
Chapter 7

Conclusions and future scopes

A compendium of the main conclusions that can be made from this thesis is given in

this chapter. It also includes a summary of the directions for future research scopes.

7.1 General conclusions

The principal contributions of this thesis are as follows.

• Several inequalities of interval analysis which are helpful to develop the theories

of interval-valued functions and interval optimization problems are proved.

• Rigorous analysis on directional derivative, Gâteaux derivative, Fréchet Deriva-

tive, Clarke derivative, Hadamard semiderivative, Hadamard derivative, and

Dini semiderivative for IVFs with several examples have been studied. De-

tailed explanation about the relations among all these derivatives with several

results and examples have been shown. Further, a necessary and sufficient

condition for the existence of these derivatives for IVFs is explained.
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• Detail explanation of monotonicity, boundedness, and Lipschitz continuity,

pseudoconvexity, and quasiconvexity for IVFs are explained. Further, a rigor-

ous analysis on linearity, sublinearity, supremum and infemum, limit superior

and limit inferior for IVFs have been studied.

• Rigorous information about the optimality conditions of unconstraint IOPs

with the help of all proposed derivatives have been found. Also, by using

Hadamard derivative for IVFs, a necessary and sufficient Karush-Kuhn-Tucker

condition for constraint IOPs are studied.

7.2 Contributions of the thesis

This thesis appertains to the theories on analysis of IVFs and characterization to

the solutions of IOPs through the idea of gereralized derivatives of IVFs. Chapter

wise contributions of this dissertation are highlighted below.

Chapter 2 describes the notions of directional derivative, Gâteaux derivative and

Fréchet derivative for IVFs. For an IVF, the existence of Fréchet derivative is shown

to imply the existence of Gâteaux derivative, and the existence of Gâteaux derivative

is observed to indicate the presence of directional derivative. It is proved that the

existence of Gâteaux derivative implies the existence of Fréchet derivative for a

Lipschitz continuous IVF. The concepts of linear and monotonic IVFs are studied,

and it is observed that for a convex IVF on a linear space, the directional derivative

exists at any point for every direction. Further, it is shown that the proposed

derivatives are useful to check the convexity of an IVF and to characterize efficient

points of an optimization problem with the interval-valued objective function. It

is observed that at an efficient point of an IVF, none of its directional derivatives
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dominates zero, and the Gâteaux derivative must contain zero. The entire study is

supported by suitable illustrative examples.

Chapter 3 explaines the notions of Clarke derivative, pseudoconvex and quasicon-

vex IVFs. To describe the properties of Clarke derivative, the concepts of limit

superior, limit inferior, and sublinear IVFs are studied. The upper Clarke derivative

function of a Lipschitz continuous IVF is observed to be sublinear IVF. It is found

that every Lipschitz continuous IVF is upper Clarke differentiable. Further, for a

convex and Lipschitz continuous IVF, it is shown that the upper Clarke derivative

coincides with the directional derivative. With the help of the studied pseudoconvex,

quasiconvex, and Lipschitz IVFs, a few results on characterizing efficient solutions

to an interval optimization problem with upper Clarke and Fréchet differentiable

IVF on a starshaped constraint set are obtained. Importantly, it is shown that at

an efficient point of an IOP on a starshaped set, the upper Clarke derivative of the

objective function does not dominate zero. The entire study is supported by suitable

illustrative examples.

Chapter 4 describes the notion of Hadamard semiderivative for IVFs. For direction-

ally differentiable IVFs, it is proved that Lipschitz continuity implies the existence

of Hadamard semiderivative for IVFs. Further, it is observed that continuity of

IVF is a necessary condition for the existence of Hadamard semidifferentiability. It

is found that the composition of a Hadamard semidifferentiable and a Hadamard

semidifferentiable IVF is a Hadamard semidifferentiable IVF. Further, for finitely

many comparable IVFs, it is shown that the Hadamard semiderivative of their max-

imum is the maximum of their Hadamard semiderivative. Proposed semiderivative is

observed to be useful to check the convexity of an IVF. To characterize the efficient

points of IOPs, it is observed that at an efficient point, the Hadamard semiderivative

of the objective function does not strictly dominate zero. Further, it is found that
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if Hadamard semiderivative does not strictly dominate zero, the point is an efficient

point of IOP. For constraint IOPs, the Karush-Kuhn-Tucker sufficient condition to

obtain efficient solutions is derived. The entire study is supported by suitable illus-

trative examples.

Chapter 5 explaines the study of Hadamard derivative for IVFs. For an IVF, it

is shown that the existence of Hadamard derivative implies the existence of Fréchet

derivative and vise-versa. Further, it is proved that the existence of Hadamard

derivative implies the existence of continuity of IVFs. It is found that the compo-

sition of Hadamard differentiable real-valued function and Hadamard differentiable

IVF is Hadamard differentiable. Further, for finite comparable IVF, it is proved

that the Hadamard derivative of the maximum of all finite comparable IVFs is the

maximum of their Hadamard derivative. The proposed derivative is observed to be

useful to check the convexity of an IVF and to characterize efficient points of an

optimization problem with IVF. For a convex IVF, it is observed that if at a point

the Hadamard derivative does not dominate to zero, then the point is an efficient

point. Further, it is proved that at an efficient point, the Hadamard derivative does

not dominate zero and also contains zero. For constraint IOPs, an extended Karush-

Kuhn-Tucker condition by using the proposed derivative is derived. The entire study

is supported by suitable illustrative examples.

