
Chapter 4

Generalized Hukuhara Hadamard

Semidervative of Interval-valued

Functions and its Application in

Interval Optimization

4.1 Introduction

For the first initiation to nondifferentiable optimization, semidifferentials have been

preferred over subdifferentials that necessitate a good command of set-valued anal-

ysis. The emphasis will be on Hadamard semidifferentiable functions for which the

resulting semidifferential calculus retains all the nice features of the classical differen-

tial calculus, including the chain rule. Convex continuous and semiconvex functions

are Hadamard semidifferentiable, and an explicit expression of the semidifferential

of an extremum with respect to parameters can be obtained. So, it works well for
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most nondifferentiable optimization problems including semiconvex or semiconcave

problems. The Hadamard semidifferential calculus readily extends to functions de-

fined on differential manifolds and on groups that naturally occur in optimization

problems with respect to the shape or the geometry.

4.2 Motivation

From the literature on the analysis of IVFs, one can notice that the existing deriva-

tives are neither sufficient to retain the two most important features of classical

differential calculus—Continuity of functions and the chain rule, and nor sufficient

to characterize the optimal solutions of IOPs. Although some optimality conditions

are proposed for IOPs by using gH-directional and gH-Gâteaux derivatives, these

derivatives are not sufficient to preserve the continuity of IVFs and chain rule for

the composition of IVFs. Even though gH-Fréchet derivative preserves linearity and

continuity but it does not hold the chain rule for the composition of IVFs whose

lower and upper functions are equal at each points (see the example for Proposition

3.5 [75]). However, Hadamard semiderivative preserves linearity and continuity as

well as the chain rule.

4.3 Contributions

In this chapter, we define gH-Hadamard semiderivative of IVFs and prove that if an

IVF is gH-Hadamard semidifferentiable, then IVF is gH-continuous. For a convex

gH-Lipschitz continuous IVF, we show that the gH-Hadamard derivative exists and

is equals to gH-directional derivative. Further, we prove that the composition of
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Hadamard semidifferentiable real-valued function and gH-Hadamard semidifferen-

tiable IVF is again a gH-Hadamard semidifferentiable IVF. Besides, with the help

of gH-hadamard semiderivative, we provide a necessary and sufficient condition for

characterizing the efficient solutions to IOPs by using better dominance relation.

Novel derivations of this chapter are as follows:

(i) For a gH-Lipschitz continuous and gH-differentiable IVF, it is proved that

gH-Hadamard semiderivative exists at every point of the domain.

(ii) It is shown that the composition of Hadamard semidifferentiable real-valued

function and gH-Hadamard semidifferentiable IVF is a gH-Hadamard semid-

ifferentiable IVF.

(iii) Extended Karush-Kuhn-Tucker condition for constraint IOP is derived.

4.4 Hadamard Semiderivative of Interval-valued

Function

In this section, extended concepts of the gH-directional derivative, namely gH-

Hadamard semiderivatives and some results to this derivative, for IVFs is given.

Definition 4.4.1 (gH-Hadamard semiderivative of IVF). Let F be an IVF on a

nonempty subset S of X . For x̄ ∈ S and v ∈ X , if the limit

lim
λ→0+
h→v

1

λ
� (F(x̄+ λh)	gH F(x̄))
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exists finitely, then the limit value, denoted by FH ′(x̄)(v), is called gH-Hadamard

semiderivative of F at x̄ in the direction v. If this limit exists for all v ∈ X , then F

is said to be gH-Hadamard semidifferentiable at x̄.

Remark 4.4.1. The existence of limit as h → v and λ → 0+ in Definition 4.4.1

is equivalent to using two sequences {hn} and {λn}, with λn > 0 ∀ n, converging to

v and 0, respectively. That is, FH ′(x̄)(v) exists if for all sequences {λn} and {hn}

with λn > 0 for all n, limn→∞ λn = 0 and limn→∞ hn = v, we have

lim
n→∞

1

λn
� (F(x̄+ λnhn)	gH F(x̄)) = FH ′(x̄)(v).

Example 4.1. In this example, we calculate the gH-Hadamard semiderivative of

the IVF F(x) = ‖x‖ �C, x ∈ Rn. For any v ∈ Rn and x̄ = 0, we see that

lim
λ→0+
h→v

1

λ
� (F(x̄+ λh)	gH F(x̄)) = lim

λ→0+
h→v

((
1

λ
� λ
)
� (‖h‖ �C)

)
= ‖v‖ �C.

Lemma 4.1. If f and f are Hadamard semidifferentiable at x̄ ∈ S ⊆ X , then F is

gH-Hadamard semidifferentiable IVF at x̄ ∈ S and

FH ′(x̄)(v) =
[
min

{
f

H ′(x̄)(v), fH ′(x̄)(v)
}
,max

{
f

H ′(x̄)(v), fH ′(x̄)(v)
}]

Proof. See Appendix D.1

Note 8. By definitions of gH-directional derivative (Definition 2.4.1) and gH-

Hadamard semiderivative (Definition 4.4.1), it is clear that if FH ′(x̄)(h) exists,

then FD(x̄)(h) exists and it is equal to FH ′(x̄)(h). However, the converse is not
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true. For instance, consider the IVF F : R2 → I(R), which is defined by

F(x, y) =


(

x6

(y−x2)2+x8

)
� [5, 8] if (x, y) 6= (0, 0)

0 otherwise.

