
Chapter 6

Generalized Hukuhara-Dini

Semiderivative of Interval-valued

Functions and its Application in

Interval Optimization Problems

6.1 Introduction

The classical concept of derivative (Fréchet, Gâteaux, Clarke, Hadamard, and di-

rectional) has been proved one of the most useful tools in mathematics, as a large

variety of problems has been described and solved by means of this topic. In solving

classical optimization problems the use of derivatives is inevitable. Besides treat-

ing the classical smooth problems, the mathematicians got many impulses in the

last decades from other sciences (mainly from economics, engineering, etc.) in or-

der to treat nonsmooth, nondifferentiable optimization problems. The analysis of
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such problems has definitely required some generalizations of the derivative as Dini

semiderivative. Since the early 1960’s much effort has gone into the development of

a generalized kind of differentiation that can be useful in the analysis of optimization

problems. The subject has grown very rapidly since then. Our aim in this chapter

is to collect and to state the most relevant results concerning Dini semiderivatives.

6.2 Motivation

From the literature on the analysis of IVFs, one can notice that the study of tradi-

tional generalized semiderivative (upper and lower Dini semiderivative, upper and

lower Hadamard semiderivative) for IVFs have not been developed so far. However,

the basic properties of generalized semiderivative might be beneficial for character-

izing and capturing the optimal solutions of IOPs with nonsmooth IVFs. In this

chapter, we generalize these semiderivative for IVFs.

6.3 Contributions

In this chapter, the notions of upper and lower gH-Dini semiderivative, upper and

lower gH-Hadamard semiderivative for IVFs are proposed. The upper gH-Dini

semiderivative and upper gH-Hadamard semiderivative of a gH-Lipschitz IVF are

observed to be a positive homogeneous IVF. It is found that every gH-Lipschitz con-

tinuous IVF is upper gH-Dini semidifferentiable and upper gH-Hadamard semidif-

ferentiable IVFs. Further, for a convex and gH-Lipschitz IVF, it is shown that the

upper gH-Din semiderivative and upper gH-Hadamard semiderivative coincide with

the gH-directional derivative. It is also observed that the gH-continuity of IVF is

necessary condition for the existence of upper and lower gH-Dini semiderivative.
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With the help of the studied semiderivative, we derived a few results on character-

izing efficient solutions of an IOP.

Primary contributions of this chapter are as follows:

(i) For a convex and gH-Lipschitz continuous IVF, it is observed that the upper

gH-Dini semiderivative coincides with gH-directional derivative, gH-Hadamard

semiderivative, and upper gH-Clarke derivative.

(ii) For finite comparable IVF, we prove that the upper gH-Dini semiderivative

of the maximum of all finite comparable IVFs is the maximum of their upper

gH-Dini semiderivative.

(iii) For a convex IVF, it is proved that at any point if gH-Dini semiderivative does

not dominate zero, then the point is an efficient solution to the IOP.

6.4 Dini Semiderivative of Interval-valued Func-

tions

In this section, we define upper and lower Dini semiderivative, upper and lower

Hadamard semiderivative for IVFs and derive some results related to these semideriva-

tive.

Definition 6.1 (Upper gH-Dini semiderivative). Let F be an IVF defined on S.

For x̄ ∈ S and v ∈ X , if the limit superior

lim sup
λ→0+

1

λ
�
(
F(x̄+ λv)	gH F(x̄)

)
= lim

δ→0

(
sup
λ∈(0,δ)

1

λ
�
(
F(x̄+ λv)	gH F(x̄)

))



Chapter 6. Dini Semiderivative of Interval-valued Functions 156

exists, then the limit superior value is called upper gH-Dini semiderivative of F at

x̄ in the direction v, and it is denoted by FD(x̄)(v). If this limit superior exists for

all v ∈ X , then F is said to be upper gH-Dini semidifferentiable at x̄.

Definition 6.2 (Lower gH-Dini semiderivative). Let F be an IVF defined on S.

