and \bar{f} are semiconvex on \mathcal{S}.

E. List of Publications

[1] Ghosh, D., Chauhan, R. S., Mesiar, R., \& Debnath, A. K. (2019). Generalized Hukuhara Gâteaux and Fréchet derivatives of interval-valued functions and their application in optimization with interval-valued functions. Information Sciences, 510, 317-340.
[2] Chauhan, R. S., \& Ghosh, D. (2021). An erratum to "Extended Karush-Kuhn-Tucker condition for constrained interval optimization problems and its application in support vector machines". Information Sciences, 559, 309-313.
[3] Chauhan, R. S., Ghosh, D., Ramik, D., Debnath, A. K. Generalized HukuharaClarke derivative of interval-valued functions and its properties. Soft computing, arXiv preprint arXiv:2010.16182. (Accepted)
[4] Ghosh, D., Debnath, A. K., Chauhan, R. S., \& Castillo, O. GeneralizedHukuhara gradient efficient-direction method to solve optimization problems with interval-valued functions and its application in Least Squares Problems. International Journal of Fuzzy Systems, arXiv preprint arXiv:2011.10462. (Accepted)
[5] Chauhan, R. S., Ghosh, D., Ramik, D., Debnath, A. K. Generalized Hukuharapseudoconvex and quasiconvex interval-valued functions and their application in optimization problems with $g H$-Clarke derivative. Journal of Computational and Applied Mathematics. (Under Review)
[6] Chauhan, R. S., Ghosh, D. Generalized Hukuhara Hadamard semidervative of interval-valued functions and its application in interval optimization. International Jounral of Uncertain Systems. (Under Review)
[7] Chauhan, R. S., Ghosh, D., Ansari, Q. H. Generalized Hukuhara Hadamard dervative of interval-valued functions and its application in interval optimization. Positivity. (Under Review)
[8] Debnath, A. K., Ghosh, D., Chauhan, R. S. Generalized Hukuhara subgradient method for optimization problem with interval-valued functions and its application in Lasso problem. Journal of Applied Mathematics and Computing. (Under Review)
[9] Ghosh, D., Dempe, S., Debnath, A. K., \& Chauhan, R. S. Lagrange multipliers characterization of efficient solutions for interval optimization problems. Optimization. (Under Review)
[10] Anshika, Ghosh, D., Chauhan, R. S., and Mesiar, R. Generalized-Hukuhara subdifferential analysis and its application in nonconvex composite optimization problems with interval-valued functions. Information Sciences. (Under Review)
[11] Chauhan, R. S. and Ghosh, D. Generalized Hukuhara-Dini Semiderivative of Interval-valued Functions and its Application in Interval-Optimization Problems (Ready for Submit)