For x̄ = (0, 0) and arbitrary h = (h1, h2) ∈ R2,

lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄)) = lim

λ→0+

1

λ
�
((

λ6h6
1

(λh2 − λ2h2
1)2 + λ8h8

1

)
� [5, 8]

)
= 0.

Hence, F is gH-directional differentiable at x̄ with FD(x̄)(h) = 0.

Let λn = 1
n

and hn = ( 1
n
, 1
n3 ), n ∈ N. Then, for x̄ = (0, 0) we have

lim
n→∞

1

λn
� (F(x̄+ λnhn)	gH F(x̄)) = lim

n→∞
n5 � [5, 8]. (4.1)

Hence, FH ′(x̄)(0) does not exist.

Remark 4.4.2. For an IVF F if FH ′(x̄)(0) exists, FD(x̄)(0) exists and FD(x̄)(0) =

FH ′(x̄)(0) = 0.

Theorem 4.2. Let S be a nonempty subset of X and F is an IVF on S. If F is

gH-Hadamard semidifferentiable at x̄ ∈ S in every direction v ∈ X , then the IVF

FH ′(x̄) : X → I(R) is gH-continuous and for all δ ≥ 0,

FH ′(x̄)(δv) = δ � FH ′(x̄)(v) for all v ∈ X .

Proof. For an arbitrary v ∈ X and δ ≥ 0, we have

lim
λ→0+
h→v

1

λ
� (F(x̄+ λδh)	gH F(x̄)) = δ � ( lim

λ→0+
h→v

1
λδ
� (F(x̄+ λδh)	gH F(x̄)))

= δ � FH ′(x̄)(v).
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Since FH ′(x̄)(v), for all ε > 0 there exists δ > 0 such that for all λ ∈ (0, δ) and

h ∈ X ,

∥∥∥∥1

λ
� (F(x̄+ λh)	gH F(x̄))	gH FH ′(x̄)(v)

∥∥∥∥
I(R)

< ε whenever ‖h− v‖ < δ.

As λ→ 0+, FD(x̄)(h) exists. Therefore, for all h ∈ X with ‖h− v‖ < δ we have

∥∥∥∥ lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄))	gH FH ′(x̄)(v)

∥∥∥∥
I(R)

< ε

=⇒ ‖FD(x̄)(h)	gH FH ′(x̄)(v)‖I(R) < ε. (4.2)

Since FD(x̄)(h) = FH ′(x̄)(h), from (4.2), FH ′(x̄) is gH-continuous IVF at every

v ∈ X .

The next theorem gives a necessary condition for the existence of gH-Hadamard

semiderivative of IVFs.

Theorem 4.3. Let S be a nonempty subset of X and F is an IVF on S. If FH ′(x̄)(0)

exists at x̄ ∈ S, then F is gH-continuous at x̄. In addition, for any α ∈ (0, 1) and

ε > 0, there exists δ > 0 such that

‖F(y)	gH F(x̄)‖I(R)

‖y − x‖α
< ε for all y ∈ Bδ(x̄).

Proof. As FH ′(x̄)(0) exists, FD(x̄)(0) exists and FD(x̄)(0) = FH ′(x̄)(0) = 0. For

y 6= x̄, denoting

λ = ‖y − x̄‖α and h =
y − x̄
‖y − x̄‖α

= ‖y − x̄‖1−α y − x̄
‖y − x̄‖α

,
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we obtain

‖F (y)	gH F(x̄)‖I(R)

‖y − x̄‖α
=

∥∥∥∥1

λ
� (F(x̄+ λh)	gH F(x̄))

∥∥∥∥
I(R)

.

Also, y → x̄ implies λ→ 0+ and h→ 0. Therefore,

lim
y→x̄

‖F (y)	gH F(x̄)‖I(R)

‖y − x̄‖α
= lim

λ→0+

∥∥∥∥1

λ
� (F(x̄+ λh)	gH F(x̄))

∥∥∥∥
I(R)

= ‖FD(x̄)(0)‖I(R) = 0.

Therefore, for all ε > 0, there exists δ > 0 such that for all y ∈ Bδ(x̄),

‖F (y)	gH F(x̄)‖I(R)

‖y − x̄‖α
=

∥∥∥∥1

λ
� (F(x̄+ λh)	gH F(x̄))	gH 0

∥∥∥∥
I(R)

< ε.

This also yields gH-continuity of F at x̄.

The next theorem gives sufficient condition for the existence of gH-Hadamard semideriva-

tive of IVFs.

Theorem 4.4. Let S be a nonempty subset of X and F is a gH-Lipschitz continuous

IVF at x̄ ∈ S. If FD(x̄)(v) exists, then FH ′(x̄)(v) exists and equals to FD(x̄)(v),

and

‖FH ′(x̄)(v)	gH FH ′(x̄)(w)‖I(R) = ‖v − w‖ for all v, w ∈ X .