For x̄ ∈ S and v ∈ X , if the limit inferior

lim inf
λ→0+

1

λ
�
(
F(x̄+ λv)	gH F(x̄)

)
= lim

δ→0

(
inf

λ∈(0,δ)

1

λ
�
(
F(x̄+ λv)	gH F(x̄)

))

exists, then the limit inferior value is called lower gH-Dini semiderivative of F at x̄

in the direction v, and it is denoted by FD(x̄)(v). If this limit inferior exists for all

v ∈ X , then F is said to be lower gH-Dini semidifferentiable at x̄.

If F has both upper and lower gH-Dini semiderivatives at x̄ and they are equal,

then F is called gH-Dini semidifferentiable at x̄.

Remark 6.3. It is clear that F is lower gH-Dini semidifferentiable at x̄ if and only

if (−1)� F is upper gH-Dini semidifferentiable at x̄.

FD(x̄)(v) = (−1)�GD(x̄)(v), where F = (−1)�G.

That is why we deal only with the upper gH-Dini semidifferentiability in this study.

Definition 6.4 (Upper gH-Hadamard semiderivative of IVF). Let F be an IVF on

a nonempty subset S of X . For x̄ ∈ S and v ∈ X , if the limit superior

lim sup
λ→0+
h→v

1

λ
�(F(x̄+ λh)	gH F(x̄)) = lim

δ→0

(
sup

λ∈(0,δ), h∈B(v,δ)∩S

1

λ
�
(
F(x̄+λh)	gHF(x̄)

))

exists, then the limit superior value, denoted by FH ′(x̄)(v), is called upper gH-

Hadamard semiderivative of F at x̄ in the direction v. If this limit superior exists

for all v ∈ X , then F is said to be upper gH-Hadamard semidifferentiable at x̄.
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Definition 6.5 (Lower gH-Hadamard semiderivative of IVF). Let F be an IVF on

a nonempty subset S of X . For x̄ ∈ S and v ∈ X , if the limit inferior

lim inf
λ→0+
h→v

1

λ
�(F(x̄+ λh)	gH F(x̄)) = lim

δ→0

(
inf

λ∈(0,δ), h∈B(v,δ)∩S

1

λ
�
(
F(x̄+λh)	gHF(x̄)

))

exists, then the limit inferior value, denoted by FH ′(x̄)(v), is called lower gH-

Hadamard semiderivative of F at x̄ in the direction v. If this limit inferior exists for

all v ∈ X , then F is said to be lower gH-Hadamard semidifferentiable at x̄.

Remark 6.6. It is clear that F is lower gH-Hadamard semidifferentiable at x̄ if and

only if (−1)� F is upper gH-Hadamard semidifferentiable at x̄ and

FH ′(x̄)(v) = (−1)�GH ′(x̄)(v), where F = (−1)�G.

That is why we deal only with the upper gH-Hadamard semidifferentiability in this

study.

Example 6.1. In this example, we calculate the upper gH-Dini semiderivative and

upper gH-Hadamard semiderivative at x̄ = 0 for the IVF F(x) = |x| � C, where

0 � C ∈ I(R), X is the Euclidean space R, and S = X .

For any v ∈ X , we see that

lim sup
λ→0+
h→v

1

λ
� (F(x̄+ λh)	gH F(x̄))

� lim sup
λ→0+
h→v

1

λ
� (|x̄| �C⊕ λ|h| �C	gH |x̄| �C) by Lemma 1.7

= |v| �C.
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Further,

lim sup
λ→0+
h→v

1

λ
� (|x̄+ λh| �C	gH |x̄| �C)

� lim sup
λ→0+
h→v

1

λ
� (|λh| �C)

= |v| �C.

Hence, FH ′(x̄)(v) = |v| �C.

In similar way, we get FD(x̄)(v) = |v| �C.

Lemma 6.7. If f and f are upper Hadamard and upper Dini semidifferentiable at

x̄ ∈ S ⊆ X , then the IVF F is upper gH-Hadamard and upper gH-Dini differentiable

at x̄ ∈ S, respectively.

