
Chapter 1

Introduction

Optimization or mathematical programming is a collection of mathematical princi-

ples and techniques to find minima/maxima of a function or of a criterion over a set

of constraints, which express as restrictions or rules on the problem. Now-a-days,

classical optimization and its several branches have sound theoretical foundations

and are featured by a vast collection of sophisticated algorithms and softwares. It

has become an essential tool for powerful modeling and decision making in a wide

range of applications in management science, industry, and engineering field.

Mathematically, an optimization problem comprises of three key ingredients—

• A set of variables or unknowns, called decision variables. Which designates a

value that may vary within the scope of the given problem.

• A set of constraints which is a set allowable values or scopes for the variables.

Constraints are typically determined by functional inequalities or equalities.

• An objective function that expresses the main criteria of the problem is either

to be minimized or maximized satisfying the constraints.
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Although there are many theories and optimization tools to obtain optimal solutions,

it is not always possible to properly represent the real-world situations with classical

mathematics due to the presence of uncertain events or environments. Most often,

the recorded or collected data are inherently imprecise or inexact. The data may

be affected by measurement errors or by random events. Sometimes the data may

be roughly estimated, or it is more appropriate to assume that the data belongs to

some uncertain set or interval. There are two major causes behind this imperfection

or uncertainty of the information—imprecision and randomness.

Randomness is measured by the probability density function. An imprecise or ill-

defined, or vaguely defined set is represented by a fuzzy set or set of intervals that

provide upper and lower bounds of the imprecise variables. The optimization prob-

lems with interval coefficients are known as interval optimization problems. In this

thesis, the focus is to develop the theories of smooth and nonsmooth analysis of

interval-valued functions and to derive the optimality conditions of interval opti-

mization problems.

1.1 Interval Analysis

It is known that digital computers have a limited numerical representation capa-

bility and work with rounded floating-point numbers. However, there are several

numbers that have infinite digits in their numerical representation. For example,

the numbers of kind π and
√

2 have infinite digits in their decimal places. Moreover,

most rationals have rounded representation. Algebraic operations on floating points

numbers can have accumulated errors which can be significant. For example, after

the launching of a missile against the U.S. military in the Gulf War, a U.S. Patriot
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missile failed to intercept this attacking missile due to errors generated by approx-

imations in numbers that were part of the algorithm implemented in the Patriot.

The result of this was that twenty-eight people died, and ninety-eight were injured.

A way to work with this type of error is to better understand real interval spaces

and interval analysis. Since R is an unbounded totally ordered set that is endowed

with the usual structure of order. Therefore, any number can be properly bounded

by two adjacent numbers. When doing mathematical analysis with intervals, one

comes face-to-face with the algebraic and analytical structures of spaces associated

with intervals.

Interval analysis is a new and growing branch of applied mathematics that was

formally developed by R. E. Moore in 1966 (see details in [57]). It gives an idea to

computing that treats an interval as a new kind of number. The produced results by

methods of interval analysis with properly-rounded interval arithmetic contain both

ordinary machine arithmetic results as well as infinite precision arithmetic results.

Thus, we have, at the outset, a completely general mechanism for bounding the

accumulation of roundoff error in any machine computation. If roundoff is the only

error present, then the widths of the interval results will go to zero as the length of

the machine word increases.

In many real-world or mathematical problems such as static or dynamic, deter-

ministic or probabilistic, linear or nonlinear, convex or nonconvex, etc., the knowl-

edge about the underlying parameters which influence the behavior of mathematical

problems, is imprecise or uncertain. Generally, one cannot measure the parameters

affected by imprecision or uncertainties with exact values. In such situations, the

parameters cannot be determined by a real number. We usually overcome this defi-

ciency by using interval or stochastic values, which is a natural way of incorporating
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the uncertainties of parameters. The purpose of using interval is to provide upper

and lower bounds of the parameters of such kind of mathematical problems.

Although interval analysis has not received the widespread acceptance that was

expected by the creators or researchers. The common belief is that there are several

faster and simpler methods that may be responsible for rounding and other types

of errors. For example, in both single and double-precision floating points, it is

common to calculate the results independently and compare the digits of the two

results. If the significant digits of two results agree up to a certain number, then the

matching digits are considered correct. However, we can easily find some examples

where the significant digits of two results agree up to a certain number but the

matching digits are not the correct result. One such classic example is given by

Rump in 1988 as Rump’s expression. The numerical evaluation with floating point

of this expression give misleading and incorrect results. In the evaluation of Rump’s

expression with increasing numbers of digits, the results agreed in their first few

significant digits. However, all the digits were incorrect and, although the computed

solution was relatively far from zero, it failed to even find the correct sign. By using

IEEE 754 floating-point arithmetic for Rump’s expression:

h(y, z) = (333.75− y2)z6 + y2(11y2z2 − 121z4 − 2) + 5.5z8 +
y

2z
.

For y = 77617 and z = 33096, we will get the following results:

32 bits: h(y, z) = 1.172604

64 bits: h(y, z) = 1.1726039400531786

128 bits: h(y, z) = 1.172603940053178618588349045201838.
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In spite of their agreements in first digits, all three results are wrongs. The correct

result is:

h(y, z) = −0.827396059946...