Proof. Since F is gH-Lipschitz continuous at x̄, f and f are Lipschitz continuous

at x̄ by Lemma 1.8. As FD(x̄)(v) exists, f
D

(x̄)(v) and fD(x̄)(v) exist. Also, from

Theorem 3.5 of [23], f and f are Hadamard semidifferentiable at x̄ and

f
H ′(x̄)(v) = f

D
(x̄)(v) and fH ′(x̄)(v) = fD(x̄)(v) for all v ∈ X . (4.3)
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From (4.3) and Lemma 4.1, FH ′(x̄)(v) exists and

FH ′(x̄)(v) =
[
min

{
f

H ′(x̄)(v), fH ′(x̄)(v)
}
,max

{
f

H ′(x̄)(v), fH ′(x̄)(v)
}]

=
[
min

{
f

D
(x̄)(v), fD(x̄)(v)

}
,max

{
f

D
(x̄)(v), fD(x̄)(v)

}]
= FD(x̄)(v).

Similarly, FH ′(x̄)(w) exists and equals to FD(x̄)(w).

Let y = x̄ + λv and z = x̄ + λw with λ > 0 such that y, z ∈ X . Then, from (iv) of

Lemma 1.6 and gH-Lipschitz continuity of F at x̄, we have

‖(F(y)	gH F(x̄))	gH (F(z)	gH F(x̄))‖I(R) ≤ ‖F(y)	gH F(z)‖I(R)

or,
1

λ
�
(
‖(F(y)	gH F(x̄))	gH (F(z)	gH F(x̄))‖I(R)

)
≤ ‖v − w‖ for all v, w ∈ X

or, ‖FD(x̄)(v)	gH FD(x̄)(w)‖I(R) ≤ ‖v − w‖ for all v, w ∈ X

or, ‖FH ′(x̄)(v)	gH FH ′(x̄)(w)‖I(R) ≤ ‖v − w‖ for all v, w ∈ X .

Theorem 4.5. Let S be a nonempty convex subset of X and the function F : S →

I(R) has gH-Hadamard semiderivative at every x̄ ∈ S. If the function F is convex

on S, then

F(v)	gH F(x̄) ⊀ FH ′(x̄)(v − x̄) for all v ∈ S.

Proof. Since F is convex on S, for any x̄, h ∈ S and λ, λ′ ∈ (0, 1] with λ+ λ′ = 1,

we have

F(x̄+ λ(h− x̄)) = F(λh+ λ′x̄) � λ� F(h)⊕ λ′ � F(x̄).
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Consequently,

F(x̄+ λ(h− x̄))	gH F(x̄) � (λ� F(h)⊕ λ′ � F(x̄))	gH F(x̄)

=
[

min{λf(h)− λf(x̄), λf(h)− λf(x̄)},

max{λf(h)− λf(x̄), λf(h)− λf(x̄)}
]

= λ� (F(h)	gH F(x̄)),

which implies

1

λ
� (F(x̄+ λ(h− x̄))	gH F(x̄)) � F(h)	gH F(x̄).

From Theorem 4.3, F is gH-continuous. Thus, as λ→ 0+ and h→ v, we obtain

FH ′(x̄)(v − x̄) � F(v)	gH F(x̄) for all v ∈ S. (4.4)

If possible, let

F(v′)	gH F(x̄′) ≺ FH ′(x̄′)(v′ − x̄′) for some v′ ∈ X .

Then,

F(v′)	gH F(x̄′) ≺ FH ′(x̄′)(v′ − x̄′),

which contradicts (5.3). Hence,

F(v)	gH F(x̄) ⊀ FH ′(x̄)(v − x̄) for all v ∈ S.
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Note 9. Converse of Theorem 4.5 is not true. For example, let us consider the IVF

F : R→ I(R) that is defined by

F(x) = x2 � [−4, 6] = [−4x2, 6x2].

At x̄ = 0 ∈ R, for arbitrary h ∈ R, we have

FH ′(x̄)(v) = lim
λ→0+
h→v

1

λ
� (F(x̄+ λh)	gH F(x̄)) = 0.

Hence, F(v)	gH F(x̄) ⊀ FH ′(x̄)(v − x̄) for all v ∈ R.

However, f is not convex on R. Thus, from Lemma 1.8, F is not convex on R.

Theorem 4.6. Let S be a nonempty convex subset of X and the function F :

S → I(R) be a convex gH-continuous IVF on S. Then, F is a gH-Hadamard

semidifferentiable IVF.

Proof. Since F is convex on S, for any x̄, h ∈ S and λ, λ′ ∈ (0, 1] with λ+ λ′ = 1,

we have

F(x̄+ λ(h− x̄)) = F(λh+ λ′x̄) � λ� F(h)⊕ λ′ � F(x̄).

Consequently,

F(x̄+ λ(h− x̄))	gH F(x̄) � (λ� F(h)⊕ λ′ � F(x̄))	gH F(x̄)

=
[

min{λf(h)− λf(x̄), λf(h)− λf(x̄)},

max{λf(h)− λf(x̄), λf(h)− λf(x̄)}
]

= λ� (F(h)	gH F(x̄)),
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which implies

1

λ
� (F(x̄+ λ(h− x̄))	gH F(x̄)) � F(h)	gH F(x̄).

By Lemma 2.2,

F(x̄)	gH F(h) � 1

λ
� (F(x̄+ λ(h− x̄))	gH F(x̄)) � F(h)	gH F(x̄).

Due to gH-continuity of F, we obtain

F(x̄)	gH F(v) � lim
λ→0+
h→v

1

λ
� (F(x̄+ λh)	gH F(x̄)) � F(v)	gH F(x̄).

