
Chapter 2

Generalized Hukuhara Gâteaux

and Fréchet Derivatives of

Interval-valued Functions and

their Application in Optimization

with Interval-valued Functions

2.1 Introduction

To analyze the various types of functions and optimization problems, the concept

of derivative is one of the main tool. For a vector-valued functions, there are two

important concepts of derivative, i.e., Gâteaux (or weak) derivative and Fréchet (or

strong) derivative, which are used to characterize the optimality condition in opti-

mization theory. The Fréchet derivative is a derivative define on Banach spaces, and
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the Gâteaux is a generalization of the concept of directional derivative in differen-

tial calculus. Both derivatives are often used to formalize the functional derivative

commonly used in Physics, particularly Quantum field theory.

2.2 Motivation

It is well known that what are the importance of directional derivative, Gâteaux

derivative, and Fréchet derivative in real-world or optimization problems and how

to characterize the optimal solutions by using these derivatives of the optimization

problems. But, Now-a-days, due to inherent uncertainty in many real-world prob-

lems, the study of these derivatives for IVFs demands a significant study. In order

to develop the calculus of IVFs as well as the optimality condition of optimization

problems with interval-valued objective functions, the ideas of these derivatives are

studied.

2.3 Contributions

In this chapter, the notions of gH-directional, gH-Gâteaux and gH-Fréchet deriva-

tive for IVFs are proposed. The existence of gH-Fréchet derivative is shown to imply

the existence of gH-Gâteaux derivative and the existence of gH-Gâteaux derivative

is observed to indicate the presence of gH-directional derivative. For a gH-Lipschitz

continuous IVF, the existence of gH-Gâteaux derivative implies the existence of gH-

Fréchet derivative is shown. It is observed that for a convex IVF on a linear space,

the gH-directional derivative exists at any point for every direction. Concepts of

linear and monotonic IVFs are studied in the sequel. Further, it is shown that the
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proposed derivatives are useful to check the convexity of an IVF and to characterize

efficient points of an IOP. It is observed that at an efficient point of an IVF, none of

its gH-directional derivatives dominates zero, and the gH-Gâteaux derivative must

contain zero. The entire study is supported by suitable illustrative examples.

The main contributions of this chapter are as follows:

(i) For a convex IVF, it is proved that the gH-directional derivative exists at any

point of the domain.

(ii) For a gH-Lipschitz continuous IVF, it is shown that gH-Gâteaux differentiable

IVF is gH-Fréchet differentiable.

(iii) For a convex gH-Gâteaux differentiable IVF, it is proved that a point is an

efficient point of IOP if and only if zero belongs to the gH-Gâteaux derivative.

2.4 Directional Derivative of Interval-valued Func-

tions

In this section, we define the gH-directional derivative of IVFs and prove its existence

for a convex IVF. Further, we present an optimality condition for efficient point of

an IOP with the help this derivative.

Definition 2.4.1 (gH-directional derivative). Let F be an IVF on a nonempty

subset S of Rn. Let x̄ ∈ S and h ∈ Rn. If the limit

lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄))
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exists, then the limit is said to be gH-directional derivative of F at x̄ in the direction

h, and it is denoted by FD(x̄)(h). If this limit exists for all h ∈ Rn, then F is said

to be gH-directional differentiable at x̄.

The following example shows that given IVF is gH-directional differentiable at zero

vector.

Example 2.1. We consider the function F(x1, x2) = C1�x1⊕C2� (x2e
x1), where

C1, C2 ∈ I(R). We note that

lim
λ→0+

1

λ
� (F(λh1, λh2)	gH F(0, 0))

= lim
λ→0+

1

λ
�
(
λ�C1 � h1 ⊕ λ�C2 � (h2e

λh1)
)

= C1 � h1 ⊕C2 � h2.

Thus, the gH-directional derivative of F at (0, 0) in direction (h1, h2) exists and

FD(0, 0)(h) = C1 � h1 ⊕C2 � h2.

Note 3. According to Bao [5], the gH-directional derivative of F at x̄ in the direction

h exists if and only if both the limits

lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄)) and lim

λ→0−

1

λ
� (F(x̄)	gH F(x̄− λh))

exist and they are equal. However, we note that

lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄))

= lim
δ→0−

1

−δ
� (F(x̄+ (−δ)h)	gH F(x̄)) , where λ = −δ

= lim
δ→0−

1

δ
� (F(x̄)	gH F(x̄− δh)) , by Note 1.
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Hence, the existence of the limit in Definition 2.4.1 suffices to check the existence of

the gH-directional derivative.

Definition 2.4.2 (Monotonic IVF). An IVF F(x) =
[
f(x), f(x)

]
from a nonempty

subset S of Rn to I(R) is said to be monotonic increasing if for all x1, x2 ∈ S,

x1 ≤ x2 implies F(x1) � F(x2).

The function F is said to be monotonic decreasing if for all x1, x2 ∈ S,

x1 ≤ x2 implies F(x2) � F(x1).

Remark 2.4.1. It is easy to verify that if an IVF F is monotonic increasing (or

monotonic decreasing) on S ⊆ Rn then both the real-valued functions f and f are

monotonic increasing (or monotonic decreasing) on S ⊆ Rn and vice-versa.

Lemma 2.1. Let S be a linear subspace of Rn and F : S → I(R) be a convex

function on S. Then for any x̄ ∈ S and h ∈ Rn, the IVF Φ : R+\{0} → I(R),

defined by

Φ(λ) =
1

λ
� (F(x̄+ λh)	gH F(x̄)) for all λ > 0,

is monotonically increasing.