Proof. Since f and f are upper Hadamard semidifferentiable at x̄. Therefore, both

of the following limits

lim sup
λ→0+
h→v

1

λ
φ1(λ, h) and lim sup

λ→0+
h→v

1

λ
φ2(λ, h)

exist, where φ1(λ, h) = f(x̄+ λh)− f(x̄) and φ2(λ, h) = f(x̄+ λh)− f(x̄). Thus,

lim sup
λ→0+
h→v

1

λ
(φ1(λ, h) + φ2(λ, h)) and lim sup

λ→0+
h→v

1

λ
|φ1(λ, h)− φ2(λ, h)| exist

=⇒ lim sup
λ→0+
h→v

1

2λ

(
φ1(λ, h) + φ2(λ, h)− |φ1(λ, h)− φ2(λ, h)|

)
and

lim sup
λ→0+
h→v

1

2λ

(
φ1(λ, h) + φ2(λ, h) + |φ1(λ, h)− φ2(λ, h)|

)
exist

=⇒ lim sup
λ→0+
h→v

1

λ
(min {φ1(λ, h), φ2(λ, h)}) and

lim sup
λ→0+
h→v

1

λ
(max {φ1(λ, h), φ2(λ, h)}) exist
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=⇒ lim sup
λ→0+
h→v

1

λ
� (F(x̄+ λh)	gH F(x̄)) exists.

Hence, F is upper gH-Hadamard semidifferentiable IVF at x̄ ∈ S.

In similar way, we can show that F is upper gH-Dini semidifferentiable IVF at

x̄ ∈ S.

Remark 6.8. Let F be upper gH-Dini semidiffrentiable IVF at a point x̄ in S. Then,

F is not necessarily upper gH-Hadamard semidifferentiable at x̄ ∈ S. For instance,

take X as the Euclidean space R2, S = {(x1, x2) ∈ R2 : x2 ≥ 0, x2 ≥ 0} and the IVF

F : S → I(R), which is defined by

F(x1, x2) =


x2

1

(
1 + 1

x2

)
� [3, 8] if x = (x1, x2) 6= (0, 0)

0 otherwise.

Then, at x̄ = (0, 0) and v = (v1, v2) ∈ X such that for sufficiently small λ > 0 so

that x̄+ λv ∈ S, we have

lim sup
λ→0+

1

λ
� (F(x̄+ λv)	gH F(x̄)) =


v21
v2
� [3, 8] if v2 6= 0

0 otherwise.

Hence, F is a upper gH-Dini semidifferentiable at x̄ in every direction v ∈ X .

Again, for x = (x1, x2) ∈ S and h = (h1, h2) 6= (0, 0) ∈ X , we have Along h2 = mh2
1,

where m is any real number,

lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄)) =

1

m
� [3, 8].
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Hence, 1
m
→∞ as m→ 0. Consequently, for v = (0, 0),

lim sup
λ→0+
v→0

1

λ
� (F(x̄+ λv)	gH F(x̄)) does not exist.

This implies that F has no upper gH-Hadamard semiderivative at x̄ ∈ S.

The following theorem extends the well-known result from [42] for Lipschitz contin-

uous functions to gH-Lipschitz continuous IVFs with the help of Lemma 6.7.

Theorem 6.9. Let S ⊂ X and F : S → I(R) be a gH-Lipschitz continuous IVF at

an interior point x̄ with a Lipschitz constant K ′. Then, F is upper gH-Hadamard

semidifferentiable at x̄ and

‖FH ′(x̄)(v)‖I(R) ≤ K ′‖v‖ for all v ∈ X .

Proof. Since F is gH-Lipschitz continuous at x̄ ∈ S, for any v ∈ X , we get for λ > 0

that

∥∥∥∥1

λ
� (F(x̄+ λh)	gH F(x̄))

∥∥∥∥
I(R)

≤ 1

λ
K ′‖x̄+ λh− x̄‖ = K ′‖h‖, (6.1)

if λ are sufficiently close to 0. From inequality (6.1), we have

∣∣∣∣1λ (f(x̄+ λh)− f(x̄)
) ∣∣∣∣ ≤ K ′ (‖v‖+ ‖v − h‖)

and ∣∣∣∣1λ (f(x̄+ λh)− f(x)
) ∣∣∣∣ ≤ K ′ (‖v‖+ ‖v − h‖) ,

as λ→ 0+ and h→ v.

