
Chapter 3

Generalized Hukuhara Clarke

Derivative of Interval-valued

Functions and its Application in

Interval Optimization

3.1 Introduction

Clarke derivative [22] is often applied in the nonsmooth analysis where the functions

do not have a unique linear approximation. Advances of nonsmooth analysis [17, 66]

shows the essential need of this derivative to handle nondifferentiable functions,

especially in the absence of convexity. The topics of optimization [42], control theory

[42], variational method [3], etc. are wide application areas of Clarke derivative.

Convexity plays an important role in optimization theory because a local optimum

becomes a global one and a necessary optimality condition becomes a sufficient
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condition. However, practically, not all optimization problems can be formulated

as convex problems. Thus, various generalizations of convexity [3, 10] have been

developed that enjoy the local-global property of optima and necessary-sufficient

property of optimality conditions.

3.2 Motivation

Despite of many attempts to develop a calculus of IVFs, the existing ideas are not

adequate to find solutions to nonsmooth IOPs as well as nonconvex IOPs. Although

Bhurjee and Panda [8] proposed some optimality conditions and duality results for

nonsmooth convex IOPs by converting them to a real-valued problem through a

parametric representation of IVFs, one needs the explicit expression of the IVF for

the parametric representation, which is often practically difficult. In the second

chapter, the concepts of directional derivative and Gâteaux derivative for IVFs are

derived to solve nonsmooth IOPs. However, these derivatives are not applicable for

some nonsmooth IOPs (see Remark 3.4.4 of this chapter).

3.3 Contributions

In this chapter, the notions of upper and lower gH-Clarke derivative, gH-pseudoconvex,

and quasiconvex for IVFs are proposed. To define the concept of gH-Clarke deriva-

tives, the concepts of limit superior, limit inferior, and sublinear interval-valued func-

tions are studied in the sequel. The upper gH-Clarke derivative of a gH-Lipschitz

IVF is observed to be a sublinear IVF. It is found that every gH-Lipschitz continuous

IVF is upper gH-Clarke differentiable. Further, for a convex and gH-Lipschitz IVF,

it is shown that the upper gH-Clarke derivative coincides with the gH-directional
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derivative. With the help of the studied gH-pseudoconvex, quasiconvex and gH-

Lipschitz IVFs, we present a few results on characterizing efficient solutions of an

IOP with upper gH-Clarke and gH-Fréchet differentiable IVFs. Importantly, we

report that at an efficient point of an IVF on a star-shaped set, the upper gH-

Clarke derivative does not dominate zero. The entire study is supported by suitable

illustrative examples.

Neat contributions of this chapter are as follows:

(i) For a convex IVF and gH-Lipschitz continuous IVF, it is proved that the gH-

directional derivative coincides with the upper gH-Clarke derivative.

(ii) For a gH-pseudoconvex and gH-Lipschitz continuous IVF, it is shown that a

point is an efficient solution of IOP if and only if zero is not strictly dominated

by the upper gH-Clarke derivative.

3.4 Clarke Derivative of Interval-valued Functions

In this section, extended concepts of the gH-directional derivative, namely upper

and lower gH-Clarke derivatives, for IVFs are given. A short discussion of the

required notions of limit superior and sublinearity for IVFs is provided.

Definition 3.4.1 (Supremum and limit superior of an IVF). Let S be a nonempty

subset of X and F : S → I(R) be an IVF. Then, the supremum of F over S is

defined by

sup
S

F =

[
sup
S
f, sup

S
f

]
,
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where sup
S

f = sup
{
f(x) : x ∈ S

}
and sup

S
f = sup

{
f(x) : x ∈ S

}
.

The limit superior of F at a limit point x̄ in S is defined by

lim sup
x→x̄

F(x) =

[
lim sup
x→x̄

f(x), lim sup
x→x̄

f(x)

]
,

where lim sup
x→x̄

f(x) = lim
δ→0

(
sup

x∈B(x̄,δ)∩S
f(x)

)
and lim sup

x→x̄
f(x) = lim

δ→0

(
sup

x∈B(x̄,δ)∩S
f(x)

)
.

Definition 3.4.2 (Infimum and limit inferior of an IVF). Let S be a nonempty

subset of X and F : S → I(R) be an IVF. Then, the infimum of F is defined by

inf
S
F =

[
inf
x∈S

f, inf
x∈S

f

]
,

where inf
S
f = inf

{
f(x) : x ∈ S

}
and inf

S
f = inf

{
f(x) : x ∈ S

}
.

The limit inferior of F at a limit point x̄ in S is defined by

lim inf
x→x̄

F(x) =
[
lim inf
x→x̄

f(x), lim inf
x→x̄

f(x)
]
,

where lim inf
x→x̄

f(x) = lim
δ→0

(
inf

x∈B(x̄,δ)∩S
f(x)

)
and lim inf

x→x̄
f(x) = lim

δ→0

(
inf

x∈B(x̄,δ)∩S
f(x)

)
.

Lemma 3.1. Let S be a nonempty subset of X and F, G : S → I(R) be two IVFs.

Then, at any x̄ ∈ S, the following properties are true:

(i) lim sup
x→x̄

(F(x)⊕G(x)) � lim sup
x→x̄

F(x)⊕ lim sup
x→x̄

G(x),

(ii) lim sup
x→x̄

(λ� F(x)) = λ� lim sup
x→x̄

F(x) for all λ ≥ 0, and

(iii)

∥∥∥∥lim sup
x→x̄

F(x)

∥∥∥∥
I(R)

≤ lim sup
x→x̄

‖F(x)‖I(R) .

Proof. See Appendix C.1.
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Definition 3.4.3 (Upper gH-Clarke derivative). Let F be an IVF on a nonempty

subset S of X . For x̄ ∈ S and h ∈ X , if the limit superior

lim sup
x→x̄
λ→0+

1

λ
�
(
F(x+λh)	gHF(x)

)
= lim

δ→0

(
sup

x∈B(x̄,δ)∩S, λ∈(0,δ)

1

λ
�
(
F(x+λh)	gHF(x)

))

exists, then the limit superior value is called upper gH-Clarke derivative of F at x̄

in the direction h, and it is denoted by FC (x̄)(h). If this limit superior exists for all

h ∈ X , then F is said to be upper gH-Clarke differentiable at x̄.