This implies that F is gH-Hadamard semidifferentiable at x̄.

Note 10. The result of Theorem 4.6 is not true for convex IVFs which are not gH-

continuous. For instance, let us consider the IVF F : [0, 2] → I(R) that is defined

by

F(x) =


[2, 8] if x = 0,(
1− x

2

)
� [1, 2] if 0 < x < 2,

[1, 4] if x = 2.

Then,

f(x) =


2 if x = 0,(
1− x

2

)
if 0 < x < 2,

1 if x = 2.

and f(x) =


8 if x = 0,

2
(
1− x

2

)
if 0 < x < 2,

4 if x = 2.

Hence, F is convex as f and f are convex on [0, 2] by Lemma 1.8. Also, F is not

gH-continuous as f and f are not continuous on [0, 2].
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At x̄ = 0, v = 1 and 0 < λ ≤ 2, we have

1

λ
� (F(x̄+ λv)	gH F(x̄)) =

1

λ
�
((

1− λ

2

)
� [1, 2]	gH [2, 8]

)
.

This implies that FD(x̄)(v) does not exist. Hence, FH ′(x̄)(v) does not exists by Note

8.

Definition 4.4.2 (Semiconvex IVF). Let S be a convex subset of Rn, then the IVF

F : S → I(R) is called semiconvex on S if there exists a monotonic increasing IVF

E : R+ → I(R+) such that E(δ)→ 0 as δ → 0+ and

F(λ1x1 + λ2x2) � λ1 � F(x1)⊕ λ2 � F(x2)⊕ λ1λ2‖x− y‖ �E (‖x− y‖)

for all x, y ∈ S and λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1.

Lemma 4.7. If F : Rn ∈ I(R) is semiconvex on a convex subset S of Rn, then there

exists compact interval A � 0 such that G(x) = F(x)⊕ ‖x‖2 �A is convex on S.

Proof. Let λ1, λ2 ≥ 0 such that λ1 + λ2 = 1. Then, for arbitrary A � 0, we have

G(λ1x+ λ2y)

= F(λ1x+ λ2y)⊕ ‖λ1x+ λ2y)‖2 �A

� λ1 � F(x)⊕ λ2 � F(y)⊕ λ1λ2‖x− y‖ � E (‖x− y‖)⊕ ‖λ1x+ λ2y)‖2 �A.

(4.5)
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Let ‖x − y‖ = δ and E(δ) = δ � A. Then, E is a monotonic increasing IVF and

E(δ)→ 0 as δ → 0+. Also, due arbitrariness of A, (4.5) implies

λ1 � F(x)⊕ λ2 � F(y)⊕ λ1λ2‖x− y‖ � E (‖x− y‖)⊕ ‖λ1x+ λ2y)‖2 �A

= λ1 � F(x)⊕ λ2 � F(y)⊕ λ1λ2‖x− y‖2 �A⊕ ‖λ1x+ λ2y)‖2 �A

= λ1 � F(x)⊕ λ2 � F(y)⊕ λ1‖x‖2 �A⊕ λ2‖y‖2 �A

= λ1 �
(
F(x)⊕ ‖x‖2)⊕ λ2 �

(
F(x)⊕ ‖x‖2)

= λ1 �G(x)⊕ λ2 ⊕G(y). (4.6)

From (4.5) and (4.6), we have

G(λ1x+ λ2y) � λ1 �G(x)⊕ λ2 ⊕G(y).

Hence, G is a convex IVF on S.

Lemma 4.8. Let F : S → I(R) be an IVF and F is semiconvex on S. Then, f and

f are also semiconvex on S.

Proof. See Appendix D.2

Theorem 4.9. Let S be a nonempty convex subset of X and the function F :

S → I(R) be a semiconvex gH-continuous IVF on S. Then, F is a gH-Hadamard

semidifferentiable IVF on S.

Proof. Since F is semiconvex, then there exists compact interval A = [a, a] � 0 such

that the IVF G(x) = F(x)⊕ ‖x‖2 �A is convex on S, by Lemma 4.7.
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Also,

g(x) = f(x) + a‖x‖2 and g(x) = f(x) + a‖x‖2

=⇒ g(x)− a‖x‖2 = f(x) and g(x)− a‖x‖2 = f(x).

Since g, g, and ‖x‖2 are convex and continuous on S, f and f are Hadamard

semidifferentiable on S by Theorem 4.6. Consequently, F is a gH-Hadamard semid-

ifferentiable IVF on S by Lemma 4.1.

Theorem 4.10. Let S be a nonempty convex subset of Rn with int (S) 6= ∅ and the

function F : S → I(R) be a semiconvex on S. Then,

(i) F has gH-directional derivative at each x̄ ∈ int (S) and for all direction v ∈ Rn.

(ii) For each x̄ ∈ int (S), there exists δ > 0 such that F is gH-Lipschitz continuous

in B(x̄, δ).

(iii) For all v ∈ Rn, FH ′(x̄)(v) exists, and

‖FH ′(x̄)(v)	gH FH ′(x̄)(w)‖I(R) = ‖v − w‖ for all v, w ∈ X .