Evaluation using even the simplest method of interval analysis produces an interval

that contains the correct value of the answer. Interval evaluation does not directly

provide a better answer, it alerts us to the numerical instability of the expression

and suggests that higher-accuracy methods to compute correct result. With the help

of the developed theory of interval analysis, we can make interval bounds as narrow

as possible. A major focus of interval analysis is to develop some interval algorithms

which produce sharp (or nearly sharp) bounds on the solutions of mathematical

problems with an uncertain environment.

1.2 Interval-valued Function

An interval-valued function is a mathematical function of one or more variables

whose range is a set of closed and bounded intervals of real number which is de-

noted by I(R). For the Euclidean space Rn and set of intervals vectors I(R)k, the

function FCk
v

: X → I(R), where X is a nonempty subset of Rn, is known as an

interval-valued function (IVF) that depends on k intervals in the interval vector

Ck
v = (C1, C2, . . . ,Ck)

T , where Cj = [cj, cj] ∈ I(R) for j = 1, 2, · · · , k.

Parametrically, the vector Ck
v is observed by the following set

{
c(t)

∣∣∣ c(t) = (c1(t1), c2(t2), · · · , ck(tk))T , cj(tj) = cj + tj(cj − cj),

t = (t1, t2, · · · , tk)T , 0 ≤ tj ≤ 1, j = 1, 2, · · · , k
}
.
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Thus, the function FCk
v

can be presented as a collection of bunch of real-valued

functions fc(t)’s, i.e., for all x ∈ X ,

FCk
v
(x) =

{
fc(t)(x)|fc(t) : X → R, c(t) ∈ Ck

v, t ∈ [0, 1]k
}
.

The function FCk
v

can also be presented in another way. Let

f(x) = min
t∈[0,1]k

fc(t)(x) and f(x) = max
t∈[0,1]k

fc(t)(x).

Then, for each argument point x ∈ X , FCk
v

can be presented by

FCk
v
(x) =

[
f(x), f(x)

]
.

For instance, if we consider the IVF FC2
v
(x1, x2) = x1 � C1 ⊕ x2

2e
x1 � C2 with

C1 = [1, 3] and C2 = [−2, 1], then FC2
v

is the collection of functions

f(x1(t1),x2(t2))T (x1, x2) = c1(t1)x1 + c2(t2)x2
2e
x1 = (1 + 2t1)x1 + (−2 + 3t2)x2

2e
x1 ,

where t1 and t2 are in [0, 1]. Let

f(x) = min
t∈[0,1]k

fc(t)(x) and f(x) = max
t∈[0,1]k

fc(t)(x).

Then,

f(x1, x2) =


x1 − 2x2

2e
x1 if x1 ≥ 0,

3x1 − 2x2
2e
x1 if x1 < 0,

and f(x1, x2) =


3x1 + x2

2e
x1 if x1 ≥ 0,

x1 + x2
2e
x1 if x1 < 0.
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Hence, for each argument point x ∈ X , FCk
v

can be presented by

FCk
v
(x) =

[
f(x), f(x)

]
.

1.3 Interval Optimization Problems

In real-world problems, the data collected by the decision-makers are always as-

sumed to be real numbers with a certain value. In this case, the objective function

of optimization problems is a real-valued function. However, there are some opti-

mization problems where the objective may be uncertain due to inexact data. For

example, suppose that a factory can produce two goods, say G1 and G2, in input

quantities x1 and x2, subject to budget constraint S ⊆ R2. For selling the goods

G1 and G2 in the market, we assume that the factory can earn c1 and c2 dollars per

units, respectively. In this case, the purpose is to maximize the objective function

c1x1+c2x2 subject to the budget constraint set S ⊆ R2. However, the prices of goods

may fluctuate from time to time in the financial market. It seems more reasonable

to assume the prices to be uncertain quantities. There are three kinds of method-

ologies that can model uncertain quantities: random variables, fuzzy numbers and

intervals. If the coefficients c1 and c2 are assumed to be random variables, then the

problem becomes a stochastic optimization problem. Birge and Louveaux in 1997

[9], Kall in 1976 [46], and Vajda in 1972 [81] explained the main stream of stochastic

optimization problems and also introduced some useful methods to solve these op-

timization problems. If the coefficients c1 and c2 are assumed to be fuzzy, then the

problem becomes a fuzzy optimization problem. On the other hand, if we assume

the coefficients c1 and c2 to be compact intervals of real numbers, then although the

prices may fluctuate from time to time, we can always make sure that the prices
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will fall into the corresponding intervals. In such cases the problem is classified as

an interval optimization problem (IOP). It is well known that when fuzzy sets are

used, they are described as families of their alpha-cuts. For each alpha-cuts the

corresponding interval optimization problem could be easily solved and such partial

solutions combined. Likewise for random variables, one could think of using confi-

dence intervals. Due to this reason, IOPs are often thought of superior to fuzzy or

stochastic optimization problems.

As we know that in most of the cases, the coefficients of the objective function in the

stochastic optimization problems are considered as random variables with known dis-

tributions. However, the specifications of the distributions are very subjective. For

example, many researchers invoke the Gaussian (normal) distributions with different

parameters in stochastic optimization problems. These specifications do not com-

pletely match the real problems. Therefore, interval-valued optimization problems

may provide an alternative choice to consider the uncertainty in the optimization

problems. That is to say, the coefficients of the objective function in the interval-

valued optimization problems are considered as compact intervals. Although the

specifications of compact intervals may still be judged as subjective viewpoint, we

can argue that the bounds of uncertain data (i.e., determining the compact intervals

which give the upper and lower bounds of the possible observed data) are easier

to be handled than specifying the Gaussian distributions in stochastic optimization

problems.