Hence, the limit superior f
H ′(x̄)(v) and f̄H ′(x̄)(v) exist at x̄. By Lemma 6.7, the

limit superior FH ′(x̄)(v) exists.
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Furthermore, by gH-Lipschitz continuity of F on S, we have the following for all

v ∈ X :

‖FH ′(x̄)(v)‖I(R) =

∥∥∥∥∥ lim sup
λ→0+
h→v

1

λ
� (F(x̄+ λh)	gH F(x̄))

∥∥∥∥∥
I(R)

≤ lim sup
λ→0+
h→v

∥∥∥∥1

λ
� (F(x̄+ λh)	gH F(x̄))

∥∥∥∥
I(R)

by Lemma 3.1

≤ K ′‖v‖ by (6.1).

Theorem 6.10. Let S ⊂ X and F : S → I(R) be a gH-Lipschitz continuous IVF

at an interior point x̄ with a Lipschitz constant K ′. Then, F is upper gH-Dini

semidifferentiable at x̄ and

‖FD(x̄)(v)‖I(R) ≤ K ′‖v‖ for all v ∈ X .

Proof. Since F is gH-Lipschitz continuous at x̄ ∈ S, for any v ∈ X , we get for λ > 0

that

∥∥∥∥1

λ
� (F(x̄+ λv)	gH F(x̄))

∥∥∥∥
I(R)

≤ 1

λ
K ′‖x̄+ λv − x̄‖ = K ′‖v‖, (6.2)

if λ are sufficiently close to 0. From inequality (6.2), we have

∣∣∣∣1λ (f(x̄+ λv)− f(x̄)
) ∣∣∣∣ ≤ K ′‖v‖ and

∣∣∣∣1λ (f(x̄+ λv)− f(x)
) ∣∣∣∣ ≤ K ′‖v‖,

as λ→ 0+.

Hence, the limit superior f
D

(x̄)(v) and f̄D(x̄)(v) exist at x̄. By Lemma 6.7, the

limit superior FD(x̄)(v) exists.

Furthermore, by gH-Lipschitz continuity of F on S, we have the following for all



Chapter 6. Dini Semiderivative of Interval-valued Functions 162

v ∈ X :

‖FD(x̄)(v)‖I(R) =

∥∥∥∥∥ lim sup
λ→0+

1

λ
� (F(x̄+ λv)	gH F(x̄))

∥∥∥∥∥
I(R)

≤ lim sup
λ→0+

∥∥∥∥1

λ
� (F(x̄+ λv)	gH F(x̄))

∥∥∥∥
I(R)

by Lemma 3.1

≤ K ′‖v‖ by (6.2).

Theorem 6.11. Let F : X → I(R) be gH-Lipschitz continuous IVF at some x̄ ∈ X .

Then,

(i) for all v ∈ Rn,

FC (x̄)(v) ⊀ FH ′(x̄)(v) and FC (x̄)(v) � FH ′(x̄)(v),

(ii) the IVFs FH ′(x̄),FC (x̄) : X → I(R) satisfy

FH ′(x̄)(αv) = α� FH ′(x̄)(v) and FC (x̄)(αv) = α� FC (x̄)(v)

for all α ≥ 0 and all v ∈ Rn.

Proof. (i). Since F is gH-Lipschitz continuous at x̄ ∈ X , then FC (x̄)(v) and

FH ′(x̄)(v) exist. Also, FH ′(x̄)(0) = 0 since FD(x̄)(0) = 0 and F is gH-lipschitz

continuous.

Due to existence of FH ′(x̄)(v), there exist sequences {λn}, λn > 0 and {hn}, hn 6= v

such that λn → 0+, hn → v as n→∞ and

FH ′(x̄)(v) = lim sup
λ→0+
h→v

1

λ
�(F(x̄+ λh)	gH F(x̄)) = lim

n→∞

1

λn
�
(
F(x̄+λnhn)	gHF(x̄)

)
.
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By (iii) of Lemma 1.5, we have

1

λn
�
(
F(x̄+ λnhn)	gH F(x̄)

)
�

1

λn
�
(
F(x̄+ λn(hn − v) + λnv)	gH F(x̄+ λn(hn − v))

)
⊕ 1

λn
�
(
F(x̄+ λn(hn − v))	gH F(x̄)