Proof. (i) Since F is a semiconvex IVF on S, f and f are semiconvex on S by

Lemma 4.8. Also, from Theorem 5.11 of [23], f and f has directional derivative at

x̄ ∈ int (S) for all v ∈ Rn. Consequently, F has gH-directional derivative at x̄ ∈

int (S) for all direction v ∈ Rn.

(ii) Since f and f are semiconvex on S, then for each x̄ ∈ int (S), there exists δ > 0

such that f and f are Lipschitz continuous in B(x̄, δ) by Theorem 5.11 of [23], and

from Lemma 1.8, F is also gH-Lipschitz continuous in B(x̄, δ).
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(iii) Due to gH-directional differentiability of F, FH ′(x̄)(v) exists by Theorem 4.4

and

‖FH ′(x̄)(v)	gH FH ′(x̄)(w)‖I(R) = ‖v − w‖ for all v, w ∈ Rn.

Theorem 4.11. Let F : Rn → I(R) be an IVF and x̄ ∈ Rn. Then, for a given

direction v ∈ Rn, the following conditions are equivalent:

(i) F is gH-Hadamard semidifferentiable at x̄;

(ii) there exists an IVF G(x̄)(v) such that for any path f : R+ → Rn with f(0) = x̄

for which fD(0)(1) exists, we have

(F ◦ f)D(0)(1) = G(x̄)(v), where v = fD(0)(1).

Proof. (i) =⇒ (ii). Let {λn} be a sequence of positive real numbers with λn → 0+

and hn = 1
λn

(f(λn)− f(0)) for all n ∈ N. Since fD(0)(1) exists,

lim
n→∞

hn = lim
n→∞

1

λn
� (f(λn)− f(0)) = fD(0)(1) = v. (4.7)

If F is gH-Hadamard semidifferentiable at x̄, then

lim
n→∞

1

λn
� (F(x̄+ λnhn)	gH F(x̄)) = FH ′(x̄)(v)

or, lim
n→∞

1

λn
� (F(f(λn))	gH F(f(0))) = FH ′(x̄)(v)(

since f(0) = x̄ and hn =
1

λn
(f(λn)− f(0))

)
or, lim

n→∞

1

λn
� ((F ◦ f)(λn)	gH (F ◦ f)(0)) = FH ′(x̄)(v).
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Hence, F has gH-directional derivative at x̄ and (F◦f)D(0)(1) = FH ′(x̄)(v). Taking

G(x̄)(v) = FH ′(x̄)(v), we get the desired result.

(ii) =⇒ (i). If possible, let F be not gH-Hadamard semidifferentiable at x̄. Then,

there exist two sequences hn → v and λn → 0+ such that

lim
n→∞

1

λn
� (F(x̄+ λnhn)	gH F(x̄)) does not exist. (4.8)

Since hn → v and λn → 0+, for every ε > 0 there exists a natural number N and

real number a such that

‖hn‖ ≤ a, ‖hn − v‖ < ε, and λn < ε/a for all n > N. (4.9)

By using the sequences {hn} and {λn}, we construct a function f : R+ → Rn as

follows:

f(λ) =


x̄ if λ = 0

x̄+ λhn if λn ≤ λ < λn−1, n ≥ 2

x̄+ λh1 if λ ≥ λ1.

The function f yields h(0) = x̄ and fD(0)(1) = v (for details, see p. 92 of [23]). By

hypothesis, (F ◦ f)D(0)(1) exists and equals to G(x̄)(v), where v = fD(0)(1). From

the construction of f ,

lim
n→∞

1

λn
� ((F ◦ f)(λn)	gH (F ◦ f)(0)) = G(x̄)(v)

or, lim
n→∞

1

λn
� (F(f(λn))	gH F(f(0))) = G(x̄)(v)

or, lim
n→∞

1

λn
� (F(x̄+ λnhn)	gH F(x̄)) = G(x̄)(v),
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which is a contradiction to (4.8). Therefore, F is gH-Hadamard semidifferentiable

at x̄.

Theorem 4.12 (Chain rule). Let G : Rm → Rn and F : Rn → I(R) be two

functions. Assume that for a point x̄ ∈ Rm and a direction v ∈ Rm,

(a) GD(x̄)(v) exists for any v in Rm,

(b) FH ′(ȳ)(k) exists, where ȳ = G(x̄) and k = GD(x̄)(v).

Then,

(i) (F ◦G)D(x̄)(v) exists and

(F ◦G)D(x̄)(v) = FH ′(ȳ)(k), where ȳ = G(x̄), k = GD(x̄)(v);

(ii) if GH ′(x̄)(v) exists, then (F ◦G)H ′(x̄)(v) exists and

(F ◦G)H ′(x̄)(v) = FH ′(ȳ)(k̄), where ȳ = G(x̄), k̄ = GH ′(x̄)(v).

Proof. (i) For λ > 0, define

Q(λ) =
1

λ
� (F(G(x̄+ λv))	gH F(G(x̄))) and θ(λ) =

1

λ
(G(x̄+ λv)−G(x̄)) .

(4.10)

Then,

Q(λ) =
1

λ
� (F(G(x̄) + λθ(λ))	gH F(G(x̄))) . (4.11)
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Since θ(λ) → GD(x̄)(v) as λ → 0+, from (4.10), (4.11) and the hypothesis (b), we

have

lim
λ→0+

1

λ
� (F(G(x̄+ λv))	gH F(G(x̄))) = FH ′(ȳ)(k)

or, lim
λ→0+

1

λ
� ((F ◦G)(x̄+ λv)	gH (F ◦G)(x̄))) = FH ′(ȳ)(k)

or, (F ◦G)D(x̄)(v) = FH ′(ȳ)(k).