Proof. As F is a convex function, for any 0 < s ≤ t, we have

F(x̄+ sh)	gH F(x̄)

= F(λ1(x̄+ th) + λ2x̄)	gH F(x̄), where λ1 =
s

t
and λ2 =

t− s
t

� (λ1 � F(z)⊕ λ2 � F(x̄))	gH F(x̄), where z = x̄+ th

=
[

min
{
λ1f(z) + λ2f(x̄)− f(x̄), λ1f(z) + λ2f(x̄)− f(x̄)

}
,

max
{
λ1f(z) + λ2f(x̄)− f(x̄), λ1f(z) + λ2f(x̄)− f(x̄)

} ]
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=
[

min
{
λ1f(z)− λ1f(x̄), λ1f(z)− λ1f(x̄)

}
,

max
{
λ1f(z)− λ1f(x̄), λ1f(z)− λ1f(x̄)

} ]
= λ1 � (F(z)	gH F(x̄)).

Therefore,

1

s
� (F(x̄+ sh)	gH F(x̄)) � 1

t
� (F(x̄+ th)	gH F(x̄)).

Consequently, we have Φ(s) � Φ(t). Thus, Φ is a monotonic increasing function.

Definition 2.4.3 (Bounded IVF). An IVF F from a nonempty subset S of Rn to

I(R) is said to be bounded below on S if there exists an interval A ∈ I(R) such

that

A � F(x) for all x ∈ S.

The function F is said to be bounded above on S if there exists an interval A′ ∈ I(R)

such that

F(x) � A′ for all x ∈ S.

The function F is said to be bounded on S if it is both bounded below and above.

Remark 2.4.2. It is easy to check that if the IVF F is bounded below (or bounded

above) on S ⊆ Rn, then both the real-valued functions f and f are bounded below

(or bounded above) on S ⊆ Rn and vice-versa.

Lemma 2.2. Let S ⊆ Rn be a linear subspace of Rn and F : S → I(R) be a convex

function on S. Then, for each x̄ ∈ S and h in Rn,

F(x̄)	gH F(x̄− h) � 1

λ
� (F(x̄+ λh)	gH F(x̄)) for all λ > 0.
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Proof. Due to the convexity of F on S, for any x̄ ∈ S, h ∈ Rn and λ > 0 such that

x̄+ λh ∈ S, we have

F(x̄) = F

(
1

1 + λ
(x̄+ λh) +

λ

1 + λ
(x̄− h)

)
� 1

1 + λ
� F(x̄+ λh)⊕ λ

1 + λ
� F(x̄− h).

This implies

[
(1 + λ)f(x̄), (1 + λ)f(x̄)

]
�
[
f(z) + λf(y), f(z) + λf(y)

]
,

where z = x̄+ λh and y = x̄− h. Thus, we get

(1 + λ)f(x̄) ≤ f(z) + λf(y)

or, f(x̄)− f(y) ≤ 1

λ
(f(z)− f(x̄)).

Similarly,

f(x̄)− f(y) ≤ 1

λ
(f(z)− f(x̄)).

Hence, in view of the last two inequalities, we obtain

[
min

{
f(x̄)− f(y), f(x̄)− f(y)

}
,max

{
f(x̄)− f(y), f(x̄)− f(y)

}]
� 1

λ
�
[
min

{
f(z)− f(x̄), f(z)− f(x̄)

}
,max

{
f(z)− f(x̄), f(z)− f(x̄)

}]
.

Thus, we get

F(x̄)	gH F(y) � 1

λ
� (F(z)	gH F(x̄)) .
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Hence,

F(x̄)	gH F(x̄− h) � 1

λ
� (F(x̄+ λh)	gH F(x̄)) for all λ > 0.

For convex IVFs on a linear subspace, the existence of gH-directional derivative

implies as the next theorem states.

Theorem 2.3. Let S be a real linear subspace of Rn and F : S → I(R) be a convex

function on S. Then, at any x̄ ∈ S, gH-directional derivative FD(x̄)(h) exists for

every direction h ∈ Rn.

Proof. Let x̄ ∈ S and h ∈ Rn. Define a function Φ : R+ \ {0} → I(R) by

Φ(λ) =
[
φ(λ), φ(λ)

]
=

1

λ
� (F(x̄+ λh)	gH F(x̄)) .

Therefore, for all λ > 0, we obtain

[
φ(λ), φ(λ)

]
=

1

λ
�
[

min
{
f(x̄+ λh)− f(x̄), f(x̄+ λh)− f(x̄)

}
,

max
{
f(x̄+ λh)− f(x̄), f(x̄+ λh)− f(x̄)

} ]
.

Since F is convex on S, by Lemma 2.2, we have

F(x̄)	gH F(x̄− h) � 1

λ
� (F(x̄+ λh)	gH F(x̄)) = Φ(λ) for all λ ∈ R+.

Hence, the IVF Φ is bounded below.

Further, by Lemma 2.1, Φ is monotonically increasing. Thus, in view of Remark
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2.4.1 and 2.4.2 both the real-valued functions φ and φ are monotonically increasing

and bounded below. Therefore, the limits limλ→0+ φ(λ) and limλ→0+ φ(λ) exist and

by Lemma 1.9 we see that the limit limλ→0+ φ(λ) exists.

Hence, the function F has a gH-directional derivative at x̄ ∈ X , in the direction

h ∈ Rn.

The following result characterize the efficient solutions of interval optimization prob-

lems with the help of better dominance relation of intervals.

Theorem 2.4 (Characterization of efficient points). Let S be a nonempty subset of

Rn, F : S → I(R) be an IVF, and x̄ ∈ S be an efficient point of the IOP (1.5). If

the function F has a gH-directional derivative at x̄ in the direction x − x̄ for any

x ∈ Rn, then

FD(x̄)(x− x̄) ≮ 0 for all x ∈ Rn. (2.1)

The converse is true when S is convex and F is convex on S.

Proof. Let x̄ ∈ S be an efficient point of the IVF F. For any point x ∈ Rn, the

gH-directional derivative of F at x̄ in the direction x− x̄ is given by

FD(x̄)(x− x̄) = lim
λ→0+

1

λ
� (F(x̄+ λ(x− x̄))	gH F(x̄)).