Mathematically, an interval optimization problem is presented by

min
x∈X

F(x),
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where X ⊂ Rn and F : X → I(R). In the rigorous study on IOPs, we often need

the following notions.

• Decision space:

A decision is characterized by the DM’s choice between different possible

courses of action, called alternatives. Set of all alternatives constitute the

set X which is called as a feasible set. An alternative can be defined by a

vector of real numbers x = (x1, x2, . . . , xn)t. A vector for representing an al-

ternative is said to be a decision vector. The components of this vector are

called decision variables. Each decision variable is related to a particular as-

pect of the alternatives. The space of the decision vectors is called as decision

space. The set X is also known as the decision feasible region. A point x in

X is known as a decision feasible point.

• Objective space:

For any point x in the decision feasible region X , an interval F(x) in I(R) is

obtained. The interval space in which the points F(x) lie is known as objective

space. The set of all intervals F(x) where x in X is known as a feasible set in

the objective space or objective feasible region. In solving IOPs, DM is always

more interested in the objective space than the decision space because DM is

often more interested in the objective values. We note that the image of the

feasible set X under the interval-valued function F is the feasible set in the

objective space.

In IOPs, the interval-valued objective function can be observed as a bunch of in-

finitely many real-valued objective functions. So, optimal solutions of IOPs behave

like optimal solutions of multi-objective optimization problems. Unlike a single ob-

jective problem, there may not exist a unique solution of an IOP, since otherwise,
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there does not arise any conflict among all infinitely many real objectives of IOP,

and it loses the essence of IOP. The basic difference between IOPs and single ob-

jective optimization problems is that the feasible region in the objective space of

a single objective optimization problem is a totally ordered subset of the real line,

whereas an IOP constitutes an infinite dimensional objective feasible region, which

is not a totally ordered set in general. Thus, all solutions can be completely ordered

according to the objective function in single objective optimization problems. In

contrast, for an IOP, the solutions can only be ordered partially. As a consequence,

in the case of single-objective problems, only one global optimum exists; but in the

case of IOPs, conflicting real objectives can cause a situation where no solution is

superior to the others. Thus, usually, there are many solutions to an IOP. The fea-

sible solutions which can be improved without causing simultaneous deterioration

in at least one criterion can not certainly be the optimal solution of the considered

IOP. This concept leads to the foundation of non-dominated solutions.

• Non-dominated solution:

A non-dominated solution of IOP is a feasible point of interval objective space

where any improvement in one criterion in a bunch of infinitely many real

objectives of IOP can take place only through the worsening of at least one

another criterion in that infinitely many real objectives. The concept of non-

dominated solution of IOP is of primordial importance to recognize the conflict-

ing nature of a bunch of infinitely many criteria of IOP. For a non-dominated

point of IOP, there is no other feasible point in interval objective space that

makes every criterion strictly better off. Each non-dominated point is equally

acceptable as a solution to the IOP. Non-dominated point determines efficient

solution from the entire feasible region.
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1.4 Preliminaries

The following basic definitions and basic properties of intervals are used throughout

this thesis.

1.4.1 Interval Arithmetic

Throughout the thesis, bold letters A,B,C, . . ., are used for denoting the elements

of I(R). An element A of I(R) is presented by the corresponding small letter:

A = [a, a].

In this section, we discuss Moore’s interval arithmetic [57] followed by the concepts

of gH-difference of two intervals and ordering of intervals [39].

Consider two intervals A = [a, a] and B =
[
b, b
]
. The addition of A and B, denoted

A⊕B, is defined by

A⊕B =
[
a+ b, a+ b

]
.

The subtraction of B from A, denoted A	B, is defined by

A	B =
[
a− b, a− b

]
.

The multiplication of A and B, denoted by A�B, is defined by

A�B =
[
min

{
a b, ab, ab, ab

}
, max

{
a b, ab, ab, ab

}]
.
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The multiplication by a real number λ to A, denoted λ�A or A� λ, is defined by

λ�A = A� λ =


[λa, λa], if λ ≥ 0

[λa, λa], if λ < 0.

Notice that the definition of λ�A follows from the fact λ = [λ, λ] and the definition

of multiplication A�B.

Let 0 6∈ B. The division of A by B, denoted by A�B, is defined by

A�B =
[
min

{
a/b, a/b, a/b, a/b

}
, max

{
a/b, a/b, a/b, a/b

}]
.

We use the following definition for the difference between a pair of intervals since

it is the most general definition of difference (see [31] for the details on why it is the

most general).

Definition 1.4.1 (gH-difference of intervals [73]). Let A and B be two elements

of I(R). The gH-difference between A and B, denoted A 	gH B, is defined by the

interval C such that

A = B⊕C or B = A	C.

Note 1 (See [73]). It is to be noted that for two intervals A = [a, a] and B =
[
b, b

]
,

A	gH B =
[
min

{
a− b, a− b

}
, max

{
a− b, a− b

}]
and

(−1)� (A	gH B) = B	gH A.
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As it is known that unlike the real numbers, intervals are not linearly ordered. Thus,

in order to develop the analysis of interval-valued functions and interval optimiza-

tion, we use the following order relation in this thesis.