(ii) For λ > 0 and h ∈ Rm, define

Q(λ, h) =
1

λ
� (F(G(x̄+ λh))	gH F(G(x̄))) and Φ(λ, h) =

1

λ
(G(x̄+ λh)−G(x̄)) .

(4.12)

Then

Q(λ, h) =
1

λ
� (F(G(x̄) + λΦ(λ, h))	gH F(G(x̄))) . (4.13)

Since Φ(λ, h) → GH ′(x̄)(v) as λ → +0 and h → v, from (4.12), (4.13), and the

hypothesis (b), we have

lim
λ→0+
h→v

1

λ
� (F(G(x̄+ λh))	gH F(G(x̄))) = FH ′(ȳ)(k̄)

or, lim
λ→0+
h→v

1

λ
� ((F ◦G)(x̄+ λh)	gH (F ◦G)(x̄))) = FH ′(ȳ)(k̄)

or, (F ◦G)H ′(x̄)(v) = FH ′(ȳ)(k̄).

Remark 4.4.3. The weaker assumption—the existence of GD(x̄)(v) and FD(ȳ)(k)

with ȳ = G(x̄), k = GD(x̄)(v)—is not sufficient to prove Theorem 4.12. For the

proof of this theorem we require a stronger assumption (b) of Theorem 4.12. This

is illustrated by the following example that the composition F ◦G, of a gH-Gâteaux
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differentiable IVF F and a Gâteaux differentiable vector-valued function G, is not

necessarily gH-Gâteaux differentiable and even not gH-directionally differentiable

in any direction v 6= 0.

Example 4.2. Consider the function F : R2 → I(R), which is defined by

F(x, y) =


(

x6

(y−x2)2+x8

)
� [2, 6] if (x, y) 6= (0, 0)

0 otherwise,

and G : R→ R2 is defined by

G(x) = (x, x2).

It is clear that G is Gâteaux differentiable function at x̄ = 0 in every direction. Note

that ȳ = G(x̄) = (0, 0) and for any h ∈ R, we have

lim
λ→0+

1

λ
� (F(ȳ + λh)	gH F(ȳ)) = lim

λ→0+

1

λ
�
((

λ6h6
1

(λh2 − λ2h2
1)2 + λ8h8

1

)
� [2, 6]

)
= 0.

Then, due to linearity and gH-continuity of the limit value, F is also gH-Gâteaux

differentiable IVF at ȳ = G(x̄).

The composition of F and G is

H(x) = (F ◦G)(x) =


(

1
x2

)
� [2, 6] if (x, y) 6= (0, 0)

0 otherwise.

Since for h 6= 0, the limit

lim
λ→0+

1

λ
� (H(x̄+ λh)	gH H(x̄)) = lim

λ→0+

1

λ3h
� [2, 6]

does not exist, H = F ◦G is not gH-directionally differentiable IVF at G(x̄) = 0 in

any direction h 6= 0.
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Theorem 4.13. Let I be a finite set of indices and Fi : X → I(R) be family of

IVFs such that FiH ′ (x̄)(h) exists and for all x ∈ X , F(x) = max
i∈I

Fi(x). Then,

FH ′(x̄)(h) = max
i∈A(x̄)

FiH ′ (x̄)(h), where A(x̄) = {i : Fi(x̄) = F(x̄)}.

Proof. Let x̄ ∈ X , and d ∈ X be such that x̄+ λd ∈ X for all λ > 0. Then,

Fi(x̄+ λd) � F(x̄+ λd) for all i ∈ I

or, Fi(x̄+ λd)	gH F(x̄) � F(x̄+ λd)	gH F(x̄) for all i ∈ I

or, Fi(x̄+ λd)	gH Fi(x̄) � F(x̄+ λd)	gH F(x̄) for each i ∈ A(x̄)

or, lim
λ→0+
d→h

1

λ
� (Fi(x̄+ λd)	gH Fi(x̄)) � lim

λ→0+
d→h

1

λ
� (F(x̄+ λd)	gH F(x̄))

or, max
i∈A(x̄)

FiH ′ (x̄)(h) � FH ′(x̄)(h). (4.14)

To prove the reverse inequality, we claim that there exists a neighbourhood N (x̄)

such that A(x) ⊂ A(x̄) for all x ∈ N (x̄). Assume contrarily that there exists a

sequence {xk} in X with xk → x̄ such that A(xk) 6⊂ A(x̄). We can choose ik ∈ A(xk)

but ik /∈ A(x̄). Since A(xk) is closed, ik → ī ∈ A(xk). By gH-continuity of F we

have

Fī(xk) = F(xk) =⇒ Fī(x̄) = F(x̄),
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which is a contradiction to ik /∈ A(x̄). Thus, A(x) ⊂ A(x̄) for all x ∈ N (x̄).