Since the point x̄ is an efficient point of the function F, for any x ∈ Rn and λ > 0

with x̄+ λ(x− x̄) ∈ S, we get

F(x̄+ λ(x− x̄)) ⊀ F(x̄)

or, F(x̄+ λ(x− x̄))	gH F(x̄) ⊀ 0, by Lemma 1.4

or, lim
λ→0+

1
λ
� (F(x̄+ λ(x− x̄))	gH F(x̄)) ⊀ 0.
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This implies that

max
{
f(x̄+ λ(x− x̄)− f(x̄), f(x̄+ λ(x− x̄)− f(x̄)

}
≥ 0.

Since λ > 0, we obtain

lim
λ→0+

1

λ
max

{
f(x̄+ λ(x− x̄)− f(x̄), f(x̄+ λ(x− x̄)− f(x̄)

}
≥ 0

or, max
{
f

D
(x̄)(x− x̄), fD(x̄)(x− x̄)

}
≥ 0. (2.2)

Therefore, FD(x̄)(x− x̄) ≮ 0 for all x ∈ Rn.

To prove the latter part, we assume that S is convex and the function F is convex

on S. Then, by Theorem 2.3, for any x ∈ S, F has a gH-directional derivative at

x̄ ∈ S in every direction x− x̄, where x ∈ Rn. Let

FD(x̄)(x− x̄) ≮ 0 for all x ∈ Rn.

If possible let x̄ be not an efficient point of F. So there exists at least one x′ ∈ S

such that

F(x′) � F(x̄).

Therefore, for any λ ∈ (0, 1] we have

λ� F(x′) � λ� F(x̄)

or, λ� F(x′)⊕ λ′ � F(x̄) � λ� F(x̄)⊕ λ′ � F(x̄), where λ′ = 1− λ

or, λ� F(x′)⊕ λ′ � F(x̄) � (λ+ λ′)� F(x̄) = F(x̄).
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Due to the convexity of F on S, we have

F(x̄+ λ(x′ − x̄)) = F(λx′ + λ′x̄) � λ� F(x′)⊕ λ′ � F(x̄) � F(x̄)

or, F(x̄+ λ(x′ − x̄))	gH F(x̄) � 0

or, lim
λ→0+

1
λ
� (F(x̄+ λ(x′ − x̄))	gH F(x̄)) � 0

or, FD(x̄)(x′ − x̄) � 0.

This is clearly contradictory the assumption that FD(x̄)(x− x̄) ≮ 0 for all x ∈ Rn.

Hence, x̄ is the efficient point of F.

Example 2.2. Consider the IOP:

min
x∈[− 2

5
, 3
2 ]
F(x) = [x2 − 2x+ 1, x2 + 2]. (2.3)

The gH-directional derivative of F at a point x ∈
[
−2

5
, 3

2

]
in a direction h ∈ R is

FD(x)(h) = lim
λ→0+

1

λ
� (F(x+ λh)	gH F(x))

= lim
λ→0+

1

λ
�
([

(x+ λh)2 − 2(x+ λh) + 1, (x+ λh)2 + 2
]
	gH

[
x2 − 2x+ 1, x2 + 2

])
=


[2h(x− 1), 2hx], if h ≥ 0

[2hx, 2h(x− 1)], otherwise.

• Case 1. Let x ∈ [0, 1].

In this case, 2hx ≥ 0 for h ≥ 0 and 2h(x− 1) ≥ 0 for h ≤ 0.

Hence,

FD(x)(h) ≮ 0 for all h ∈ R.
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• Case 2. Let x ∈
(
1, 3

2

]
.

Then, for h < 0 we notice that

FD(x)(h) < 0.

• Case 3. Let x ∈
[
−2

5
, 0
)
.

Then, for h > 0 we see that

FD(x)(h) < 0.

Thus, the relation (2.1) of Theorem 2.4 holds only for x ∈ [0, 1]. In Figure 2.1, the

objective function F is depicted by the shaded region. From the Figure 2.1, we also

see that each x ∈ [0, 1] is an efficient point of the IOP (2.3).

0.5 1.0 1.5
x

1

2

3

4

y

Figure 2.1: The IVF F of Example 2.2

2.5 Gâteaux Derivative of Interval-valued Func-

tions

In this section, we define the linearity concept and gH-Gâteaux derivative for IVFs.
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Definition 2.5.1 (Linear IVF). Let S be a linear subspace of Rn. The function

F : S → I(R) is said to be linear if

(i) F(λx) = λ� F(x) for all x ∈ S and for all λ ∈ R and

(ii) for all x, y ∈ S,

either F(x)⊕ F(y) = F(x+ y)

or none of F(x)⊕ F(y) and F(x+ y) dominates the other.

Note 4. Let F : S → I(R) be a linear IVF. If F(x) =
[
f(x), f(x)

]
, then f(λx) =

λf(x) and f(λx) = λf(x) for λ < 0.

Lemma 2.5. If an IVF F : S → I(R) on a linear subspace S of Rn is linear, then

F(x) ⊀ 0 =⇒ 0 ⊀ F(−x).

Proof. Let F(x) ⊀ 0. Then,

[f(x), f(x)] ⊀ 0

or, f(x) > 0

or, −f(x) < 0

or, f(−x) < 0, by Note 4

or, 0 ⊀ [f(−x), f(−x)]

or, 0 ⊀ F(−x).

Definition 2.5.2 (Bounded linear operator). Let X be a normed linear space. A

linear IVF L : X → I(R) is said to be a bounded linear operator if there exists K > 0
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such that

‖L(h)‖I(R) ≤ K‖h‖ for all h ∈ X .