Definition 1.4.2 (Dominance of intervals [7]). Let A = [a, a] and B =
[
b, b
]

be two

elements of I(R). Note that A and B can be presented by

A = [a, a] = {a(t) | a(t) = a+ t (a− a) , 0 ≤ t ≤ 1} and

B =
[
b, b
]

=
{
b(t)

∣∣ b(t) = b+ t
(
b− b

)
, 0 ≤ t ≤ 1

}
, respectively.

 (1.1)

Then,

(i) B is said to be dominated by A if a(t) ≤ b(t) for all t ∈ [0, 1], and then we

write A � B;

(ii) B is said to be strictly dominated by A if A � B and there exists a t0 ∈ [0, 1]

such that a(t0) 6= b(t0), and then we write A ≺ B;

(iii) if B is not dominated by A, then we write A � B; if B is not strictly dominated

by A, then we write A ⊀ B;

(iv) if A is dominated by B or B is dominated by A, then A and B are said to be

comparable,

(v) if A � B and B � A, then we say that none of A and B dominates the

other, or A and B are not comparable.

By using the fist and second inequalities of above definition, we have following

properties of intervals.

Lemma 1.1. Let A = [a, a] and B =
[
b, b
]

be two intervals in I(R). Then,
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(i) A � B if and only if a ≤ b and a ≤ b, and

(ii) A ≺ B if and only if ‘either a ≤ b and a < b or a < b and a ≤ b’.

Proof. We note that

A = [a, ā] = {a(t) : a(t) = a+ t(ā− a), 0 ≤ t ≤ 1}

and B = [b, b̄] = {b(t) : b(t) = b+ t(b̄− b), 0 ≤ t ≤ 1}.

(i) Let A � B. Then, by Definition 1.4.2, we note that

A � B

=⇒ a+ t(ā− a) = a(t) ≤ b(t) = b+ t(b̄− b) for all t ∈ [0, 1]

=⇒ a(0) ≤ b(0) and ā(1) ≤ b̄(1)

=⇒ a ≤ b and ā ≤ b̄.

Conversely, if a ≤ b and a ≤ b, then

(1− t)(a− b) + t(a− b) ≤ 0 for all t ∈ [0, 1]

=⇒ (a+ t(ā− a))− (b+ t(b̄− b)) ≤ 0 for all t ∈ [0, 1]

=⇒ a(t)− b(t) ≤ 0 for all t ∈ [0, 1]

=⇒ a(t) ≤ b(t) for all t ∈ [0, 1]

=⇒ A � B.

(ii) If A ≺ B, then by (ii) of Definition 1.4.2 and part (i), a ≤ b and ā ≤ b̄, and

A 6= B.
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If a = b and a = b, then

a+ t(a− a) = b+ t(b− b) for all t ∈ [0, 1]

=⇒ a(t) = b(t) for all t ∈ [0, 1],

which is contradictory to A 6= B.

Hence, either a ≤ b and a < b or a < b and a ≤ b.

If a ≤ b and a < b, then a(1) < b(1) and

a+ t(ā− a) ≤ b+ t(b̄− b) for all t ∈ [0, 1]

=⇒ a(t) ≤ b(t) for all t ∈ [0, 1]

=⇒ A � B,

which implies that A � B and A 6= B.

If a < b and a ≤ b, then a(0) < b(0) and

a+ t(ā− a) ≤ b+ t(b̄− b) for all t ∈ [0, 1]

=⇒ a(t) ≤ b(t) for all t ∈ [0, 1]

=⇒ A � B,

which again implies that A � B and A 6= B.

Hence, A ≺ B.
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There are some most important results of interval optimization problems in this

thesis which can not solved by using the dominance relation 1.4.2. So, an other

dominance relations of intervals is defined as

Definition 1.4.3 (Better dominance relation of intervals). Let A = [a, a] and B =[
b, b
]

be two elements of I(R). Note that A and B can be presented by

A = [a, a] = {a(t) | a(t) = a+ t (a− a) , 0 ≤ t ≤ 1} and

B =
[
b, b
]

=
{
b(t)

∣∣ b(t) = b+ t
(
b− b

)
, 0 ≤ t ≤ 1

}
, respectively.

 (1.2)

Then,

(i) B is said to be better strictly dominated by by A if a(t) < b(t) for all t ∈ [0, 1],

and then we write A < B;

(ii) if B is not better strictly dominated by A, then we write A ≮ B.

The first inequality of Definition 1.4.3 can be written as inequality of following

lemma.

Lemma 1.2. Let A = [a, a] and B = [a, a] be elements of I(R). Then, A < B if

and only if a < b and a < b.

Proof. Let A < B. Then, by Definition 1.4.3, we note that

A < B

=⇒ a+ t(ā− a) = a(t) < b(t) = b+ t(b̄− b) for all t ∈ [0, 1]

=⇒ a(0) ≤ b(0) and a(1) < b(1)

=⇒ a < b and ā < b̄.
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Conversely, if a < b and a < b, then

(1− t)(a− b) + t(a− b) < 0 for all t ∈ [0, 1]

=⇒ (a+ t(ā− a))− (b+ t(b̄− b)) < 0 for all t ∈ [0, 1]

=⇒ a(t)− b(t) < 0 for all t ∈ [0, 1]

=⇒ a(t) < b(t) for all t ∈ [0, 1]

=⇒ A < B.