Definition 3.4.4 (Lower gH-Clarke derivative). Let F be an IVF on a nonempty

subset S of X . For x̄ ∈ S and h ∈ X , if the limit inferior

lim inf
x→x̄
λ→0+

1

λ
�
(
F(x+λh)	gHF(x)

)
= lim

δ→0

(
inf

x∈B(x̄,δ)∩S, λ∈(0,δ)

1

λ
�
(
F(x+λh)	gHF(x)

))

exists, then the limit inferior value is called lower gH-Clarke derivative of F at x̄ in

the direction h. If this limit inferior exists for all h ∈ X , then F is said to be lower

gH-Clarke differentiable at x̄.

Remark 3.4.1. Conventionally, for real valued-functions, the terminologies Clarke

derivative [17, 42] and upper Clarke derivative [20] are interchangeably used. In fact,

the upper Clarke derivative is usually referred to as Clarke derivative. However, in

order to avoid any confusion, we prefix upper and lower with the Clarke derivative

corresponding to the values given by limit superior and limit inferior, respectively. In

addition, throughout the article, we use the notation FC to refer the upper gH-Clarke

derivative of an IVF F.

Remark 3.4.2. It is clear that F is lower gH-Clark differentiable at x̄ if and only

if (	F) is upper gH-Clark differentiable at x̄. That is why we shall deal only with

the upper gH-Clark differentiability.
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Example 3.1. In this example, we calculate the upper gH-Clarke derivative at x̄ = 0

for the following IVF:

F(x) =

[
sin(2|x|), e

|x|
4

]
, x ∈ R.

Here X is the Euclidean space R, and S = X . At x̄ = 0 in S, for any h ∈ R, we

have

lim sup
x→0
λ→0+

1

λ
� (F(x+ λh)	gH F(x))

= lim sup
x→0
λ→0+

1

λ
�

[
min

{
sin(2|x+ λh|)− sin(2|x|), e

|x+λh|
4 − e

|x|
4

}
,

max

{
sin(2|x+ λh|)− sin(2|x|), e

|x+λh|
4 − e

|x|
4

}]

� lim sup
x→0
λ→0+

1

λ
�

[
min

{
2|λh|, e

|x+λh|
4 − e

|x|
4

}
,max

{
2|λh|, e

|x+λh|
4 − e

|x|
4

}]
(since |sinx− sin y| ≤ |x− y|)

=
[
min

{
2|h|, |h|

4

}
, max

{
2|h|, |h|

4

}]
, by Theorem 3.42 of [42]

= |h| �
[

1
4
, 2
]
. (3.1)
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Further, taking x = λh, we obtain

lim sup
x→0
λ→0+

1

λ
� (F(x+ λh)	gH F(x))

= lim sup
λ→0+

1

λ
�
([

sin(2|x+ λh|), e
|x+λh|

4

]
	gH

[
sin(2|h|), e

|h|
4

])
� lim sup

λ→0+

1

λ
�
([

sin(4λ|h|), e
2λ|h|

4

]
	gH

[
sin(2λ|h|), e

λ|h|
4

])
= lim sup

λ→0+

1

λ
�

[
min

{
sin(4λ|h|)− sin(2λ|h|), e

2λ|h|
4 − e

λ|h|
4

}
,

max

{
sin(4λ|h|)− sin(2λ|h|), e

2λ|h|
4 − e

λ|h|
4

}]
=

[
min

{
2|h|, |h|

4

}
, max

{
2|h|, |h|

4

}]
= |h| �

[
1
4
, 2
]
. (3.2)

From the inequalities (3.1) and (3.2), we have FC (x̄)(h) = |h| �
[

1
4
, 2
]
.

Lemma 3.2. If f and f are upper Clarke differentiable at x̄ ∈ S ⊆ X , then the IVF

F is upper gH-Clarke differentiable at x̄ ∈ S.

Proof. See Appendix C.2.

Lemma 3.3. Let F be an IVF on a nonempty subset S of X .

(i) F is gH-continuous on S if and only if f and f are continuous on S.

(ii) F is gH-Lipschitz continuous on S if and only if f and f are Lipschitz con-

tinuous on S.

(iii) If F is a gH-Lipschitz continuous on S, then F is gH-continuous on S.

Proof. See Appendix C.3.
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A consequence of Lemma 3.3 is that gH-continuity and gH-Lipschitz continuity of

IVFs can be defined classically, i.e., without the concept of gH-difference. Then,

the prefix gH- in continuity and Lipschitz continuity could be omitted.

Remark 3.4.3. Converse of (iii) of Lemma 3.3 is not true. For example, consider

X as the Euclidean space R, S = [0, 10], and the IVF F : S → I(R), which is defined

by

F(x) =
√
x� [2, 5].

Since f(x) = 2
√
x and f(x) = 5

√
x are continuous on S, F is gH-continuous on S

by (i) of Lemma 3.3. If F is gH-Lipschitz continuous on S, then by (ii) of Lemma

3.3, f and f are Lipschitz continuous on S, which is not true. Consequently, F is

not gH-Lipschitz continuous on S.

The following theorem extends the well-known result from [42] for Lipschitz contin-

uous functions to gH-Lipschitz continuous IVFs with the help of Lemma 3.2.

Theorem 3.4. Let S be a nonempty subset of X with x̄ ∈ int(S) and F : S → I(R)

be a gH-Lipschitz continuous IVF at x̄ with a Lipschitz constant K ′. Then, F is

upper gH-Clarke differentiable at x̄ and

‖FC (x̄)(h)‖I(R) ≤ K ′‖h‖ for all h ∈ X .

Proof. Since F is gH-Lipschitz continuous on S, for any h ∈ X , we get for λ > 0

that

∥∥∥∥1

λ
� (F(x+ λh)	gH F(x))

∥∥∥∥
I(R)

≤ 1

λ
K ′‖x+ λh− x‖ = K ′‖h‖, (3.3)

if x and λ are sufficiently close to x̄ and 0, respectively. From inequality (3.3) we

have
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∣∣∣∣1λ (f(x+ λh)− f(x)
) ∣∣∣∣ ≤ K ′‖h‖ and

∣∣∣∣1λ (f(x+ λh)− f(x)
) ∣∣∣∣ ≤ K ′‖h‖.

Hence, by (ii) of Lemma 3.3, the limit superior f
C

(x̄)(h) and fC (x̄)(h) exist at x̄

(cf. p. 69 of [42]). By Lemma 3.2, the limit superior FC (x̄)(h) exists.