)
. (6.3)

Since hn − v → 0 and x̄+ λn(hn − v)→ x̄ as n→∞, then

lim
n→∞

1

λn
�
(
F(x̄+ λn(hn − v))	gH F(x̄)

)
= FH ′(x̄)(0) = 0, (6.4)

and

lim sup
n→∞

1

λn
�
(
F(x̄+ λn(hn− v) + λnv)	gH F(x̄+ λn(hn− v))

)
� FC (x̄)(v). (6.5)

From (6.3), (6.4) and (6.5), we obtain

FC (x̄)(v) ⊀ FH ′(x̄)(v).

Let G = (−1)� F. Then, G is also gH-Lipschitz continuous at x̄ and

GC (x̄)(v) ⊀ GH ′(x̄)(v) =⇒ (−1)�GC (x̄)(v) � (−1)�GH ′(x̄)(v)

=⇒ FC (x̄)(v) � FH ′(x̄)(v).

(ii). For an arbitrary v ∈ S and δ ≥ 0, we have

lim sup
λ→0+
h→v

1

λ
� (F(x̄+ λδh)	gH F(x̄)) = δ � (lim sup

λ→0+
h→v

1
λδ
� (F(x̄+ λδh)	gH F(x̄)))

= δ � FC (x̄)(v).
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Thus, FH ′(x̄)(δv) = δ � FH ′(x̄)(v).

In similar way we can easily check that FC (x̄)(δv) = δ � FC (x̄)(v).

For convex and gH-Lipschitz continuous IVFs, gH-directional derivative and upper

gH-Clarke derivative coincide as the next theorem states.

Theorem 6.12. Let F : X → I(R) be convex IVF on a convex set X and gH-

Lipschitz continuous at some x̄ ∈ X . Then, the upper gH-Hadamard semiderivative

and the upper gH-Dini semiderivative of F at x̄ in the direction v ∈ X are equals.

Proof. Since F is gH-Lipschitz continuous at x̄, from Theorem 6.10 and 6.9, we

get that F is upper gH-Dini semidifferentiable and upper gH-Hadamard semidiffer-

entiable at any x̄ in every direction v ∈ X . Thus, by Definitions 6.1 and 6.4, we

observe that

FD(x̄)(v) � FH ′(x̄)(v) for all v. (6.6)

For the reverse of inequality (6.6) , we write

FH ′(x̄)(v) = lim sup
λ→0+
h→v

1

λ
� (F(x̄+ λh)	gH F(x̄))

= lim
ε→0+
δ→0+

sup
‖h−v‖<δ

sup
0<λ<ε

1

λ
� (F(x̄+ λh)	gH F(x̄)) .

Due to convexity of F on X and Lemma 3.1 of [28], we have the following equality

FH ′(x̄)(v) = lim
ε→0+
δ→0+

sup
‖h−v‖<δ

1

ε
� (F(x̄+ εh)	gH F(x̄)) . (6.7)

For an arbitrary α > 0 and from (6.7), we obtain

FH ′(x̄)(v) = lim
ε→0+

sup
‖h−v‖<εα

1

ε
� (F(x̄+ εh)	gH F(x̄)) .
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Since F is gH-Lipschitz continuous at x̄ and ‖h−v‖ < εα for sufficiently small ε > 0,

then

∥∥1
ε
� (F(x̄+ εh)	gH F(x̄))	gH 1

ε
� (F(x̄+ εv)	gH F(x̄))

∥∥
I(R)

≤
∥∥1
ε
� (F(x̄+ εh)	gH F(x̄+ εv))

∥∥
I(R)

by (iv) of Lemma 1.6

≤ 1
ε
K ′‖h− v‖, where K ′ is the Lipschitz constant of F at x̄ ∈ X

≤ K ′αε.

Then, by (iii) of Lemma 1.6, we have

FH ′(x̄)(v) � lim sup
ε→0+

1

ε
� (F(x̄+ εv)	gH F(x̄))⊕ [K ′αε,K ′αε]

= FD(x̄)(v)⊕ [K ′αε,K ′αε].