Lemma 2.6. Let X be a normed linear space. If the linear IVF L : X → I(R) is

gH-continuous at the zero vector of X , then it is a bounded linear operator.

Proof. By the definition of gH-continuity of the IVF L : X → I(R) at the zero

vector of X , there exists δ > 0 such that

‖L(h)	gH L(0)‖I(R) ≤ 1 for all h ∈ X with ‖h‖ < δ.

By Definition 2.5.1, we note that, L(0) = 0. Hence,

‖L(h)‖I(R) ≤ 1 for all h ∈ X with ‖h‖ < δ. (2.4)

Thus, for all nonzero h ∈ X , we have

‖L(h)‖I(R) =

∥∥∥∥∥‖h‖δ � L

(
δ
h

‖h‖

)∥∥∥∥∥
I(R)

, by the Definition 2.5.1

=
‖h‖
δ

∥∥∥∥∥L
(
δ
h

‖h‖

)∥∥∥∥∥
I(R)

≤ 1

δ
‖h‖, by the inequality (2.4).

Hence, L is a bounded linear operator.

Lemma 2.7. Let the IVF F : R2 → I(R) be defined by

F(x1, x2) = x1 � [a, a]⊕ x2 � [b, b].

Then, F is a linear IVF.
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Proof. See Appendix B.1.

Note 5. By a straightforward extension of the number of variables, the proof of the

Lemma 2.7 shows that the IVF F : Rn → I(R) which is defined by

F(x1, x2, . . . , xn) = x1 � [a1, a1]⊕ x2 � [a2, a2]⊕ . . .⊕ xn � [an, an]

is a linear IVF on Rn.

Definition 2.5.3 (gH-Gâteaux derivative). Let S be a nonempty open subset of Rn

and F be an IVF on S. If at x̄ ∈ S, the limit

FG (x̄)(h) = lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄))

exists for all h ∈ Rn and FG (x̄) is a gH-continuous linear IVF from Rn to I(R),

then FG (x̄) is said to be gH-Gâteaux derivative of F at x̄. If F has a gH-Gâteaux

derivative at x̄, then F is said to be gH-Gâteaux differentiable at x̄.

Example 2.3. Consider the IVF F(x1, x2) = C1 � x1 ⊕ C2 � (x2
2e
x1) with C1,

C2 ∈ I(R). For any (h1, h2) ∈ R2,

FG (0, 0)(h1, h2) = lim
λ→0+

1

λ
� (F((0, 0) + λ(h1, h2))	gH F(0, 0))

= lim
λ→0+

1

λ
�
(
λ�C1 � h1 ⊕ λ2 �C2 � (h2

2e
λh1)

)
= C1 � h1.

Clearly FG (0, 0) is linear and gH-continuous on R2. Therefore, F is a gH-Gâteaux

differentiable function at (0, 0).

Remark 2.5.1. From Definitions 2.4.1 and 2.5.3 it is evident that if an IVF F on

a nonempty open subset S of Rn has gH-Gâteaux derivative at x̄ ∈ S, then F has
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gH-directional derivative at x̄ in every direction h ∈ Rn. However, the converse is

not true. For instance, consider the IVF

F(x1, x2) =


C1 � x1 ⊕C2 �

(
x2e

x1
x2

)
if x2 6= 0

0 otherwise,

where C1, C2 ∈ I(R). The gH-directional derivative of F at (0, 0) ∈ R2 in the

direction (h1, h2) ∈ R2 is

FD(0, 0)(h1, h2) = lim
λ→0+

1

λ
� (F((0, 0) + λ(h1, h2))	gH F(0, 0))

= lim
λ→0+

1

λ
� F(λh1, λh2)

=


C1 � h1 ⊕C2 �

(
h2e

h1
h2

)
, if h2 6= 0

0, otherwise.

Hence, F has gH-directional derivative at (0, 0) in every direction (h1, h2). But

FD(0, 0) is not gH-continuous, and hence F has no gH-Gâteaux derivative at (0, 0).

Theorem 2.8. Let S be a nonempty open convex subset of Rn and the function

F : S → I(R) has gH-Gâteaux derivative at every x̄ ∈ S. If the function F is

convex on S, then

F(y) ⊀ FG (x)(y − x)⊕ F(x) for all x, y ∈ S.

Proof. Let the function F be convex on S. Then, for any x, y ∈ S and λ, λ′ ∈ (0, 1]

with λ+ λ′ = 1, we have

F(x+ λ(y − x)) = F(λy + λ′x) � λ� F(y)⊕ λ′ � F(x).
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Consequently,

F(x+ λ(y − x))	gH F(x)

� (λ� F(y)⊕ λ′ � F(x))	gH F(x)

=
[
λf(y) + λ′f(x), λf(y) + λ′f(x)]	gH [f(x), f(x)

]
=

[
min{λf(y) + λ′f(x)− f(x), λf(y) + λ′f(x)− f(x)},

max{λf(y) + λ′f(x)− f(x), λf(y) + λ′f(x)− f(x)}
]

=
[

min{λf(y)− λf(x), λf(y)− λf(x)},

max{λf(y)− λf(x), λf(y)− λf(x)}
]

= λ�
[

min{f(y)− f(x), f(y)− f(x)},

max{f(y)− f(x), f(y)− f(x)}
]

= λ� (F(y)	gH F(x)),

which implies

1

λ
� (F(x+ λ(y − x))	gH F(x)) � F(y)	gH F(x).

As λ→ 0+, we obtain

FG (x)(y − x) � F(y)	gH F(x) for all x, y ∈ S. (2.5)

If possible, let

F(y′) ≺ F(x′)⊕ FG (x′)(y′ − x′) for some x′, y′ ∈ S.

Therefore,

F(y′)	gH F(x′) ≺ FG (x′)(y′ − x′),
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which contradicts (5.3). Hence,

F(y) ⊀ FG (x)(y − x)⊕ F(x) for all x, y ∈ S.