Furthermore, by gH-Lipschitz continuity of F on S, we have the following for all

h ∈ X :

‖FC (x̄)(h)‖I(R) =

∥∥∥∥∥ lim sup
x→x̄
λ→0+

1

λ
� (F(x+ λh)	gH F(x))

∥∥∥∥∥
I(R)

≤ lim sup
x→x̄
λ→0+

∥∥∥∥1

λ
� (F(x+ λh)	gH F(x))

∥∥∥∥
I(R)

by Lemma 3.1

≤ K ′‖h‖ by (3.3).

For convex and gH-Lipschitz continuous IVFs, upper gH-Clarke derivative and gH-

directional derivative coincide as the next theorem states.

Theorem 3.5. Let X be convex, and the IVF F : X → I(R) be convex on X and

gH-Lipschitz continuous at some x̄ ∈ X . Then, the upper gH-Clarke derivative of

F at x̄ coincides with the gH-directional derivative of F at x̄ in the direction h ∈ X .

Proof. Since F is a convex IVF on X , we get by Theorem 2.3 that the gH-directional

derivative of F exists at x̄ ∈ X in every direction h. Also, as F is gH-Lipschitz

continuous at x̄, from Theorem 3.4, we get that the upper gH-Clarke derivative of

F exists at any x̄ ∈ X in every direction h. Thus, by Definitions 2.4.1 and 3.4.3, we

observe that

FD(x̄)(h) � FC (x̄)(h) for all h. (3.4)
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For the proof of the reverse inequality, we write

FC (x̄)(h) = lim sup
x→x̄
λ→0+

1

λ
� (F(x+ λh)	gH F(x))

= lim
δ→0+
ε→0+

sup
‖x−x̄‖<δ

sup
0<λ<ε

1

λ
� (F(x+ λh)	gH F(x)) .

Since F is convex on X , Lemma 2.1 leads to the equality

FC (x̄)(h) = lim
δ→0+
ε→0+

sup
‖x−x̄‖<δ

1

ε
� (F(x+ εh)	gH F(x)) ,

and for an arbitrary α > 0,

FC (x̄)(h) = lim
ε→0+

sup
‖x−x̄‖<εα

1

ε
� (F(x+ εh)	gH F(x)) .

Because of the gH-Lipschitz continuity of F at x̄, we have for sufficiently small ε > 0

and ‖x− x̄‖ < εα that

∥∥1
ε
� (F(x+ εh)	gH F(x))	gH 1

ε
� (F(x̄+ εh)	gH F(x̄))

∥∥
I(R)

≤
∥∥1
ε
� (F(x+ εh)	gH F(x̄+ εh))

∥∥
I(R)

+
∥∥1
ε
� (F(x)	gH F(x̄))

∥∥
I(R)

by (iv) of Lemma 1.6

≤ 1
ε
K ′‖x− x̄‖+ 1

ε
K ′‖x− x̄‖, where K ′ is the Lipschitz constant of F at x̄ ∈ X

≤ 2K ′α.

Then, by (iii) of Lemma 1.6, we have

FC (x̄)(h) � lim
ε→0+

1

ε
� (F(x+ εh)	gH F(x))⊕ [2Kα, 2Kα]

= FD(x̄)(h)⊕ [2K ′α, 2K ′α].
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Since α > 0 is chosen arbitrarily, we obtain

FC (x̄)(h) � FD(x̄)(h) for all h. (3.5)

From (3.4) and (3.5), we get

FC (x̄)(h) = FD(x̄)(h).

Remark 3.4.4. An upper gH-Clarke diffrentiable IVF F may not be gH-directional

differentiable. For example, take X as the Euclidean space R, S = R and the IVF

F : S → I(R), which is defined by

F(x) =


[

2 sin2 x
x

, 2|x|+ sin2 2x
3x

]
, if x 6= 0

[2, 7], if x = 0.

For all nonzero h in X , we have

lim
λ→0+

1

λ
� (F(x+ λh)	gH F(x))

= lim
λ→0+

1

λ
�
([

2 sin2(x+λh)
x+λh

, 2|x+ λh|+ sin2 2(x+λh)
3(x+λh)

]
	gH

[
2 sin2 x
x

, 2|x|+ sin2 2x
3x

])
= lim

λ→0+

1

λ
�

[
min

{
2 sin2(x+λh)

x+λh
− 2 sin2 x

x
, (2|x+ λh| − 2|x|) +

(
sin2 2(x+λh)

3(x+λh)
− sin2 2x

3x

)}
,

max
{

2 sin2(x+λh)
x+λh

− 2 sin2 x
x

, (2|x+ λh| − 2|h|) +
(

sin2 2(x+λh)
3(x+λh)

− sin2 2x
3x

)}]
=

[
min

{
2xh sin 2x−2h sin2 x

x2
, 2|h|+ 1

3

(
2xh sin 4x−h sin2 x

x2

)}
,

max
{

2xh sin 2x−2h sin2 x
x2

, 2|h|+ 1
3

(
2xh sin 4x−h sin2 x

x2

)} ]
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Thus,

FC (0)(h) =
[
2h, 2|h|+ 4

3
h
]
.

However, the limit

lim
λ→0+

1

λ
� (F(λh)	gH F(0))

= lim
λ→0+

1

λ
�
([

2 sin2 λh
λh

, 2|λh|+ sin2 2λh
6λh

]
	gH [2, 7]

)

does not exist. Consequently, G is not gH-directional differentiable at x̄ = 0.

Remark 3.4.5. Let S be a nonempty subset of X and F : S → I(R) has gH-

directional derivative at x̄ ∈ S. Then, F is not necessarily upper gH-Clarke differ-

entiable at x̄ ∈ X . For instance, take X as the Euclidean space R2, S = {(x1, x2) ∈

R2 : x2 ≥ 0, x2 ≥ 0} and the IVF F : S → I(R), which is defined by

F(x1, x2) =


x2

1

(
1 + 1

x2

)
� [3, 8] if x = (x1, x2) 6= (0, 0)

0 otherwise.

Then, at x̄ = (0, 0) and h = (h1, h2) ∈ X such that for sufficiently small λ > 0 so

that x̄+ λh ∈ S, we have

lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄)) =


h21
h2
� [3, 8] if h2 6= 0

0 otherwise.

Hence, F has a gH-directional derivative at x̄ in every direction h ∈ X .