The set of all closed and bounded intervals I(R) equipped with the norm ‖.‖I(R) is

a normed quasilinear space (see [53]) with respect to the operations {⊕,	gH ,�},

where ‖.‖I(R) is defined as following.

Definition 1.4.4 (Norm on I(R) [57]). For an A = [a, ā] in I(R), the function

‖.‖I(R) : I(R)→ R+, defined by

‖A‖I(R) = max{|a|, |ā|},

is a norm on I(R). In rest of thesis, we simply use the symbol ‘‖·‖’ to denote the

usual Euclidean norm on Rn.

Definition 1.4.5. (Maximum and minimum of intervals). Let A1,A2, . . . ,Am be

the elements of I(R) with A1 � A2 � · · · � Am. Then,

max{A1,A2, . . . ,Am} = Am and min{A1,A2, . . . ,Am} = A1.

Remark 1.3. It can be easily observe that the maximum of any finite set S of com-

parable intervals always belong to the set S.
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1.4.2 Basic Properties of Interval Analysis

The following basic properties of interval analysis with the help of dominance re-

lation of intervals, norm of a interval, and gH-difference of two intervals, are used

throughout the thesis.

Lemma 1.4. For two intervals A and B in I(R),

(i) A � B ⇐⇒ A	gH B � 0,

(ii) A ⊀ B ⇐⇒ A	gH B ⊀ 0.

Proof. See Appendix A.1.

Note 2 (See [53]). For RDM interval arithmetic lemma 1.4 does not hold.

For instance, let A = [1, 3] and B = [2, 5]. Then, A ≺ B.

But according to RDM interval arithmetic

[1, 3] = 1 + α1(3− 1) = 1 + 2α1, α1 ∈ [0, 1]

and

[2, 5] = 2 + α2(5− 2) = 2 + 3α2, α2 ∈ [0, 1].

Now

[1, 3]− [2, 5] = 1 + 2α1 − 2− 3α2, α1, α2 ∈ [0, 1]

= −1 + 2α1 − 3α2

= [−4, 1] ⊀ 0.

Hence, A ≺ B ; A−B ≺ 0.

Similarly for A = [1, 3] and B = [2, 4], A	gH B ⊀ 0 but A ≺ B.
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Lemma 1.5. For all A,B,C,D ∈ I(R),

(i) B ⊀ A	gH (A	gH B),

(ii) if B ⊀ A	gH C and 0 ≺ A, then B ⊀ (−1)�C,

(iii) (A	gH C)⊕ (C	gH B) ⊀ A	gH B,

(iv) A ⊀ 0 and A � B =⇒ B ⊀ 0,

(v) A	gH B ⊀ 0 and C � B =⇒ A	gH C ⊀ 0,

(vi) if C � B, then A	gH B � A	gH C.

Proof. See Appendix A.2.

Lemma 1.6. For all A, B,C,D ∈ I(R),

(i) ‖A‖I(R) − ‖B‖I(R) ≤ ‖A	gH B‖I(R),

(ii) ‖A	gH B‖I(R) ≤ ‖(A	gH C)⊕ (C	gH B)‖I(R),

(iii) B � A⊕ [L,L], where L = ‖B	gH A‖I(R), and

(iv) ‖(A	gH B)	gH (C	gH D)‖I(R) ≤ ‖A	gH C‖I(R) ⊕ ‖B	gH D‖I(R).

Proof. See Appendix A.3.

Remark 1.4.1. The following two points are noticeable.

(i) It is noteworthy that although ⊕ is associative in I(R), for two intervals A and

C in I(R), the interval ((A	gHC)⊕C) is not always equal to A. For instance,

consider A = [6, 9] and C = [3, 7]. Then, (A 	gH C) ⊕ C = [2, 3] ⊕ [3, 7] =

[5, 10] 6= A. Thus, (ii) of Lemma 1.6 is not an obvious property of ‖ · ‖I(R)

on the elements in I(R).
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(ii) For two elements A and B of I(R), if B = A⊕(B	gHA), then (iii) of Lemma

1.6 is an obvious property since B	gHA � [L,L]. However, (A⊕ (B	gHA))

is not always equal to B. For instance, for A = [4, 10] and B = [−3, 2],

A⊕ (B	gH A) = [4, 10]⊕ [−8,−7] = [−4, 3] 6= B.

Therefore, (iii) of Lemma 1.6 is not a trivial property.

(iii) For any A, B and C in I(R), if

B	gH A � C =⇒ B � A⊕C, (1.3)

then replacing C by [L,L], we see that (iii) of Lemma 1.6 is an obvious prop-

erty. However, (1.3) is not always true. For instance, if B = [−3, 2], A =

[4, 10] and C = [−7.5,−6], then

B	gH A = [−8,−7] and A⊕C = [−3.5, 4].

Hence, B 	gH A � C, but B and A ⊕ C are not comparable. Thus, (iii) of

Lemma 1.6 is not an obvious property.