Chapter 6 describes the notions of upper and lower gH-Dini semiderivative, upper

and lower gH-Hadamard semiderivative for IVFs. The upper gH-Dini semiderivative

and upper gH-Hadamard semiderivative of a gH-Lipschitz IVF are observed to

be a positive homogeneous IVF. It is found that every gH-Lipschitz continuous

IVF is upper gH-Dini semidifferentiable and upper gH-Hadamard semidifferentiable
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IVFs. Further, for a convex and gH-Lipschitz IVF, it is shown that the upper gH-

Din semiderivative and upper gH-Hadamard semiderivative coincide with the gH-

directional derivative. It is also observed that the gH-continuity of IVF is necessary

condition for existence of upper and lower gH-Dini semiderivative. With the help

of the studied semiderivative, we derived a few results on characterizing efficient

solutions of an IOP.

7.3 Future scopes of studies

The concerned research community is engaged to discover new theories and simulta-

neously trying to improve existing theories. From the analysis of the work presented

in this thesis, there are several scopes for the extension. The opportunities for future

research are mentioned below.

• In optimization theory, it is shown that how to solve the optimization problems

by using subgradient, Michel-Penot derivative, and other derivatives. The

proposed concepts of IVF may be effective to generalized Michel-Penot and

other derivatives for IVFs, which are helpful to solve IOPs. Also, we shall

attempt to propose a subgradient technique to find out the complete set of

efficient points of IOPs by using derived concepts of this thesis.

• Another promising direction of future research can be the analysis of the fuzzy-

valued functions (FVFs) as the alpha-cuts of fuzzy numbers are compact in-

tervals. So, in the future, one can attempt to extend the proposed idea of all

these derivatives for fuzzy-valued functions.
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• In this thesis, we have derived the optimality conditions of constrained IOPs

only for Hadamard diffrentiable IVFs. One may find the optimality conditions

of constrained IOPs for other proposed derivatives.

• A noisy and uncertain environment in the control system or a differential

equation appears due to the incomplete information of demand for a product

and changes in the climate. In the future, we will try to solve a control problem

in a noisy or uncertain environment with the help of proposed derivatives of

IVFs.

• In many classification problems, the data set may not be precise and thus

involves uncertainty. This may be due to errors in measurement, implemen-

tation. The standard Support Vector Machines (SVM) formulation is not

applicable for such data as these quantities are interval-valued. Thus, we shall

try to formulate the SVM problem for the interval-valued data set and try to

solve SVM problems by using the proposed derivatives of this thesis.

7.4 Applications of derived concepts in some other

fields

• Application on Control Theory

The applications of the proposed derivatives in control systems and differential

equations in a noisy or uncertain environment can be shown by solving the

following problem (7.1). Noisy environments eventually appear due to the

incomplete information (e.g., demand for a product) or unpredictable changes

(e.g., changes in the climate) in the system. The general control problem in a
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noisy or uncertain environment that one may consider to study is the following:

min J(x, u, t)

subject to
dx

dt
= F(x, u, t),

x(0) = x0,


(7.1)

where x : [0,∞) → Rn and u : [0,∞) → Rm are state and control variables,

respectively, and J and F are two gH-Fréchet differentiable or gH-Hadamard

differentiable interval-valued functions with respect to the the control variable

u. In such a control problem, one may attempt to show the applications of

derived derivatives to find the optimal control of the system.

• Application to Support Vector Machine

Support Vector Machines (SVMs) are generally used in solving classification

problems. Here we consider to describe a binary classification problem. For a

given data set D = {(xi, yi)|xi ∈ Rn, yi ∈ {−1, 1}, i = 1, 2, · · · ,m}, the prob-

lem of classifying data using SVMs is equivalent to the following optimization

problem:

min
w,b

F (w, b) = 1
2
‖w‖2

subject to yi(w
Txi + b) ≥ 1, i = 1, 2, . . . ,m,

 (7.2)

where w ∈ Rn is the weight vector and b ∈ R is the bias. The constraints

represent the condition that the data points lie on either side of the separating

hyperplanes wTx+ b = ±1.

In many classification problems, the data set may not be precise and thus

involves uncertainty. This may be due to errors in measurement, implementa-

tion, etc. For example, let us assume that we want to predict whether there
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will be rain tomorrow or not. The data we may require the wind speed, humid-

ity levels, temperature, etc. These variables usually have values in intervals

like 10–13 km/hr wind speed, 40–50% humidity, 30–35oC temperature, etc.