Again, for x = (x1, x2) ∈ S and h = (h1, h2) ∈ X , we have

lim
λ→0+

1

λ
� (F(x+ λh)	gH F(x))

= lim
λ→0+

1

λ
�
(

(x1 + λh1)2

(
1 +

1

x2 + λh2

)
� [3, 8]	gH x2

1

(
1 +

1

x2

)
� [3, 8]

)
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=

[
min

{
3

(
2x1h1 +

2x1h1

x2

− x2
1h2

x2
2

)
, 8

(
2x1h1 +

2x1h1

x2

− x2
1h2

x2
2

)}
,

max

{
3

(
2x1h1 +

2x1h1

x2

− x2
1h2

x2
2

)
, 8

(
2x1h1 +

2x1h1

x2

− x2
1h2

x2
2

)}]
.

Along x2 = mx1, where m is any real number,

lim
x→0
λ→0+

1

λ
� (F(x+ λh)	gH F(x))

=

[
min

{
3

(
2h1

m
− h2

m2

)
, 8

(
2h1

m
− h2

m2

)}
,max

{
3

(
2h1

m
− h2

m2

)
, 8

(
2h1

m
− h2

m2

)}]
.

Hence, for h2 > 0,
(

2h1
m
− h2

m2

)
→ −∞ as m→ 0. Consequently,

lim sup
x→0
λ→0+

1

λ
� (F(x+ λh)	gH F(x)) does not exist.

This implies that F has no upper gH-Clarke derivative at x̄ ∈ S.

Definition 3.4.5 (Sublinear IVF). Let S be a linear subspace of X . An IVF F :

S → I(R) is said to be sublinear on S if

(i) F(λx) = λ� F(x) for all x ∈ S and for all λ ≥ 0, and

(ii) F(x+ y) � F(x)⊕ F(y) for all x, y ∈ S.

Example 3.2. Let X be the Euclidean space R2 and S = X . Then, the IVF F :

S → I(R) that is defined by

G(x1, x2) = |x1| � [3, 8]⊕ |x2| � [7, 11]

is sublinear on S. The reason is as follows.

Here, F(x1, x2) =
[
f(x1, x2), f(x1, x2)

]
=
[
3|x1|+ 7|x2|, 8|x1|+ 11|x2|

]
.

For all x = (x1, x2), y = (y1, y2) ∈ S and λ ≥ 0, we have
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(i) F(λx) =
[
3|λx1|+ 7|λx2|, 8|λx1|+ 11|λx2|

]
= λ�

[
f(x), f(x)

]
= λ� F(x).

(ii) for all x1, x2, y1, y2 ∈ R, we have

3|x1 + y1|+ 7|x2 + y2| ≤ 3|x1|+ 3|y1|+ 7|x2|+ 7|y2|

=⇒ f(x+ y) ≤ f(x) + f(y), (3.6)

and

8|x1 + y1|+ 11|x2 + y2| ≤ 8|x1|+ 8|y1|+ 11|x2|+ 11|y2|

=⇒ f(x+ y) ≤ f(x) + f(y), (3.7)

From the inequalities (3.6) and (3.7), we obtain

[
f(x+ y), f(x+ y)

]
�
[
f(x) + f(y), f(x) + f(y)

]
=⇒ F(x+ y) � F(x)⊕ F(y)

=⇒ F(x+ y) � F(x)⊕ F(y)

Hence, F is a sublinear IVF on S.

Note 6. Let Q be a real positive definite matrix of order n × n and S be a linear

subspace of X . Consider the IVF F : S → I(R), which is defined by

F(x) =
(√

xTQx
)
�C, where C ⊀ 0.

Then, F is a sublinear IVF on S. The reason is as follows.

The function F(x) can be written as g(x)�C, where g(x) =
√
xTQx. By Example

1.2.3 of [36], g satisfies the following conditions:
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(a) for λ ≥ 0 and x ∈ S,

g(λx) = λg(x), (3.8)

and

(b) for all x, y ∈ S

g(x+ y) ≤ g(x) + g(y). (3.9)

From (3.8), we have

g(λx)�C = λg(x)�C, or, F(λx) = λ� F(x).

Since C ⊀ 0, from (3.9) and Lemma 1.7, we obtain

g(x+ y)�C � (g(x) + g(y))�C

=⇒ (g(x+ y))�C � g(x)�C⊕ g(y)�C since g(x) and g(y) are nonnegative

=⇒ F(x+ y) � F(x)⊕ F(y).

Hence, F is a sublinear IVF on S.

Note 7. Let S be a linear subspace of X and F : S → I(R) be a convex IVF on S

such that for all x ∈ S,

F(αx) = α� F(x) for every α ≥ 0. (3.10)
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Then, F is a sublinear IVF on S. The reason is as follows.

For x, y ∈ S and λ1, λ2 > 0, we have

F(λ1x+ λ2y) = F
(
λ
(
λ1
λ
x+ λ2

λ
y
))
, where λ = λ1 + λ2

= λ� F
(
λ1
λ
x+ λ2

λ
y
)

by (3.10)

� λ1 � F(x)⊕ λ2 � F(y) by the convexity of F.

Taking λ1 = λ2 = 1, we obtain

F(x+ y) � F(x)⊕ F(y) for all x, y ∈ S.

Hence, F is a sublinear IVF on S.

Remark 3.4.6. A sublinear IVF may not be convex. For instance, take X as the

Euclidean space R, S = X and the IVF F : S → I(R) that is given by

F(x) = |x| � [−3, 2].

Clearly, by Example 3.2, F is a sublinear IVF on S. However, f(x) = −3|x| is not

convex on S. Therefore, by Lemma 1.8, F is not a convex IVF on S.

Theorem 3.6. Let S be a subset of X with nonempty interior, and let F : S → I(R)

be an IVF that is upper gH-Clarke differentiable at x̄ ∈ int(S). Then, the upper

gH-Clarke derivative FC (x̄) of F is a sublinear IVF on S.

Proof. For an arbitrary h ∈ S and α ≥ 0, we have

lim sup
x→x̄
λ→0+

1

λ
� (F(x+ λαh)	gH F(x)) = α� (lim sup

x→x̄
λ→0+

1
λα
� (F(x+ λαh)	gH F(x)))

= α� FC (x̄)(h).
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Thus, FC (x̄)(αh) = α� FC (x̄)(h).

Next, for all h1, h2 ∈ S, we get

FC (x̄)(h1 + h2)

= lim sup
x→x̄
λ→0+

1

λ
� (F(x+ λ(h1 + h2))	gH F(x))

� lim sup
x→x̄
λ→0+

1

λ
�
[
F(x+ λh1 + λh2)	gH F(x+ λh2)⊕ F(x+ λh2)	gH F(x)

]
,

by (iii) of Lemma 1.5

= FC (x̄)(h1)⊕ FC (x̄)(h2).