(iv) For elements A, B, C and D of I(R), if

(A	gH B)	gH (C	gH D) = (A	gH C)⊕ (D	gH B),

then (iv) of Lemma 1.6 is an obvious property since ‖(P⊕Q‖I(R) ≤ ‖P‖I(R)⊕

‖Q‖I(R) for all P, Q ∈ I(R). However, (A	gHB)	gH (C	gHD) is not always

equal to (A	gH C)⊕ (D	gH B). For instance, for A = [0, 1], B = [−3, 2], C
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= [-1, 1] and D = [-2, 5]

(A	gH B)	gH (C	gH D) = [−1, 3]	gH [−4, 1] = [2, 3],

and

(A	gH C)⊕ (D	gH B) = [0, 1]⊕ [1, 3] = [1, 4].

Hence, (A	gH B)	gH (C	gH D) 6= (A	gH C)⊕ (D	gH B) as [2, 3] 6= [1, 4].

Therefore, (iv) of Lemma 1.6 is not a trivial property.

Corollary 1.4.1. For all A,B ∈ I(R),

‖A	gH B‖I(R) ≤ ‖A‖I(R) + ‖B‖I(R). (1.4)

Proof. In (ii) Lemma 1.6, by taking C = 0 we get

‖A	gH B‖I(R) ≤ ‖A	gH 0‖I(R) + ‖0	gH B‖I(R) = ‖A‖I(R) + ‖B‖I(R).

Lemma 1.7. For all x, y ∈ R and C ∈ I(R),

(i) if C � 0, then |x+ y| �C � |x| �C⊕ |y| �C,

(ii) if C � 0, then |x+ y| �C � |x| �C⊕ |y| �C, and

(iii) C ⊀ 0 =⇒ |x+ y| �C � |x| �C⊕ |y| �C.

Proof. See Appendix A.4.
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1.4.3 Few Elements of Convex Analysis

A nonempty subset C of X is called cone [64] if

x ∈ C, λ ≥ 0 =⇒ λx ∈ C.

Let S be a nonempty subset of X . The set

cone(S) = {λs : λ ≥ 0 and s ∈ S}

is called the cone generated by S [64]. Besides, a vector h ∈ X is called a tangent

vector [42] to S at x̄ ∈ cl(S) if there are two sequences {xn} in S and {λn} in

positive real numbers with

x̄ = lim
n→+∞

xn and h = lim
n→+∞

λn(xn − x̄).

The set of all tangent vectors to S at x̄ is called tangent cone [42] to S at x̄ and is

denoted by T (S, x̄). Further, S of X is called star-shaped [42] with respect to some

x̄ ∈ S if for all x ∈ S,

λx+ (1− λ)x̄ ∈ S for all λ ∈ [0, 1].

1.4.4 Some Basic Definitions and Properties of Interval-

valued Functions

In this section, we define some basic definitions for interval-valued functions which

are used throughout the thesis.
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Definition 1.4.6 (Interval-valued convex function [88]). Let X ⊆ Rn be a convex

set. An IVF F : X → I(R) is said to be convex on X if

F(λx1 +λ′x2) � λ�F(x1)⊕λ′�F(x2) for all x1, x2 ∈ X and for all λ, λ′ ∈ [0, 1],

where λ+ λ′ = 1.

Lemma 1.8 (See [88]). F is a convex IVF on a convex set S ⊆ X if and only if f

and f are convex on S.

Lemma 1.9 (See [88]). Let F(x) =
[
f(x), f(x)

]
be an IVF on a nonempty subset

X of Rn. Then, lim
x→x0

F(λ) exists if and only if lim
x→x0

f(λ) and lim
x→x0

f(λ) exist and

lim
x→x0

F(λ) =

[
lim
x→x0

f(λ), lim
x→x0

f(λ)

]
.

Definition 1.4.7 (gH-continuity [31]). Let F be an IVF on a nonempty subset X

of Rn. The function F is said to be gH-continuous at x̄ ∈ X if for any h ∈ Rn with

x̄+ h ∈ X ,

lim
‖h‖→0

(F(x̄+ h)	gH F(x̄)) = 0.

Definition 1.4.8 (Efficient point [31]). Let X be a nonempty subset of Rn and

F : Rn → I(R) be an IVF. A point x̄ ∈ X is said to be an efficient point of an IOP:

min
x∈X

F(x) (1.5)

if F(x) ⊀ F(x̄) for all x ∈ X .

Lemma 1.10. Let S be a linear space of X and F : S → I(R) be a linear IVF.

Then, the following results hold.

(i) If F(x) ⊀ 0 for all x ∈ S, then 0 and F(x) are not comparable.
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(ii) If F(x) � 0 for all x ∈ S, then F(x) = 0.

Proof. See Appendix A.5.

1.5 Literature Survey

1.5.1 Literature on Interval Analysis

In the literature of interval analysis, initially, there are three people (Warmus in

1956 [83], Sunaga in 1958 [68], and Moore in 1966 [57]) who independently devel-

oped interval arithmetic. Although, Warmus and Sunaga were the first to create

interval arithmetic, but Moore is the prime mover of interval analysis and consid-

ered the father of its development. His book on interval analysis was published in

1966 [57]. Further, basic contributions in interval analysis are given by Apostolatos

and Kulisch in 1967 [4], Hansen in 1965 [34], Kruckeberg in 1966 [47], Nickel in 1966