Let us choose a sequence {λk}, λk → 0+ such x̄+ λkd ∈ N (x̄) for all d ∈ X . Then,

Fi(x̄) � F(x̄) for all i ∈ I

or, F(x̄+ λkd)	gH F(x̄) � F(x̄+ λkd)	gH Fi(x̄) for all i ∈ A(x̄)

or, F(x̄+ λkd)	gH F(x̄) � Fi(x̄+ λkd)	gH Fi(x̄) for all i ∈ A(x̄+ λkd)

or, lim
k→∞
d→h

1

λk
� (F(x̄+ λkd)	gH F(x̄)) � lim

k→∞
d→h

1

λk
� (Fi(x̄+ λkd)	gH Fi(x̄))

or, FH ′(x̄)(h) � max
i∈A(x̄)

FiH ′ (x̄)(h). (4.15)

From (4.14) and (4.15), we obtain

FH ′(x̄)(h) = max
i∈A(x̄)

FiH ′ (x̄)(h).

4.5 Characterization of Efficient Solutions

In this section, we present the characterization of efficient solutions for IOPs based

on the properties of gH-Hadamard semidifferentiable IVFs.

Theorem 4.14 (Necessary condition for efficient points). Let S be a nonempty

subset of X , F : S → I(R) be an IVF, and x̄ ∈ S be an efficient point of the IOP

(1.5). If the function F has a gH-Hadamard semiderivative at x̄ in the direction

(v − x̄) for any x ∈ S, then

FH ′(x̄)(v − x̄) ≮ 0 for all v ∈ S. (4.16)
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Proof. Let x̄ ∈ S be an efficient point of the IVF F. For any point x ∈ X , the

gH-Hadamard semiderivative of F at x̄ in the direction (v − x̄) is given by

FH ′(x̄)(v − x̄) = lim
λ→0+
h→v

1

λ
�
(
F(x̄+ λ(h− x̄))	gH F(x̄)

)
. (4.17)

Since the point x̄ is an efficient point of the function F, for any h ∈ X and λ > 0

with x̄+ λ(h− x̄) ∈ S, we get

F(x̄+ λ(h− x̄)) ⊀ F(x̄)

or, F(x̄+ λ(h− x̄))	gH F(x̄) ⊀ 0.

This implies that

max
{
f(x̄+ λ(h− x̄)− f(x̄), f(x̄+ λ(h− x̄)− f(x̄)

}
≥ 0.

Since λ > 0, we obtain

lim
λ→0+
h→v

1

λ
max

{
f(x̄+ λ(h− x̄)− f(x̄), f(x̄+ λ(h− x̄)− f(x̄)

}
≥ 0

or, max
{
f

D
(x̄)(v), fD(x̄)(v)

}
≥ 0. (4.18)

By Lemma 4.1,

FH ′(x̄)(v) =
[
min

{
f

H ′(x̄)(v), fH ′(x̄)(v)
}
,max

{
f

H ′(x̄)(v), fH ′(x̄)(v)
}]

(4.19)

From (4.17), (4.18) and (4.19), we have

FH ′(x̄)(v − x̄) ≮ 0 for all v ∈ S.
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Note 11. One may think that in Theorem 4.14, instead of using the “not better

strict dominance” relation of compact intervals (Definition 1.4.3), we may use “not

strict dominance” relation of compact intervals (Definition 1.4.2). However, this

assumption is not sufficient. For instance, consider X = R, S = [−1, 7], and the

IVF F : S → I(R) that is defined by

F(x) = [x2 − 4x+ 4, x2 + 5].

For any x, h ∈ S such that x+ λh ∈ S, we have the following for any v ∈ X :

lim
λ→0+
h→v

1

λ
� (F(x+ λh)	gH F(x)) = 2v � [x− 2, x].

Hence, FH ′(x̄)(v) = 2v� [x̄− 2, x̄]. Note that x̄ = 0 is an efficient point of the IOP

(1.5) because

F(y) ⊀ F(x̄) for all y ∈ S.

However, FH ′(x̄)(v) ≺ 0 for all v > 0.

Theorem 4.15 (Sufficient condition for efficient points). Let S be a nonempty con-

vex subset of X and F : S → I(R) be a convex IVF. If the function F has a

gH-Hadamard semderivative at x̄ ∈ S in the direction (v − x̄) with

FH ′(x̄)(v − x̄) ⊀ 0 for all v ∈ X , (4.20)

then x̄ is an efficient point of the IOP (1.5).
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Proof. Suppose at x̄ ∈ S, for each direction (v − x̄), we have

FH ′(x̄)(v − x̄) ⊀ 0 for all v ∈ X .

If possible, let x̄ be not an efficient point of F. Then, there exists at least one y ∈ S

such that F(y) ≺ F(x̄). Therefore, for any λ ∈ (0, 1], we have

λ� F(y) ≺ λ� F(x̄)

or, λ� F(y)⊕ λ′ � F(x̄) ≺ λ� F(x̄)⊕ λ′ � F(x̄), where λ′ = 1− λ

or, λ� F(y)⊕ λ′ � F(x̄) ≺ (λ+ λ′)� F(x̄) = F(x̄).

Due to the convexity of F on S, we have

F(x̄+ λ(y − x̄)) = F(λy + λ′x̄) � λ� F(y)⊕ λ′ � F(x̄) ≺ F(x̄)

or, F(x̄+ λ(y − x̄))	gH F(x̄) ≺ 0

or, lim
λ→0+
y→v

1

λ
� (F(x̄+ λ(y − x̄))	gH F(x̄)) � 0

or, FH ′(x̄)(v − x̄) � 0. (4.21)

From (4.21), we have the following two possibilities.