Hence, FC (x̄) is a sublinear IVF on S.

3.5 Pseudoconvex and Quasiconvex Interval-valued

Functions

Here we study the concepts of gH-pseudoconvex and quasiconvex IVFs. In the

case of gH-pseudoconvex IVF, a necessary condition for the existence of an efficient

solution becomes a sufficient condition. Further, we show that the class of gH-

pseudoconvex IVFs includes the class of all differentiable convex IVFs and is included

in the class of all differentiable quasiconvex IVFs.

Definition 3.5.1. ( gH-pseudoconvex IVF). Let S be a nonempty convex subset of

X and F : S → I(R) be an IVF which has gH-directional derivative FD(x̄)(y − x̄)

at some x̄ ∈ S in every direction y − x̄, y ∈ S. Then, F is called gH-pseudoconvex

at x̄ if for all y ∈ S,

FD(x̄)(y − x̄) ⊀ 0 =⇒ F(y)	gH F(x̄) ⊀ 0.
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Remark 3.5.1. Definition 3.5.1 does not assume that the intervals in the range set

F(S) of F are comparable. This makes the definition nonrestrictive. Furthermore,

in the degenerate case, i.e., in the case of f = f on S, the definition reduces to

FD(x̄)(y − x̄) ≥ 0 =⇒ F(y) ≥ F(x̄),

which is the conventional pseudoconvexity. Thus, Definition 3.5.1 is a true and

nonrestrictive generalization of the conventional pseudoconvexity.

Remark 3.5.2. Notice that one may define gH-pseudoconvexity of an IVF F : S →

I(R) at x̄ ∈ S by

FD(x̄)(y − x̄) � 0 =⇒ F(y)	gH F(x̄) � 0 for all y ∈ S. (3.11)

i.e., FD(x̄)(y − x̄) � 0 =⇒ F(y) � F(x̄) for all y ∈ S.

However, this definition is very restrictive as it is applicable only for an IVF F : S →

I(R) for which the intervals in the range set F(S) are comparable. Thus, Definition

3.5.1 of gH-pseudoconvex IVF is more general than that in the sense of (3.11), and

the results that are derived using Definition 3.5.1 are true for gH-pseudoconvex IVFs

in the sense of (3.11).

The next theorem analyzes the relation between convex and gH-pseudoconvex interval-

valued functions.

Theorem 3.7. Let S be a nonempty convex subset of X , and F : S → I(R) be

a convex IVF on S which has gH-directional derivative at some x̄ ∈ S in every

direction y − x̄, y ∈ S. Then, F is gH-pseudoconvex at x̄.
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Proof. Since F is a convex IVF on S, for every x̄, y ∈ S and λ, λ′ ∈ (0, 1) with

λ+ λ′ = 1, we have

F(x̄+ λ(y − x̄)) = F(λy + λ′x̄) � λ� F(y)⊕ λ′ � F(x̄).

Consequently,

F(x̄+ λ(y − x̄))	gH F(x̄) � (λ� F(y)⊕ λ′ � F(x̄))	gH F(x̄)

=
[

min{λf(y) + λ′f(x̄)− f(x̄), λf(y) + λ′f(x̄)− f(x̄)},

max{λf(y) + λ′f(x̄)− f(x̄), λf(y) + λ′f(x̄)− f(x̄)}
]

= λ� (F(y)	gH F(x̄)),

which implies

FD(x̄)(y − x̄) � F(y)	gH F(x̄) for all y ∈ S. (3.12)

From the inequality (iv) of Lemma 1.5 and (3.12), we obtain

FD(x̄)(y − x̄) ⊀ 0 =⇒ F(y)	gH F(x̄) ⊀ 0 for all y ∈ S.

Hence, F is gH-pseudoconvex at x̄ ∈ S.

In the following example, we show an IVF which is gH-pseudoconvex but not convex.

Example 3.3. Consider X as the Euclidean space R, S = X and the IVF F : S →

I(R), which is defined by

F(x) = x� [1, 2]⊕ x3 � [5, 8]

=


[x+ 5x3, 2x+ 8x3], for x ≥ 0

[2x+ 8x3, x+ 5x3], for x < 0.
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The IVF F is depicted in Figure 3.1 by the shaded region.

5

55

-5

-
- 10-10

f

f

f

f

O
X

Y(x103)

Figure 3.1: The IVF F of Example 3.3

Note that for any y ∈ S and x̄ = 0, we have

FD(x̄)(y − x̄) = lim
λ→0+

1

λ
� (F(x̄+ λ(y − x̄))	gH F(x̄))

= lim
λ→0+

1

λ
�
(
λy � [1, 2]⊕ λ3y3 � [5, 8]

)
= y � [1, 2].

Again

FD(x̄)(y − x̄) ⊀ 0 =⇒ y � [1, 2] ⊀ 0 =⇒ y ≥ 0.

Further, for y ≥ 0,

F(y)	gH F(0) = y � [1, 2]⊕ y3 � [5, 8] ⊀ 0.

Hence, F is gH-pseudoconvex at x̄ = 0. However, the functions f and f are not

convex on S (see Figure 3.1). Therefore, the IVF F is not convex on S.
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Definition 3.5.2 (Quasiconvex IVF). Let S be a nonempty convex subset of X . An

IVF F : S → I(R) is said to be quasiconvex on S if for all x, y ∈ S

either F(x) ⊀ F(λx+λ′y) or F(y) ⊀ F(λx+λ′y), where λ, λ′ ∈ [0, 1] with λ+ λ′ = 1.

Remark 3.5.3. It is a convention to prefix gH in a nomenclature if we use gH-

difference in its definition. As there is no role of gH-difference in Definition 3.5.2,

we have not prefixed gH with quasiconvex.

Remark 3.5.4. Definition 3.5.2 does not assume that F(x) and F(y) are comparable

for all x, y ∈ S. This makes the definition nonrestrictive. In addition, in the degen-

erate case, i.e., in the case of f = f on S, the definition reduces to the conventional

quasiconvexity. Thus, Definition 3.5.2 is a true and nonrestrictive generalization

of the conventional quasiconvexity. In the example of Remark 3.5.5 the IVF F is

quasiconvex but there are a few points in the domain of F for which F(x) and F(y)

are not comparable.

Using the definition of quasiconvex IVFs, we obtain the following relation between

gH-pseudoconvex and quasiconvex IVFs.