Due to arbitrariness of α > 0, we get

FH ′(x̄)(v) � FD(x̄)(v) for all v. (6.8)

From (6.6) and (6.8), we obtain

FC (x̄)(v) = FD(x̄)(v).

Theorem 6.13. Let F : X → I(R) be convex IVF on a convex set X and gH-

Lipschitz continuous at some x̄ ∈ X . Then, the upper gH-Hadamard semiderivative

and the gH-directional derivative of F at x̄ in the direction v ∈ X are equals.

Proof. Since F is a convex IVF on X , we get by Theorem 3.1 of [28] that F is



Chapter 6. Dini Semiderivative of Interval-valued Functions 166

gH-directionally differentiable at x̄ in every direction v ∈ X . Also, as F is gH-

Lipschitz continuous at x̄, from Theorem 6.9, we get that F is upper gH-Hadamard

semidifferentiable at any x̄ in every direction v ∈ X . Thus, by Definitions 2.4.1 and

6.4, we observe that

FD(x̄)(v) � FH ′(x̄)(v) for all v. (6.9)

Since F is convex and gH-Lipschitz continuous on X , then by (iii) of Lemma 1.6

and Theorem 6.12, we have

FH ′(x̄)(v) � lim sup
ε→0+

1

ε
� (F(x̄+ εv)	gH G(x̄))⊕ [K ′αε,K ′αε]

= lim
ε→0+

1

ε
� (F(x̄+ εv)	gH F(x̄))⊕ [K ′αε,K ′αε] due to Lemma 3.1 of [28]

= FD(x̄)(v)⊕ [K ′αε,K ′αε],

where K ′ is Lipschitz constant and α is arbitrary positive real number.

Due to arbitrariness of α > 0, we get

FH ′(x̄)(v) � FD(x̄)(v) for all v. (6.10)

From (6.9) and (6.10), we obtain

FH ′(x̄)(v) = FD(x̄)(v).

Theorem 6.14. Let F : X → I(R) be convex IVF on a convex set X and gH-

Lipschitz continuous at some x̄ ∈ X . Then, at x̄ in the direction v ∈ X ,

FD(x̄)(v) = FH ′(x̄)(v) = FC (x̄)(v) = FH ′(x̄)(v) = FD(x̄)(v).
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Proof. By using Theorems 6.12, 6.13 and Theorem 3.2 of [28], we get required result.

Remark 6.15. If IVF F is defined by F(x) = |x| �C, where 0 � C ∈ I(R), X is the

Euclidean space R, and S = X , then we can easily check that

FD(x̄)(v) = FH ′(x̄)(v) = FC (x̄)(v) = FH ′(x̄)(v) = FD(x̄)(v) = |v| �C.

Theorem 6.16. Let S be a nonempty subset of X and IVF F be defined on S. Let F

be lower and upper gH-Dini semidifferentiable at x̄ ∈ S. Then F is gH-continuous

at x̄.

Proof. Let us suppose that F is not gH-continuous at x̄. Then, there exists ε > 0

and a sequence xn → x̄ such that

‖F(xn)	gH F(x̄)‖I(R) > ε.

It follows that ∥∥∥∥F(xn)	gH F(x̄)

xn − x̄

∥∥∥∥
I(R)

→ +∞

for xn → x̄. This implies that either upper gH-Dini semiderivative or lower gH-

Dini semiderivative is not finite. Which is a contraction to F is not lower and upper

gH-Dini semiderivative at x̄. Hence, F is gH-continuous at x̄.

Theorem 6.17. Let I be a finite set of indices and Fi : X → I(R) be family

of comparable gH-continuous IVFs such that FD(x̄)(h) exists and for all x ∈ X ,

F(x) = max
i∈I

Fi(x). Then,

FD(x̄)(h) = max
i∈A(x̄)

FiD (x̄)(h), where A(x̄) = {i : Fi(x̄) = F(x̄)}.
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Proof. Let x̄ ∈ X and h ∈ X such that x̄+ λh ∈ X for λ > 0. Then,