Next result characterize the efficient points of IOPs.

Theorem 2.9 (Characterization of efficient points). Let F : S → I(R) be an IVF

on a linear subspace S of Rn and x̄ ∈ S be an efficient point of the IOP (1.5). If

the IVF F has a gH-Gâteaux derivative at x̄ in every direction h ∈ Rn, then

0 ∈ FG (x̄)(h) for all h ∈ Rn.

The converse is true if S is convex and F is convex on S.

Proof. Let the IVF F has a gH-Gâteaux derivative at x̄. According to Theorem 2.4,

we have

FG (x̄)(x− x̄) ≮ 0 for all x ∈ Rn. (2.6)

Let h be an arbitrary point in Rn such that x = x̄+ h. Then, by equation (2.6), we

get

FG (x̄)(h) ≯ 0.

Again, if we take x = x̄ − h, then by equation (2.6) and Lemma 2.5 we obtain

0 ≮ FG (x̄)(h).

Hence, by the last two relations, for all h ∈ Rn, we have 0 ∈ FG (x̄)(h).
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Conversely, we consider that the function F is convex on S and F has a gH-Gâteaux

derivative at x̄ in every direction h ∈ Rn. Let

0 ∈ FG (x̄)(h) for all h.

Then,

FG (x̄)(h) ⊀ 0 and 0 ⊀ FG (x̄)(h) for all h.

Since FG (x̄)(h) ⊀ 0 for all h, by taking h = x− x̄, we note that

FG (x̄)(x− x̄) ⊀ 0 for all x ∈ Rn

or, FD(x̄)(x− x̄) ⊀ 0 for all x ∈ Rn, by Definition 2.5.3 and Remark 2.5.1

or, FD(x̄)(x− x̄) ≮ 0 for all x ∈ Rn

Hence, by Theorem 2.4, x̄ is an efficient point of the IOP (1.5).

Example 2.4. Let us consider the IOP of Example 2.2. Here,

FG (x)(h) = lim
λ→0+

1

λ
� (F(x+ λh)	gH F(x))

=


[2h(x− 1), 2hx] if h ≥ 0

[2hx, 2h(x− 1)] otherwise.

= 2h� [x− 1, x].

Clearly, FG (x) is linear (see Lemma 2.7) and gH-continuous in h ∈ R for each

x ∈
[
−2

5
, 3

2

]
. We see that at each x ∈ [0, 1],

0 ∈ FG (x)(h) for all h ∈ R.
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Example 2.5. In this example, we show that the condition ‘0 ∈ FG (x̄)(h) for all

h ∈ Rn’ in Theorem 2.9 is necessary for an efficient point but not sufficient for

nonconvex IVFs.

Consider F(x) = [1, 2]� (−x2) = [−2x2,−x2] and the IOP

min
x∈[−9, 0]

F(x). (2.7)

By a sketch of the graph of F(x), it is clear that F is not a convex IVF.

For x̄ = 0 and h ∈ R,

lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄)) = lim

λ→0+

1

λ
� (F(λh)) = 0,

which is linear and gH-continuous. Therefore, F has a gH-Gâteaux derivative and

at x̄ and FG (x̄)(h) = 0. Note that

0 ∈ FG (x̄)(h) for all h ∈ R,

but x̄ is not an efficient point of the IOP (2.7) because

F(x) ≺ 0 = F(x̄) for all x ∈ [−9, 0).

2.6 Fréchet Derivatives of Interval-valued Func-

tions

It is noteworthy that gH-Gâteaux derivative does not imply the gH-continuity of

interval-valued function. For instance, consider the following example.
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Example 2.6. Let C = [a, b] and F : R2 → I(R) be defined by

F(x1, x2) =


(

x81x
2
2

x161 +x42

)
�C if (x1, x2) 6= (0, 0)

0 otherwise.

Then gH-directional derivative of F at (0, 0) ∈ R2 in the direction (h1, h2) ∈ R2 is

given by

FD(0, 0)(h) = lim
λ→0+

1

λ
�(F((0, 0)⊕λ(h1, h2))	gHF(0, 0)) = lim

λ→0+

1

λ
�F(λh) = 0.

Clearly FD(0, 0) is gH-continuous and linear in h. Therefore, F has gH-Gâteaux

derivative at (0, 0). But

lim
‖h‖→0

(F(h1, h2)	gH F(0, 0)) 6= 0

Thus, F is not gH-continuous at (0, 0).

In this section, we present a stronger concept of a derivative for an IVF from which

gH-continuity is implied. In the following definition, we use the fact that I(R) is a

normed quasilinear space.

Definition 2.6.1 (gH-Fréchet derivative). Let S be a nonempty open subset of Rn

and F : S → I(R) be an IVF. For an x̄ ∈ S, if there exists a gH-continuous and

linear mapping G : Rn → I(R) with the following property

lim
‖h‖→0

‖F(x̄+ h)	gH F(x̄)	gH G(h)‖I(R)

‖h‖
= 0,

then F is said to have a gH-Fréchet derivative at x̄ and we write G = FF (x̄).
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Example 2.7. Consider the IVF F(x1, x2) = C1� x1⊕C2� x2
2, where C1 and C2

are any two closed intervals. For (0, 0) ∈ R2 and any h = (h1, h2) ∈ R2, we have

FG (0, 0)(h) := lim
λ→0+

1

λ
� (F((0, 0) + λ(h1, h2))	gH F(0, 0))

= lim
λ→0+

1

λ
�
(
λ�C1 � h1 ⊕ λ2 �C2 � h2

2

)
= C1 � h1.

We note that FG (0, 0) is a gH-continuous and linear mapping (by Note 5) from R2

to I(R).