Theorem 3.8. Let S be a nonempty convex subset of X , and F be an IVF defined

on an open superset of S. If F is gH-Fréchet differentiable and gH-pseudoconvex

at every x̄ ∈ S, then F is quasiconvex on S.

Proof. Suppose F is not quasiconvex on S. Then, there exists a λ̂ ∈ [0, 1] such that

for all x, y ∈ S, we have

F(x)	gH F(λ̂x+ (1− λ̂)y) ≺ 0 and F(y)	gH F(λ̂x+ (1− λ̂)y) ≺ 0. (3.13)
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Since F is gH-Fréchet differentiable on S, F is gH-continuous on S. Consequently,

there is a λ̄ ∈ (0, 1) with

F(λx+ (1− λ)y) � F(λ̄x+ (1− λ̄)y) for all λ ∈ (0, 1). (3.14)

As F is gH-Fréchet differentiable, F is also gH-directionally differentiable. So, with

the help of Theorem 2.4, we have

0 ≮ FD(x̄)(x− x̄) and 0 ≮ FD(x̄)(y − x̄), where x̄ = λ̄x+ (1− λ̄)y. (3.15)

Since

y − x̄ = y − λ̄x− (1− λ̄)y = −λ̄(x− y) (3.16)

and

x− x̄ = x− λ̄x− (1− λ̄)y = (1− λ̄)(x− y), (3.17)

due to inequality (3.15) and equation (3.17), we obtain

0 ≮ FD(x̄) (x− y)

=⇒ 0 ≯ FD(x̄)
(
−λ̄(x− y)

)
=⇒ 0 ≯ FD(x̄)(y − x̄) by equation (3.16). (3.18)

From (3.15) and (3.18), we have

either FD(x̄)(y − x̄) = 0 or ‘FD(x̄)(y − x̄) and 0 are not comparable’. (3.19)

Since F is gH-pseudoconvex at x̄ ∈ S we have from (3.19) that

F(y)	gH F(x̄) ⊀ 0 for all y ∈ S. (3.20)
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However, for any y ∈ S,

F(y)	gH F(x̄) = F(y)	gH F(λ̄x+ (1− λ̄)y)

� F(y)	gH F(λ̂x+ (1− λ̂)y), by (3.14)

≺ 0, by (3.13). (3.21)

Hence, (3.20) contradicts (3.21).

Therefore, F is a quasiconvex IVF on S.

In the following example, we show that there are some gH-Fréchet differentiable

IVFs which are quasiconvex but not gH-pseudoconvex.

Example 3.4. Consider X as the Euclidean space R, S = R+, and the IVF F :

S → I(R), which is defined by

F(x) = x3 � [3, 9].

For any x̄ in S and h in X such that x̄+ λh ∈ S with λ ≥ 0, we have

FD(x̄)(h) = lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄)) , provided limit exists

= lim
λ→0+

1

λ
� [3(x̄+ λh)3 − 3x̄3, 9(x̄+ λh)3 − 9x̄3]

= x̄2h� [9, 27].

Therefore,

lim
‖h‖→0

1

‖h‖
�
(
‖F(x̄+ h)	gH F(x̄)	gH FD(x̄)(h)‖I(R)

)
= lim

‖h‖→0

1

‖h‖
�
(
‖[3(x̄+ h)3 − 3x̄3, 9(x̄+ h)3 − 9x̄3]	gH x̄2h� [9, 27]‖I(R)

)
= 0.
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Hence, F is gH-Fréchet differentiable at every x̄ ∈ S and every direction h ∈ X .

Also, for any x, y ∈ S and λ, λ′ ∈ [0, 1] with λ+ λ′ = 1, we have

either F(x) � F(λx+ λ′y) or F(y) � F(λx+ λ′y)

=⇒either F(x) ⊀ F(λx+ λ′y) or F(y) ⊀ F(λx+ λ′y).

Therefore, F is a quasiconvex IVF on S. Now,

FD(x̄)(y − x̄) ⊀ 0 =⇒ x̄2y � [9, 27] ⊀ 0 =⇒ y ≥ 0.

Further, for x̄ = 2 with y = 1,

F(y)	gH F(x̄) = 13 � [3, 9]	gH 23 � [3, 9] = [−63,−21] ≺ 0.

Since FD(x̄)(y − x̄) ⊀ 0 6=⇒ F(y) 	gH F(x̄) ⊀ 0 for x̄ = 2 with y = 1, F is not

gH-pseudoconvex at x̄ ∈ S.

Theorem 3.9. Let S be a nonempty convex subset of X and F : S → I(R) be a

convex IVF on S which is gH-Fréchet differentiable on S. Then, F is a quasiconvex

IVF on S.

Proof. Since F is convex and gH-Freéchet differentiable, by Theorem 3.7, F is gH-

pseudoconvex. Also, by Theorem 3.8, F is a quasiconvex IVF on S.

Remark 3.5.5. Converse of Theorem 3.9 is not true. For example, consider X as

the Euclidean space R, S = [0, 2], and the IVF F : S → I(R) that is defined by

F(x) =


x� [1, 2]⊕ [−1, 0], for 0 ≤ x ≤ 1

[1, 0]⊕ x� [−1, 2], for 1 ≤ x ≤ 2
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= [−|x− 1|, 2x].

The IVF is depicted in Figure 5.1 by gray shaded region.

f

f

O 0.5 1.0 1.5 2.0
X

-1

1

2

3

4

Y

Figure 3.2: The IVF F of Remark 3.5.5

From Figure 5.1, we obtain that for any λ ∈ (0, 1),

F(2) ⊀ F(2λ+ 0(1− λ)) = F(2λ).

and thus, F is quasiconvex on S. However, the function f(x) = −|x − 1| is not

convex on S (see Figure 5.1). Therefore, the IVF F is not convex on S.

The results of Theorem 3.7, Theorem 3.8, and Theorem 3.9 can be summarized as

follows. If F is an IVF on a nonempty convex subset S of X , which is gH-Fréchet

differentiable at every x̄ ∈ X , then the following implications are satisfied

F is convex IVF on S =⇒ F is gH-pseudoconvex IVF at every x̄ ∈ S

=⇒ F is quasiconvex IVF on S.



Chapter 3. Characterization of Efficient Solutions 88

3.6 Characterization of Efficient Solutions

In this section, we present several characterizations of efficient solutions for IOPs

based on the properties of quasiconvex and gH-pseudoconvex IVFs, contingent cone,

upper gH-Clarke and gH-Fréchet derivatives.