Fi(x̄+ λh) � F(x̄+ λh) for all i ∈ I

or, Fi(x̄+ λh)	gH F(x̄) � F(x̄+ λh)	gH F(x̄) for all i ∈ I

or, Fi(x̄+ λh)	gH Fi(x̄) � F(x̄+ λh)	gH F(x̄) for each i ∈ A(x̄)

or, lim sup
λ→0+

1

λ
� (Fi(x̄+ λh)	gH Fi(x̄)) � lim sup

λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄))

or, max
i∈A(x̄)

FiD (x̄)(h) � FD(x̄)(h). (6.11)

To prove the reverse inequality, we claim that there exists a neighbourhood N (x̄)

such that A(x) ⊂ A(x̄) for all x ∈ N (x̄). Assume contrarily that there exists a

sequence {xk} in X with xk → x̄ such that A(xk) 6⊂ A(x̄). We can choose ik ∈ A(xk)

but ik /∈ A(x̄). Since A(xk) is closed, ik → ī ∈ A(xk). By gH-continuity of F we

have

Fī(xk) = F(xk) =⇒ Fī(x̄) = F(x̄),

which is a contradiction to ik /∈ A(x̄). Thus, A(x) ⊂ A(x̄) for all x ∈ N (x̄).

Let us choose a sequence {λk}, λk → 0 such x̄+ λkh ∈ N (x̄) for all h ∈ X . Then,

Fi(x̄) � F(x̄) for all i ∈ I

or, F(x̄+ λkh)	gH F(x̄) � F(x̄+ λkh)	gH Fi(x̄) for all i ∈ A(x̄)

or, F(x̄+ λkh)	gH F(x̄) � Fi(x̄+ λkh)	gH Fi(x̄) for all i ∈ A(x̄+ λkh)

or, lim sup
k→∞

1

λk
� (F(x̄+ λkh)	gH F(x̄)) � lim sup

k→∞

1

λk
� (Fi(x̄+ λkh)	gH Fi(x̄))

or, FD(x̄)(h) � max
i∈A(x̄)

FiD (x̄)(h). (6.12)
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From (6.11) and (6.12) , we obtain

FD(x̄)(h) = max FiD (x̄)(h) for all i ∈ A(x̄).

6.5 Characterization of Efficient Solutions

In this section, we present the characterization of efficient solutions for IOPs based

on the properties of upper gH-Dini semidifferentiable IVFs.

Theorem 6.18 (Necessary condition for efficient points). Let S be a nonempty

subset of X , F : S → I(R) be an IVF, and x̄ ∈ S be an efficient point of the IOP

(1.5). If the function F has a upper gH-Dini semiderivative at x̄ in the direction

h− x̄ for any x ∈ S, then

FD(x̄)(v − x̄) ≮ 0 for all h ∈ S. (6.13)

Proof. Let x̄ ∈ S be an efficient point of the IVF F. For any point x ∈ X , the upper

gH-Dini semiderivative of F at x̄ in the direction h− x̄ is given by

FD(x̄)(h− x̄) = lim sup
λ→0+

1

λ
�
(
F(x̄+ λ(h− x̄))	gH F(x̄)

)
. (6.14)

Since the point x̄ is an efficient point of the function F, for any h ∈ X and λ > 0

with x̄+ λ(h− x̄) ∈ S, we get

F(x̄+ λ(h− x̄)) ⊀ F(x̄)

or, F(x̄+ λ(h− x̄))	gH F(x̄) ⊀ 0.
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This implies that

max
{
f(x̄+ λ(h− x̄)− f(x̄), f(x̄+ λ(h− x̄)− f(x̄)

}
≥ 0.

Since λ > 0, from above inequality, we get

lim sup
λ→0+

1

λ
max

{
f(x̄+ λ(h− x̄)− f(x̄), f(x̄+ λ(h− x̄)− f(x̄)

}
≥ 0

or, max
{
f

D
(x̄)(h), fD(x̄)(h)

}
≥ 0. (6.15)

From (6.14) and (6.15), we have

FD(x̄)(h− x̄) ≮ 0 for all h ∈ S.

Note 15. One may think that in Theorem 6.18, instead of using the “not better

strict dominance ”relation of compact intervals (Definition 1.4.3), we may use “not

strict dominance ”relation of compact intervals (Definition 1.4.2). However, this

assumption is not sufficient. For instance, consider X = R, S = [−1, 7], and the

IVF F : S → I(R) that is defined by

F(x) = [x2 − 2x+ 1, x2 + 6].