[60], and others. By using Moore’s interval arithmetic, Mayer in 1970 [56] described

the concept of quasilinear space for compact intervals. In Moore’s interval arith-

metic, there are a few limitations (see [28] for details), such as, the additive inverse

of a degenerate intervals, i.e., an interval whose upper and lower limits are equal,

exist only. For the same reason, many conventional properties for real numbers are

not true for compact intervals, for instance, for two compact intervals A and C,

(A 	gH (C) ⊕ C 6= A (see Remark 2.3.1 of [28]). Thus, to develop a theoretical

framework of the calculus of interval analysis, Hukuhara in 1967 [37] introduced a

new concept for the difference of compact intervals, known as Hukuhara difference

(H-difference) of intervals and derive several properties of compact intervals by us-

ing this difference. Although H-difference provides the additive inverse of compact
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intervals, this difference of a compact interval B from a compact interval A can

be calculated only when the width of A is greater than or equal to that of B (see

details in [12]). To overcome this difficulty, the nonstandard difference of intervals

is introduced by Markov in 1979 [55], and for the same reason, Stefanini in 2008 [72]

introduced a strong concept of difference of two intervals as generalized Hukuhara

difference (gH-difference) of intervals. The gH-difference provides an additive in-

verse of any compact interval and is applicable for all pairs of compact intervals.

By using the gH-difference of intervals and Moore’s interval arithmetic, Stefanini

proved the cancellation law for the addition of intervals and the distributive law for

subtraction of intervals by the scalar. Further, in [53], with the help of norm of an

interval defined by Moore and gH-difference of intervals, it is explained that set of

compact intervals is quasi normed linear space. In 2016, Tao proved some results of

interval arithmetic and semi-linear interval differential

equations under the gH-difference. Recently, to generalize the concepts of smooth

and nonsmooth analysis for interval-valued function and to derive interval variational

inequalities, Ghosh in 2019 [28] and Gaurav in 2020 [48] proved some inequalities

of intervals by using dominance relation and gH-difference of intervals. Apart from

Moore’s interval arithmetic, another concept of interval arithmetic has been devel-

oped by Piegat and Landowski [49], namely RDM interval arithmetic, which also

ensures the existence of an additive inverse for any compact interval. Generally, all

the properties of RDM interval arithmetic are similar to Moore’s interval arithmetic

except the subtraction of an interval from itself. In this thesis, we use Moore’s in-

terval arithmetic with gH-difference instead of RDM interval arithmetic (see Note

2 in [28] for the reason).
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1.5.2 Literature on Calculus of Interval-valued Functions

To observe the properties of an IVF, calculus plays an essential role. Initially,

to develop the calculus of IVFs, Hukuhara in 1967 [37] introduced the concept

of differentiability of IVFs with the help of H-difference of intervals. However, the

definition of Hukuhara differentiability (H-differentiability) is found to be restrictive

(see [12]). To remove the deficiencies of H-differentiability, Bede and Gal in 2005

[6] defined strongly generalized derivative (G-derivative) for IVFs and derived a

Newton-Leibnitz-type formula. In order to formulate the mean-value theorem for

IVFs, Markov in 1979 [55] introduced a new concept of difference of intervals and

defined differentiability of IVFs by using this difference. In 2009 [73], Stefanini

and Bede defined the generalized Hukuhara differentiability (gH-differentiability)

of IVFs by using the concept of generalized Hukuhara difference. In defining the

calculus of IVFs, the concepts of gH-derivative, gH-partial derivative, gH-gradient,

and gH-differentiability for IVFs have been developed in [31, 73, 74].

To derive a Karush-Kuhn-Tucker (KKT) condition for IOPs, Guo et al. in 2019 [33]

defined gH-symmetric derivative for IVFs. Ghosh in 2016 [30], analyzed the notion

of gH-differentiability of multi-variable IVFs to propose the Newton method for

IOPs. The concept of second-order differentiability of IVFs is introduced by Van

[80] to study the existence of a unique solution of interval differential equations.

Lupulescu [52] defined delta generalized Hukuhara differentiability on time scales

by using gH-difference. Chalco et al. [13] introduced the concept of π-derivative for

IVFs that generalizes Hukuhara derivative and G-derivative, and proved that this

derivative is equivalent to gH-derivative. In [69], Stefanini and Bede defined level-

wise gH-differentiability and generalized fuzzy differentiability by LU-parametric

representation for fuzzy-valued functions. Kalani et al. [45] analyzed the concept
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of interval-valued fuzzy derivative for perfect and semi-perfect interval-valued fuzzy

mappings to derive a method for solving interval-valued fuzzy differential equations

using the extension principle. Recently, Ghosh et al. [28] have provided the idea

of gH-directional derivative, gH-Gâteaux derivative, and gH-Fréchet derivative of

IVFs to derive the optimality conditions for IOPs.

1.5.3 Literature on Interval Optimization Problem

In recent years, the interval analysis method was developed to model the uncertainty

in uncertain optimization problems, in which the bounds of the uncertain coefficients

are only required, not necessarily knowing the probability distributions or member-

ship functions. Tanaka et al. in 1984 [77] and Rommelfanger in 1989 [65] discussed

the linear programming problem with interval coefficients in the objective function.