Theorem 3.10. Let S be a nonempty convex subset of X and F : S → I(R) be an

IVF. Consider the IOP:

min
x∈S

F(x). (3.22)

(i) If F is continuous and convex on S, then for every efficient point x̄ ∈ S of the

IOP (3.22),

F(x̄+ h) ⊀ F(x̄) for all h ∈ T (S, x̄). (3.23)

(ii) If the set S is star-shaped with respect to some x̄ ∈ S and the inequality (3.23)

is true for x̄, then x̄ is an efficient point of the IOP (3.22).

Proof. (i) For h = 0X , result is trivial. We assume that the inequality (3.23) does

not hold at an efficient point x̄ ∈ S of the IOP (3.22). Then, there is a vector

h ∈ T (S, x̄) \ {0X} such that

F(x̄)	gH F(x̄+ h) � 0

=⇒ f(x̄)− f( ¯x+ h) > 0 and f(x̄)− f(x̄+ h) ≥ 0.

Since F is gH-continuous, f and f are continuous by (i) of Lemma 3.3. There-

fore, there exist ε1 and ε2 with ε1 > ε2 ≥ 0 such that

f(x̄)− f(x̄+ h) > ε1 > 0 and f(x̄)− f(x̄+ h) ≥ ε2 ≥ 0.
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=⇒ F(x̄)	gH F(x̄+ h) � A � 0, where A = [ε2, ε1]. (3.24)

As h ∈ T (S, x̄) \ {0X}, there exists a sequence {xn} in S and a sequence {λn}

of positive real numbers such that

x̄ = lim
n→+∞

xn and h = lim
n→+∞

hn,

where hn = λn(xn − x̄) for all n ∈ N. As h 6= 0X , we obtain limn→+∞
1
λn

= 0.

Since limn→+∞
1
λn

= 0, without loss of generality, we assume 0 < 1
λn

< 1 for

all n ∈ N. Since F is convex and gH-continuous on S, for sufficiently large

n ∈ N, we have

F(xn) = F
(

1
λn
x̄+ xn − x̄+ x̄− 1

λn
x̄
)

= F
(

1
λn

(x̄+ hn) +
(

1− 1
λn

)
x̄
)

� 1
λn
� F(x̄+ hn)⊕

(
1− 1

λn

)
� F(x̄)

� 1
λn
� (F(x̄+ h)⊕A)⊕

(
1− 1

λn

)
� F(x̄)

≺ 1
λn
� F(x̄)⊕

(
1− 1

λn

)
� F(x̄), by (3.24)

≺ F(x̄),

which is a contradiction to x̄ an efficient point of the IOP (3.22). Therefore,

the relation (3.23) must be true.

(ii) Let the set S be star-shaped with respect to some x̄ ∈ S. Then, it follows from

Theorem 4.8 of [42] that

S \ {x̄} ⊂ T (S, x̄).
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Hence, by (3.23), we get

F(x̄+ h) ⊀ F(x̄) for all h ∈ S \ {x̄},

i.e., x̄ is an efficient point of the IOP (3.22).

In the next theorem, using the notion of upper gH-Clarke derivative, we present a

necessary condition for efficient solutions.

Theorem 3.11. Let W be a subset of X with nonempty interior. Suppose S is a

nonempty subset of W, and x̄ ∈ S ∩ int(W) is an efficient point of the following

IOP:

min
x∈S

F(x). (3.25)

If the set S is star-shaped with respect to x̄ and the IVF F of the IOP (3.25) is

gH-Lipschitz continuous at x̄, then the following inequality holds:

FC (x̄)(x− x̄) ⊀ 0 for all x ∈ S.

Proof. Since F is gH-Lipschitz continuous at x̄, due to Theorem 3.4, F is upper

gH-Clarke differentiable at x̄ and

lim sup
x→0
λ→0+

1

λ
� (F(x̄+ λ(x− x̄))	gH F(x̄)) = FC (x̄)(x− x̄). (3.26)

As x̄ is an efficient point of F and S is star-shaped with respect to x̄, for any x ∈ S

and λ > 0 with x̄+ λ(x− x̄) ∈ S, we have the following inequality:

F(x̄+ λ(x− x̄) ⊀ F(x̄)
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=⇒ F(x̄+ λ(x− x̄)	gH F(x̄) ⊀ 0, by Lemma 1.4

=⇒ 1

λ
� (F(x̄+ λ(x− x̄))	gH F(x̄)) ⊀ 0

=⇒ lim sup
x→0
λ→0+

1

λ
� (F(x̄+ λ(x− x̄))	gH F(x̄)) ⊀ 0

=⇒ FC (x̄)(x− x̄) ⊀ 0 for all x ∈ S from (3.26).

Remark 3.6.1. Converse of Theorem 3.11 is not true. For example, consider X as

the Euclidean space R and the IOP

min
x∈S=(−∞,0]

F(x), with F(x) = x2 � [−5,−3] =
[
−5x2,−3x2

]
. (3.27)

For any x in S and an arbitrary h ∈ X with x+ λh, we have

lim
λ→0+

1

λ
� (F(x+ λh)	gH F(x))

= lim
λ→0+

1

λ
�
[

min{5x2 − 5(x+ λh)2, 3x2 − 3(x+ λh)2},

max{5x2 − 5(x+ λh)2, 3x2 − 3(x+ λh)2}
]

= [min{−10xh,−6xh}, max{−10xh,−6xh}].

Then,

lim
x→0
λ→0+

1

λ
� (F(x+ λh)	gH F(x)) = [min{0, 0},max{0, 0}] = 0.

Consequently, considering x̄ = 0, we have FC (x̄)(h) = 0 for all h ∈ X . Therefore,

FC (x̄)(h) ⊀ 0 for all h ∈ X .

Let W = (−∞, 12], and thus x̄ ∈ S ∩ int(W). Further, S is starshaped at x̄. As

f(x) = −5x2 and f(x) = −3x2 are Lipschitz continuous at x̄, by (ii) of Lemma 3.3,

the IVF F is Lipschitz continuous at x̄. However, x̄ is not an efficient point of the
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IOP (3.27) as

F(x) ≺ 0 = F(x̄) for all x ∈ (−∞, 0).

In the next result, with the help of tangent cone, we derive a necessary optimality

condition for IOPs whose objective functions are gH-Fréchet differentiable.

Theorem 3.12. Let S be a nonempty subset of X and F be an IVF defined on an

open superset of S. If x̄ is an efficient point of the IOP (3.22) with F(x̄) � F(x)

for all x ∈ S and F is gH-Fréchet differentiable at x̄, then

FF (x̄)(h) ⊀ 0 for all h ∈ T (S, x̄).