Taking G = FG (0, 0), we see that

lim
‖h‖→0

‖F(h)	gH F(0, 0)	gH G(h)‖I(R)

‖h‖

= lim
‖h‖→0

‖C1 � h1 ⊕C2 � h2
2 	gH 0	gH C1 � h1‖I(R)√
h2

1 + h2
2

= lim
‖h‖→0

‖C2 � h2
2‖I(R)√

h2
1 + h2

2

= lim
‖h‖→0

h2
2‖C2‖I(R)√
h2

1 + h2
2

= lim
‖h‖→0

h2
2k√

h2
1 + h2

2

, where k = ‖C2‖I(R)

= 0.

Hence, the Fréchet derivative of F at (0, 0) is FF (0, 0)(h1, h2) = G(h1, h2) = C1�h1.

Theorem 2.10. Let S be a normed linear subspace of Rn. If the function F : S →

I(R) has a gH-Fréchet derivative at x̄ ∈ S, then the function F is gH-continuous

at x̄.
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Proof. Let FF (x̄) be the Fréchet derivative of F at x̄. Evidently, FF (x̄) is a gH-

continuous and linear IVF. Hence, by Lemma 2.6, there exists an α > 0 such that

‖FF (x̄)(h)‖I(R) ≤ α‖h‖ for all h ∈ Rn.

As the function F : S → I(R) is gH-Fréchet differentiable at x̄ ∈ S, for ε > 0 and

x̄+ h ∈ B(x̄, ε), by Definition 2.6.1, we have

‖F(x̄+ h)	gH F(x̄)	gH FF (x̄)(h)‖I(R) ≤ ε‖h‖.

Hence, with the help of (i) of Lemma 1.6, for all h with x̄+ h ∈ B(x̄, ε),

‖F(x̄+ h)	gH F(x̄)‖I(R)

= ‖F(x̄+ h)	gH F(x̄)‖I(R) − ‖FF (x̄)(h)‖I(R) + ‖FF (x̄)(h)‖I(R)

≤ ‖F(x̄+ h)	gH F(x̄)	gH FF (x̄)(h)‖I(R) + ‖FF (x̄)(h)‖I(R)

≤ ε‖h‖+ α‖h‖

= (ε+ α)‖h‖.

Thus, lim
‖h‖→0

(F(x̄+ h)	gH F(x̄)) = 0, and hence the function F is gH-continuous

at x̄.

Theorem 2.11. Let S be a nonempty open subset of Rn. If the gH-Fréchet deriva-

tive of the function F : S → I(R) at some x̄ ∈ S exists, then the gH-Gâteaux

derivative of F at x̄ along any h ∈ Rn exists and both the derivative values are

equal.
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Proof. Let FF (x̄) be the gH-Fréchet derivative of F at x̄ ∈ S. Then, we have

lim
λ→0+

‖F(x̄+ λh)	gH F(x̄)	gH FF (x̄)(λh)‖I(R)

‖λh‖
= 0 for all h ∈ Rn\{0}

or, lim
λ→0+

1

λ
‖F(x̄+ λh)	gH F(x̄)	gH FF (x̄)(λh)‖I(R) = 0 for all h ∈ Rn\{0}.

(2.8)

Since FF (x̄) is linear, and thus FF (x̄)(λ h) = λ�FF (x̄)(h), the equation (5.1) gives

lim
λ→0+

1

λ
� (F(x̄+ λh)	gH F(x̄)	gH FF (x̄)(h)) = 0 for all h ∈ Rn\{0}

or, lim
λ→0+

1

λ
� [F(x̄+ λh)	gH F(x̄)] = FF (x̄)(h) for all h ∈ Rn\{0}.

Therefore, F is gH-Gâteaux differentiable at x̄ and FG (x̄) = FF (x̄).

Example 2.8. There are some IVFs which are gH-Gâteaux differentiable but not

gH-Fréchet differentiable. For instance, for C = [a, b], consider the IVF F : R2 →

I(R) which is defined by

F(x1, x2) =


(

x21x2
x41+x22

√
x2

1 + x2
2

)
�C, if (x1, x2) 6= (0, 0)

0, otherwise.

At (0, 0) ∈ R2, for h = (h1, h2) ∈ R2, we note that

lim
λ→0+

1

λ
� (F((0, 0) + λ(h1, h2))	gH F(0, 0)) = lim

λ→0+

1

λ
� F(λh1, λh2) = 0.

Since the function G(h) = 0 is gH-continuous and linear in h, F has gH-Gâteaux

derivative at (0, 0) and FG (0, 0)(h) = 0 for all h ∈ R2.

If F is Fréchet differentiable at x̄, then by Theorem 2.11, FF (0, 0)(h) = FG (0, 0)(h) =

0.
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But we notice that

lim
‖h‖→0

‖F(h)	gH F(0, 0)	gH FG (0, 0)(h)‖I(R)

‖h‖

= lim
‖h‖→0

‖F(h)‖I(R)

‖h‖

= lim
‖h‖→0

| h2
1h2

√
h2

1 + h2
2 | ‖C‖I(R)

(h4
1 + h2

2)
√
h2

1 + h2
2

= lim
‖h‖→0

| h2
1h2

√
h2

1 + h2
2 | ‖C‖I(R)

(h4
1 + h2

2)
√
h2

1 + h2
2

= lim
‖h‖→0

| h2
1h2 | k

h4
1 + h2

2

, where k = ‖C2‖I(R)

which does not exist. Thus, F is not gH-Fréchet differentiable at (0, 0).

Definition 2.6.2 (gH-Lipschitz continuous IVF). An IVF F : S → I(R) is said to

be gH-Lipschitz continuous on S ⊆ Rn if there exists M > 0 such that

‖F(x)	gH F(y)‖I(R) ≤M‖x− y‖ for all x, y ∈ S.

The constant M is called a Lipschitz constant.