For any x, h ∈ S such that x+ λh ∈ S, we have the following for any v ∈ X :

lim sup
λ→0+

1

λ
� (F(x+ λh)	gH F(x)) = 2h� [x− 1, x].
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Hence, FD(x̄)(h) = 2h� [x̄−2, x̄]. Note that x̄ = 0 is an efficient point of IOP (1.5)

because

F(y) ⊀ F(x̄) for all y ∈ S.

However, FD(x̄)(h) ≺ 0 for all h > 0.

Theorem 6.19 (Sufficient condition for efficient points). Let S be a nonempty con-

vex subset of X and F : S → I(R) be a convex IVF. If the function F has a upper

gH-Dini semderivative at x̄ ∈ S in the direction h− x̄ with

FD(x̄)(h− x̄) � 0 for all h ∈ X , (6.16)

then x̄ must be an efficient point of the IOP (1.5).

Proof. Suppose at x̄ ∈ S, for each direction h− x̄, we have

FD(x̄)(h− x̄) � 0 for all h ∈ X .

If possible, let x̄ be not an efficient point of F. Then, there exists at least one y ∈ S

such that

F(y) ≺ F(x̄).

Therefore, for any λ ∈ (0, 1] we have

λ� F(y) ≺ λ� F(x̄)

or, λ� F(y)⊕ λ′ � F(x̄) ≺ λ� F(x̄)⊕ λ′ � F(x̄), where λ′ = 1− λ

or, λ� F(y)⊕ λ′ � F(x̄) ≺ (λ+ λ′)� F(x̄) = F(x̄).
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Due to the convexity of F on S, we have

F(x̄+ λ(y − x̄)) = F(λy + λ′x̄) � λ� F(y)⊕ λ′ � F(x̄) ≺ F(x̄)

or, F(x̄+ λ(y − x̄))	gH F(x̄) ≺ 0

or, lim sup
λ→0+

1

λ
� (F(x̄+ λ(y − x̄))	gH F(x̄)) � 0

or, FD(x̄)(y − x̄) � 0. (6.17)

This contradicts the assumption that FD(x̄)(h − x̄) � 0 for all h ∈ X . Hence, x̄ is

the efficient point of the IOP (1.5).

Note 16. Converse of Theorem 6.19 is not true. For example, consider X = R,

S = [−1, 2], and the IVF F : S → I(R) that is defined by

F(x) = [x2 − 4x+ 4, 2x2 + 80].

Since f and f are convex and Lipschitz continuous on S, F is convex and gH-

Lipschitz continuous IVF on S by Lemma 1.8 and Lemma 3.3. Also, from Theorem

6.10, F has upper gH-Dini semiderivative at x̄ = 0 ∈ S in every direction h ∈ X .

Since

lim sup
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄))

= lim sup
λ→0+

1

λ
�
([

(λh)2 − 4(λh) + 4, 2(λh)2 + 80
]
	gH [4, 80]

)
= h� [−4, 0],

then FD(x̄)(h) = h� [−4, 0] for all h ∈ X . Hence you can easily check that x̄ = 0 is

an efficient solution of the IOP (1.5).

However, for all h > 0 we have FD(x̄)(h) ≺ 0.
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6.6 Concluding Remarks

In this chapter, the concept of upper and lower Dini semiderivative, upper and lower

Hadamard semiderivative for IVFs have been proposed. The upper Dini semideriva-

tive and upper Hadamard semiderivative of a Lipschitz continuous IVF are observed

to be a positive homogeneous IVF. It has been found that every Lipschitz contin-

uous IVF is upper Dini semi differentiable and upper Hadamard semidifferentiable

IVFs. Further, for a convex and Lipschitz IVF, it has been shown that the upper

Dini semiderivative and upper Hadamard semiderivative of IVF coincide with the

directional derivative of IVF. It has also been observed that the continuity of IVF

is necessary condition for existence of upper and lower Dini semiderivative of IVF.

With the help of the studied semiderivative, we have been derived a few results on

characterizing efficient solutions of an IOP.

***********