Proof. For h = 0X , we have FF (x̄)(h) = 0, and hence the result is trivial.

Let x̄ ∈ S be an efficient point of F on S, and let h be an arbitrary element of

T (S, x̄) \ {0X}.

By the definition of h, there exists a sequence {xn} of elements in S and a sequence

{λn} of positive real numbers such that

x̄ = lim
n→+∞

xn and h = lim
n→+∞

hn,

where hn = λn(xn − x̄) for all n ∈ N. Since F is gH-Fréchet differentiable at x̄,

FF (x̄)(h)

= FF (x̄)

(
lim

n→+∞
λn(xn − x̄)

)
= lim

n→+∞
λn � FF (x̄)(xn − x̄)

⊀ lim
n→+∞

λn �
[(

F(xn)	gH F(x̄)
)
	gH

(
F(xn)	gH F(x̄)	gH FF (x̄)(xn − x̄)

)]
,

by inequality (i) of Lemma 1.5

⊀ (−1)� lim
n→+∞

λn �
(
F(xn)	gH F(x̄)	gH FF (x̄)(xn − x̄)

)
, by (ii) of Lemma 1.5
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= (−1)� lim
n→+∞

(
‖hn‖ �

F(xn)	gH F(x̄)	gH FF (x̄)(xn − x̄)

‖xn − x̄‖

)
= 0.

Hence, FF (x̄)(h) ⊀ 0 for all h ∈ T (S, x̄).

Remark 3.6.2. One may think that in Theorem 3.12, instead of considering the

fact that the IVF F is defined on an open superset of S, we may consider that

(i) the IVF F is simply defined on S or,

(ii) S is open and the IVF F is defined on S.

However, this assumptions are quite restrictive. For instance, let S = [0, 1] ∩ Q,

where Q is the set of rational number, W = (−2,+∞) and X as the Euclidean space

R. Then, by Theorem 4.8 and Theorem 4.9 of [42], T (S, x̄) = [0,+∞), where x̄ = 0.

Let F be an IVF defined on open superset W of S by

F(x) = x2 � [1, 2].

Then, x̄ is an efficient point of the IOP (3.22) with F(x̄) � F(x) for all x ∈ S and

F is gH-Fréchet differentiable at x̄ = 0 with

FF (x̄)(h) = 0 ⊀ 0 for all h ∈ T (S, x̄).

Hence, the result of Theorem 3.12 is true.

If we restrict F on S only then, for any h ∈ T (S, x̄) ⊆ R, x̄ + λnh /∈ S for some

sequence {λn} of positive real numbers such that λn → 0. Therefore, we can not find

gH-Fréchet derivative at x̄ = 0 ∈ S in any direction h ∈ T (S, x̄). Hence, the result
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of Theorem 3.12 is not applicable for this case.

Further, S = [0, 1] ∩Q assures the restrictiveness of assumption (ii).

Remark 3.6.3. The condition ‘FF (x̄)(h) ⊀ 0 for all h ∈ T (S, x̄)’ in Theorem

3.12 is necessary for an efficient point but not sufficient. For instance, consider

S = (−∞, 0] and X as the Euclidean space R. Then, by Theorem 4.8 and Theorem

4.9 of [42], T (S, x̄) = (−∞, 0], where x̄ = 0. Let F be an IVF with IOP:

min
x∈S=[0,+∞)

F(x) = x2 � [−6,−2]. (3.28)

Note that for x̄ in S and h in T (S, x̄) with x̄+ λh ∈ S, we have

lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄)) = lim

λ→0+

1

λ
�
(
(λh)2 � [−6,−2]

)
= 0

and

lim
‖h‖→0

‖F(x̄+ h)	gH F(x̄)	gH 0‖I(R)

‖h‖
= lim
‖h‖→0

‖h2 � [−6,−2]‖I(R)

‖h‖
= 0.

Hence, F is gH-Fréchet differentiable at x̄ ∈ S with FF (x̄)(h) = 0 ⊀ 0 for all h ∈

T (S, x̄). However,

F(x) � 0 = F(0) for all x ∈ S.

Therefore, x̄ = 0 is not an efficient solution of IOP (3.28).

Next, we look for some conditions under which Theorem 3.12 becomes a sufficient

optimality condition. In the next theorem, we show that the result in Theorem 3.12

becomes a sufficient optimality condition for gH-pseudoconvex IVFs.

Theorem 3.13. Let S be a nonempty subset of X and F be a gH-directionally

differentiable IVF defined on an open superset of S. Let S be star-shaped with
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respect to some x̄ ∈ S, FD(x̄)(h) be gH-directional derivative at x̄ in the direction

of h, and F be gH-pseudoconvex at x̄. Then,

FD(x̄)(h) ⊀ 0 for all h ∈ T (S, x̄), (3.29)

if and only if x̄ is an efficient point of the IOP (3.22) on S.

Proof. Let the IVF F be satisfied the condition (3.29) at some x̄ ∈ S. Since S is

star-shaped with respect to x̄ ∈ S. Then, by Theorem 4.8 of [42] we have

S \ {x̄} ⊂ T (S, x̄),

and thus

FD(x̄)(x− x̄) ⊀ 0 for all x ∈ S.

Since F is gH-pseudoconvex at x̄,

F(x)	gH F(x̄) ⊀ 0 for all x ∈ S

=⇒ F(x) ⊀ F(x̄) for all x ∈ S, by Lemma 2.1 of [28]).

Hence, x̄ is an efficient point of the IOP (3.22).

The converse part is followed by Theorem 3.2 of [28].

3.7 Concluding Remarks

In this chapter, the notions of upper and lower gH-Clarke derivative, gH-pseudoconvex,

and quasiconvex for IVFs have been proposed. To describe the properties of Clarke
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derivative, the concepts of limit superior, limit inferior, and sublinear for IVFs have

been studied. Further, by using the derived concepts, the existence of upper gH-

Clarke derivative, the relation of upper gH-Clarke derivative with gH-directional

derivative, the relation of convex with gH-pseudoconvex, and the relation of gH-

peudoconvex with quasiconvex have been shown for IVFs. With the help of the

studied gH-pseudoconvex, quasiconvex, and gH-Lipschitz IVFs, we have presented

a few results on characterizing efficient solutions to an IOP with upper Clarke and

Fréchet differentiable IVF.

***********