Theorem 2.12. Let the IVF F : Rn → I(R) be gH-Lipschitz continuous on Rn and

gH-Gâteaux differentiable at x̄ ∈ Rn. Then, F is gH-Fréchet differentiable at x̄.

Proof. Let S be the closed unit sphere of Rn.

Since S is totally bounded, for any given ε > 0, there exists a finite set A =

{a1, a2, · · · , ak} ⊂ Rn such that S ⊂
⋃
ai∈AB(ai, ε), where B(ai, ε) is the open ball

of radius ε centered at ai.

Thus, for any s ∈ S there exists ai ∈ A such that ‖s− ai‖ < ε.
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Since F is gH-Lipschitz continuous, there exists M > 0 such that

‖F(x)	gH F(y)‖I(R) ≤M‖x− y‖ for all x, y ∈ Rn.

As F is gH-Gâteaux differentiable at an x̄, for any i = 1, 2, . . . , k, we have a contin-

uous linear mapping FG (x̄) such that

FG (x̄)(ai) = lim
λ→0+

1

λ
� (F(x̄+ λai)	gH F(x̄))

i.e., lim
λ→0+

1

λ
� (F(x̄+ λai)	gH F(x̄)	gH λ� FG (x̄)(ai)) = 0.

Thus, for the chosen ε > 0, for each i = 1, 2, . . . , k, there exists δi > 0 such that for

|λ| < δi,

‖F(x̄+ λai)	gH F(x̄)	gH λ� FG (x̄)(ai)‖I(R) < ε |λ|. (2.9)

Hence, with the help of (iv) Lemma 1.6 and Corollary 1.4.1, for any s ∈ S and

|λ| < δ = min{δ1, δ2, . . . , δk}, we get

‖F(x̄+ λs)	gH F(x̄)	gH λ� FG (x̄)(s)‖I(R)

≤ ‖F(x̄+ λs)	gH F(x̄+ λai)‖I(R) + ‖F(x̄+ λai)	gH F(x̄)	gH FG (x̄)(s)‖I(R)

+ ‖λ� (FG (x̄)(s)	gH FG (x̄)(ai))‖I(R)

≤
(
M +M +B

)
|λ|ε, for some B > 0, by (2.9) and Lemma 2.6

≤
(
2M +B

)
|λ|ε

=
(
2M +B

)
‖λ s‖ ε, as ‖s‖ = 1.

Hence,

lim
λ→0

‖F(x̄+ λs)	gH F(x̄)	gH λ� FG (x̄)(s)‖I(R)

‖λ s‖
= 0,

and so F is gH-Fréchet differentiable at x̄.
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Theorem 2.13 (Chain rule). Let W and S be nonempty open subsets of Rn and R,

respectively. If the function f :W → S is differentiable at x ∈ X and G : S → I(R)

has a gH-Fréchet derivative at f(x). Suppose there exists A ∈ I(R) such that for

all k ∈ R, GF (y)(k) = k�A. Then, the composite function G ◦ f :W → I(R) has

a gH-Fréchet derivative at x ∈ W, and (G ◦ f)F (x) = ∇f(x)�GF (f(x)).

Proof. Let F = G ◦ f and y = f(x). By the definitions of differentiability of f at x

and gH-Fréchet derivative of G at y = f(x), we have

f(x+ h)− f(x) = hT ∇f(x) + ‖h‖ξ(h), where lim
‖h‖→0

ξ(h) = 0

and G(y + k)	gH G(y) = GF (y)(k)⊕ k � E(k), where lim
k→0

E(k) = 0.

Let φ(h) = hT ∇f(x) + ‖h‖ ξ(h). To prove the theorem, we show that FF (x) =

∇f(x)�GF (y). We note that

F(x+ h)	gH F(x) = G(f(x+ h))	gH G(f(x))

= G
(
f(x) + hT∇f(x) + ‖h‖ ξ(h)

)
	gH G(y)

= G(y + φ(h))	gH G(y)

= GF (y)(φ(h))⊕ φ(h)� E(φ(h))

= φ(h)�A⊕ φ(h)� E(φ(h))

=
(
hT ∇f(x) + ‖h‖ ξ(h)

)
�A⊕ φ(h)� E(φ(h))

= hT ∇f(x)�A + ‖h‖ ξ(h)�A⊕ φ(h)� E(φ(h)).

Therefore,

lim
‖h‖→0

1

‖h‖
∥∥F(x+ h)	gH F(x)	gH hT � (∇f(x)�A)

∥∥
= lim

‖h‖→0

(
ξ(h)�A⊕ φ(h)

‖h‖
� E(φ(h)

)
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= lim
‖h‖→0

(
ξ(h)�A⊕

(
hT∇f(x)

‖h‖
+ ξ(h)

)
� E(φ(h)

)
= 0, since lim

‖h‖→0
φ(h) = 0.

As the IVF hT�(∇f(x)�A) is linear in h and gH-continuous, the function F is gH-

Fréchet differentiable at x ∈ W and FF (x) = ∇f(x)�A = ∇f(x)�GF (f(x)).

Example 2.9. Let f : R+ × R+ → R+ be defined by f(x1, x2) = sin(x1) + ex2 and

G : R+ → I(R) be the IVF

G(x) = x2 � [1, 2]⊕ x� [−1, 0].

Then, G ◦ f : R+ × R+ → I(R) has the expression

(G ◦ f)(x1, x2) = (sin(x1) + ex2)2 � [1, 2]⊕ (sin(x1) + ex2)[−1, 0]

and ∇f(x̄1, x̄2) = (cos(x̄1), ex̄2).

Let x̄ = f(x̄1, x̄2) = sin(x̄1) + ex̄2.