(a) If FH ′(x̄)(v − x̄) = 0, then FD(x̄)(v − x̄) = 0. By Lemma 4.1 and Theorem 4.4

we have

f
D

(x̄)(v − x̄) = 0 and fD(x̄)(v − x̄) = 0. (4.22)

Due to Lemma 1.8, f and f are convex on S. From (4.22), we observe that x̄ is

a minimum point of f and f . Consequently, x̄ is an efficient point of F. This is

contradictory to the assumption that x̄ is not efficient point of F.
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(b) If FH ′(x̄)(v−x̄) ≺ 0, then this contradicts the assumption that FH ′(x̄)(v−x̄) ⊀

0 for all v ∈ X .

Hence, x̄ is the efficient point of the IOP (1.5).

Note 12. Converse of Theorem 4.15 is not true. For example, consider X = R,

S = [−1, 2], and the IVF F : S → I(R) that is defined by

F(x) = [4x2 − 4x+ 1, 2x2 + 75].

Since f and f are convex and Lipschitz continuous on S, F is convex and gH-

Lipschitz continuous IVF on S by Lemma 1.8 and Lemma 3.3. Also, from Theorem

4.4, F has gH-Hadamard semiderivative at x̄ = 0 ∈ S in every direction v ∈ X .

Since

lim
λ→0+
h→v

1

λ
� (F(x̄+ λh)	gH F(x̄))

= lim
λ→0+
h→v

1

λ
�
([

4(λh)2 − 4(λh) + 1, 2(λh)2 + 75
]
	gH [1, 75]

)
= v � [−4, 0],

FH ′(x̄)(v) = v � [−4, 0] for all v ∈ X . From Figure 5.1, it is clear that x̄ = 0 is an

efficient solution of the IOP (1.5).

However, for all v > 0 we have FH ′(x̄)(v) ≺ 0.

Example 4.3. In this example, we show that the condition ‘FH ′(x̄)(v− x̄) ⊀ 0’ for

a gH-Hadamard differentiable IVF in Theorem 4.15 is sufficient for convex IOPs

but not sufficient for nonconvex IOPs. Let us consider X = R, X = S and the IVF

F : S → I(R) that is defined by

F(x) = x2 � [−5,−2].
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Figure 4.1: The IVF F of Note 16

Since f is not convex on S, F is not a convex IVF on S by Lemma 1.8. At x̄ = 0,

for arbitrary h ∈ S, we have

lim
λ→0+
h→v

1

λ
� (F(x̄+ λh)	gH F(x̄)) = 0.

Hence, FH ′(x̄)(v) = 0. Note that FH ′(x̄)(v) ⊀ 0, but x̄ is not an efficient point of

the IOP (1.5) because

F(y) ≺ F(x̄) for all y ∈ S and y 6= x̄.

Theorem 4.16 (Extended Karush-Kuhn-Tucker sufficient condition for efficient

points). Let S be a nonempty convex subset of X ; F : S → I(R) and Gi : S → I(R)

on S, i = 1, 2, . . . ,m be interval-valued gH-Hadamard differentiable convex function

on S. Suppose x̄ ∈ S be a feasible point of the IOP:

min F(x)

subject to Gi(x̄) � 0, i = 1, 2, · · · ,m

x ∈ S.


(4.23)
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If there exist real constants u1, u2, . . . , um for which


FH ′(x̄)(v)⊕

∑m
i=1 uiGiH ′(x̄)(v) ⊀ 0 for all v ∈ S,

ui �Gi(x̄) = 0, i = 1, 2, · · · ,m, and

ui ≥ 0, i = 1, 2, · · · ,m.

then x̄ is an efficient point of the IOP (4.23) under consideration.

Proof. By the hypothesis, for every v ∈ S satisfying Gi(v) � 0 for all i = 1, 2, · · · ,m.

we have

FH (x̄)(v − x̄)⊕
m∑
i=1

uiGiH (x̄)(v − x̄) ⊀ 0

=⇒ (F(v)	gH F(x̄))⊕

(
m∑
i=1

ui (Gi(v)	gH Gi(x̄))

)
⊀ 0 from (4.4) of Theorem 4.5

=⇒ (F(v)	gH F(x̄))⊕

(
m∑
i=1

ui (Gi(v))

)
⊀ 0

=⇒ F(v)	gH F(x̄) ⊀ 0 since Gi(v) � 0

=⇒ F(v) ⊀ F(x̄).

Hence, x̄ is an efficient point of IOP (4.23).

4.6 Concluding Remarks

In this chapter, a concept of gH-Hadamard semiderivative for IVFs has been studied.

It has been observed that gH-continuous is necessary condition and gH-Lipschitz

continuity is sufficient condition for existence of gH-Hadamard semiderivative. It

has been proved that a gH-Hadamard differentiable IVF follows the chain rule and
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max rule. In addition, by using this derivative, the optimality condition to find the

efficient solutions of IOPs has been derived. Moreover, for constraint IOPs, it has

been proved extended KKT sufficient condition to characterize the efficient solutions

by using gH-Hadamard semiderivative.

***********