Chanas and Kuchta in 1996 [15, 16] suggested an approach based on an order relation

of interval number to convert the linear optimization problem with uncertainty into

a deterministic optimization problem. Tong in 1994 [79] investigated the problems

in which the coefficients of the objective function and the constraints are all interval

numbers. He obtained the possible interval of the solution by taking the maximum

value range and minimum value rangeminequalities as constraint conditions. Liu

and Da in 1999 [19] proposed an interval number optimization method based on a

fuzzy constraint satisfactory degree to deal with the linear problems. Sengupta et

al. in 2001 [67] studied the linear interval number programming problems in which

the coefficients of the objective function and inequality constraints are all interval

numbers. They proposed the concept of “acceptability index” and gave one solution

for the uncertain linear programming. Zhang et al. in 1999 [63] assumed interval

numbers as random variables with uniform distributions and constructed a possibil-

ity degree to solve the multi-criteria decision problem. The above methods point out
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a fine way for uncertain optimization. The reference Ma in 2002 [54] seems the first

publication on nonlinear interval number programming (NINP). In this reference,

a deterministic optimization method is used to obtain the interval of the nonlinear

objective function, and a three-objective optimization problem is formulated. Wu

[88], used the concept of Hukuhara differentiability to study KKT conditions of op-

timization problems with IVFs. Wu [87], has also illustrated the solution concept

of optimization problems with IVFs by imposing a partial ordering on the set of

all closed intervals and applying the existing calculus of IVFs. In 2013, the KKT

conditions, based on gH-differentiability, of optimization problems with IVFs have

been illustrated by Chalco-Cano and others [11]. After that, Bhurji and Panda [8]

have defined interval-valued function in the parametric form and studied its prop-

erties, and developed a methodology to study the existence of the efficient solution

of an optimization problem with IVFs. Ghosh [31] has introduced a new definition

of gH-differentiability and proposed a Newton method [31] and an updated Newton

method [32] to capture the efficient solution of an optimization problem with IVFs.

Recently, Ghosh et al. [26] have proposed the theory of alternatives and hence the

KKT optimality condition for IOPs. Importantly, it is shown in [26] that KKT

optimality conditions appear with the inclusion relations instead of equations.

1.6 Objective of the Thesis

The objectives of the thesis are:

• To define and analyze the notions of generalized derivative and semideriva-

tives for IVFs, like directional derivative, Gâteaux derivative, Fréchet deriva-

tive, Clarke derivative, Hadamard derivative, Hadamard semiderivative, Dini

semiderivative, etc.,
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• to view the relations among these derivatives and semiderivatives for IVFS,

• to explore and characterize the efficient of IOPs by using these derivatives and

semiderivatives , and

• to find a methodology to capture the complete non-dominated set of an IOPs.

1.7 Organization of the Thesis

This thesis consists of seven chapters including an introductory chapter and a chapter

comprised of conclusion and future scopes. In this chapter, which is the introductory

chapter, a concise but adequate literature of these topics has been discussed. It also

defines the objective of this thesis.

In Chapter 2, three new concepts—directional, Gâteaux and Fréchet derivatives

for IVFs— are studied. Further, the conditions for the existence of these derivatives

for IVFs are given. To explain the properties of these derivatives, bounded, linear,

monotonic, and Lipschitz continuity for IVFs are newly defined. The idea about to

find the optimal solutions of IOPs is described.

Chapter 3 analyzes the concepts of Clarke derivative, pseudoconvex and quasicon-

vex for IVFs. To describe the properties of Clarke derivative, the concepts of limit

superior, limit inferior, and sublinear for IVFs are studied. Further, by using the

derived concepts, the existence of Clarke derivative, the relation of Clarke derivative

with directional derivative, the relation of convex with pseudoconvex, and relation

of pseudoconvex with quasiconvex are shown for IVFs. With the help of the studied

concepts, a few results on characterizing efficient solutions to an IOP are derived.
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In Chapter 4, the notion of Hadamard semiderivative for IVFs is explained. In the

presence of directonal derivative, a necessary and sufficient condition for the exis-

tence of Hadamard semiderivative of IVFs are derived. The relation of Hadamard

semiderivative with directional derivative and Gâteaux derivative for IVFs are shown.

Further, the behavior of composition of two Hadamard semidifferentiable IVFs and

maximum of Hadamard semidifferentiable IVFs are explained. It is obseved that the

proposed concepts is useful to find out the efficient solutions of IOPs. For constraint

IOPs, the Karush-Kuhn-Tucker sufficient condition to obtain efficient solutions are

derived.

Chapter 5 describes the idea of Hadamard derivative for IVFs. For an IVF, the

relation of Hadamard derivative with Fréchet derivative and continuity are shown.

Further, behavior of composition of two Hadamard differentiable IVFs and the max-

imum of Hadamard differentiable IVFs are explained. The proposed derivative is

observed to be useful to check the convexity of an IVF and also helpful to char-

acterize the efficient solutions of IOPs. For constraint IOPs, an extended Karush-

Kuhn-Tucker necessary and sufficient condition by using the proposed derivative is

derived.

In Chapter 6, the concepts of upper and lower Dini semiderivatives, upper and lower

Hadamard semiderivatives for IVFs are studied. For an IVF, the relation of upper

Dini semiderivative and upper Hadamard semiderivative with directional derivative,

Clarke derivative, Hadamard semiderivative and continuity are shown. Proposed

semiderivative is observed to be useful to characterize the efficient solutions of IOPs.

Finally, Chapter 7 completes this work by summarizing the concluding remarks

and forecasting potential avenues for the future researchers.

***********