Then, for every h ∈ R+, we have

lim
λ→0

1

λ
�
(
G(x̄+ λh)	gH G(x̄)

)
= lim

λ→0

1

λ
�
((

(x̄+ λh)2 � [1, 2]⊕ (x̄+ λh)� [−1, 0]
)
	gH

(
x̄2 � [1, 2]⊕ x̄� [−1, 0]

))
= lim

λ→0

1

λ
�
([

(x̄+ λh)2 − (x̄+ λh), 2(x̄+ λh)2
]
	gH

[
x̄2 − x̄, 2x̄2

])
= lim

λ→0

1

λ
�
[

min{(x̄+ λh)2 − (x̄+ λh)− x̄2 + x̄, 2(x̄+ λh)2 − 2x̄2},

max{(x̄+ λh)2 − (x̄+ λh)− x̄2 + x̄, 2(x̄+ λh)2 − 2x̄2}
]

=
[

min
{

lim
λ→0

1
λ

(
(x̄+ λh)2 − (x̄+ λh)− x̄2 + x̄

)
, lim
λ→0

1
λ

(
2(x̄+ λh)2 − 2x̄2

)}
,

max
{

lim
λ→0

1
λ

(
(x̄+ λh)2 − (x̄+ λh)− x̄2 + x̄

)
, lim
λ→0

1
λ

(
2(x̄+ λh)2 − 2x̄2

)}]
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= [min{2x̄h− h, 4x̄h}, max{2x̄h− h, 4x̄h}]

= [2x̄h− h, 4x̄h]

= [2x̄− 1, 4x̄]� h,

which is a linear gH-continuous IVF (see Note 5). Thus, the gH-Gâteaux derivative

of G at x̄ ∈ R is GG (x̄) := [2x̄− 1, 4x̄]. One can check that

lim
|h|→0

‖G(x̄+ h)	gH G(x̄)	gH GG (x̄)(h)‖I(R)

|h|
= 0.

Hence, GF (x̄) = GG (x̄) = [2x̄− 1, 4x̄] and thus

GF (f(x̄1, x̄2)) = [2 sin(x̄1) + 2ex̄2 − 1, 4 sin(x̄1) + 4ex̄2 ].

Again, for every (h1, h2) ∈ R+ × R+ we have

lim
λ→0

1

λ
�
(
G ◦ f((x̄1, x̄2) + λ(h1, h2))	gH G ◦ f(x̄1, x̄2)

)
= lim

λ→0

1

λ
�
((

(sin(x̄1 + λh1) + ex̄2+λh2)2 � [1, 2]

⊕ (sin(x̄1 + λh1) + ex̄2+λh2)� [−1, 0]
)

	gH
(
(sin(x̄1) + ex̄2)2 � [1, 2]⊕ (sin(x̄1) + ex̄2)� [−1, 0]

))
= lim

λ→0

1

λ
�
([

(sin(x̄1 + λh1) + ex̄2+λh2)2 − (sin(x̄1 + λh1) + ex̄2+λh2),

2(sin(x̄1 + λh1) + ex̄2+λh2)2
]

	gH
[
(sin(x̄1) + ex̄2)2 − (sin(x̄1) + ex̄2), 2(sin(x̄1) + ex̄2)2

])

= lim
λ→0

1

λ
�
[

min
{

(sin(x̄1 + λh1) + ex̄2+λh2)2 − (sin(x̄1 + λh1) + ex̄2+λh2)

− (sin(x̄1 + ex̄2)2 + (sin(x̄1 + ex̄2),

2(sin(x̄1 + λh1) + ex̄2+λh2)2 − 2(sin(x̄1 + ex̄2)
}
,
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max{(sin(x̄1 + λh1) + ex̄2+λh2)2 − (sin(x̄1 + λh1) + ex̄2+λh2)

− (sin(x̄1 + ex̄2)2 + (sin(x̄1) + ex̄2),

2(sin(x̄1 + λh1) + ex̄2+λh2)2 − 2(sin(x̄1) + ex̄2)
}]

=
[

min
{

2h1 cos(x̄1)(sin(x̄1) + ex̄2) + 2h2e
x̄2(sin(x̄1) + ex̄2)

− (h1 cos(x̄1 + h2e
x̄2),

4h1 cos(x̄1)(sin(x̄1) + ex̄2) + 4h2e
x̄2(sin(x̄1 + ex̄2)

}
,

max
{

2h1 cos(x̄1)(sin(x̄1) + ex̄2) + 2h2e
x̄2(sin(x̄1) + ex̄2)

− (h1 cos(x̄1 + h2e
x̄2),

4h1 cos(x̄1)(sin(x̄1) + ex̄2) + 4h2e
x̄2(sin(x̄1 + ex̄2)

}]
=

[
(h1, h2)(cos(x̄1), ex̄2)(2 sin(x̄1) + 2ex̄2 − 1),

(h1, h2)(cos(x̄1), ex̄2)(4 sin(x̄1) + 4ex̄2)
]

= (h1, h2)(cos(x̄1), ex̄2)� [2 sin(x̄1) + 2ex̄2 − 1, 4 sin(x̄1) + 4ex̄2 ].

Thus, the gH-Fréchet derivative of G ◦ f at the point (x̄1, x̄2) is

(G ◦ f)F (x̄1, x̄2) = (cos(x̄1), ex̄2)� [2 sin(x̄1) + 2ex̄2 − 1, 4 sin(x̄1) + 4ex̄2 ]

= GF (f(x̄1, x̄2))�∇f(x̄1, x̄2).

2.7 Concluding remarks

This chapter introduced the notions of directional, Gâteaux and Fréchet derivatives

for IVFs. To define these derivatives and to study their properties, the concepts of

gH-Lipschitz continuity, linear IVF, bounded linear IVF, monotonic, and bounded

IVFs have been proposed. By using proposed concepts, the efficient solutions of

IOPs have been characterized. All the ideas can easily be used in control systems



Concluding Remarks 61

and differential equations in a noisy or uncertain environment. Future research can

focus on solving differential equations in a noisy or uncertain environment.

***********