The conventional SVM formulation is not applicable for such data as the per-

taining quantities are interval-valued. Thus, we formulate the SVM problem

for the interval-valued data set

{(Xi, yi) | Xi ∈ I(R)n, yi ∈ {−1, 1}, i = 1, 2, · · · ,m}

by

min
w,b

F (w, b) = 1
2
‖w‖2,

subject to Gi(w, b) = [1, 1]	gH yi �
(
w> �Xi ⊕ b

)
� 0, i = 1, 2, . . . ,m.


(7.3)

We note that the functions F and Gi are gH-Hadamard differentiable and

convex. At x̄ = (w̄, b̄), in the direction v = (w, b), we have

FH (x̄)(v) = w � [w̄, w̄] and GiH (x̄)(d) = − (w � (yi �Xi)⊕ byi) .

According to Theorem 5.23, for an efficient point (w̄, b̄) of (7.3), there exist

nonnegative scalars u1, u2, . . . , um such that

0 ∈

(
w � [w̄, w̄]⊕

m∑
i=1

ui �− (w � (yi �Xi)⊕ byi)

)
, (7.4)

and 0 = ui �Gi(w
∗, b∗), i = 1, 2, . . . ,m. (7.5)
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The condition (7.4) can be simplified as

0 ∈

(
[w∗, w∗]⊕

m∑
i=1

(−uiyi)�Xi

)
and

m∑
i=1

uiyi = 0.

The data points Xi for which ui 6= 0 are called support vectors. By (7.5),

corresponding to any ui > 0, we have Gi(w
∗, b∗) = 0. Thus, corresponding to

w∗, the value of the bias b∗ is such a quantity that Gi(w
∗, b∗) = 0 for all of

those i ∈ {1, 2, . . . ,m} for which ui > 0.

As the functions F and Gi are gH-Hadamard differentiable and convex, by

Theorems 5.23 and 5.24, the set of conditions by which we obtain the efficient

solutions of the SVM IOP (7.3) are



0 ∈

(
[w,w]⊕

m∑
i=1

(−uiyi)�Xi

)
,

m∑
i=1

uiyi = 0,

0 = ui �Gi(w, b), i = 1, 2, . . . ,m.

(7.6)

Corresponding to any of the value of w that satisfies (7.6), we define the set

of possible values of the bias by

⋂
i: ui>0

{b | Gi(w, b) = 0} .

By using any solution w̄ and b̄ of (7.6) and (7.4), a classifying hyperplane and

the SVM classifier function are given by

w̄>X + b̄ = 0 and s∗(X) = sign
(
w̄>X + b̄

)
,

where sign (·) denotes the sign function.
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Example 7.1. Consider the interval data set

X1 =

[
[3, 4], [1, 2]

]
, y1 = 1, X2 =

[
[4, 5], [2, 3]

]
, y2 = 1,

X3 =

[
[5, 6], [1, 2]

]
, y3 = 1, X4 =

[
[0, 1], [1, 2]

]
, y4 = −1,

X5 =

[
[1, 2], [2, 3]

]
, y5 = −1, X6 =

[
[0, 2], [3, 4]

]
, y6 = −1.

For this data set we find a classifying hyperplane with the help of the IOP SVM

(7.3).

In order to find a classifying hyperplane, we need to find a possible solution

(w, b) of (7.6) along with the corresponding ui’s.

We observe that for (u1, u2, u3, u4, u5, u6) = (1, 0, 0, 0, 1, 0) we have
∑6

i=1 uiyi =

0. For these values of ui’s, the first condition in (7.6) reduces to

0nv ∈ ([w,w]⊕ (−1)�X1 ⊕X5)

or, [w,w] ∈ (−1)� ((−1)�X1 ⊕X5)

or, w ∈ ([1, 3], [−2, 0]). (7.7)

Denoting w = (w1, w2) ∈ R2, the condition (7.7) reduces to

1 ≤ w1 ≤ 3 and − 2 ≤ w2 ≤ 0. (7.8)

Let us choose w∗1 = 1 and w∗2 = −2. Corresponding to this w∗ = (w∗1, w
∗
2) =

(1,−2), from (7.4) and the third condition in (7.6), the set of possible values
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of the bias b is given by

⋂
i=1,5

{b ∈ R | Gi(w
∗, b) = 0}

= {b ∈ R | G1(w∗, b) = 0}
⋂
{b ∈ R | G5(w∗, b) = 0}

= {b ∈ R | b ∈ [−2, 1]} ∩ {b ∈ R | b ∈ [−6,−1]}

= {b ∈ R | − 2 ≤ b ≤ −1}.

Thus corresponding to w∗1 = 1 and w∗2 = −2 the set of classifying hyperplanes

is given by

w∗1x1 + w∗2x2 + b = 0, − 2 ≤ b ≤ −1

i.e., x1 − 2x2 + b = 0,−2 ≤ b ≤ −1.

For any choice of b in [−2,−1], note that the value of the objective function

F is identical (and it is 5
2
).

***********


