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PREFACE

Optimization is an approach that is used to characterizing, finding, and comput-

ing the maxima or minima of a function for a set of acceptable points or certain

prespecified conditions. Its early stages were combined with ones of the differential

calculus and mathematical analysis. The first idea of differential calculus and the

rule for computing the maxima and minima was given by Fermat in 1638. Fermat

introduced the optimality condition to obtain the extremum of a differentiable alge-

braic function f as f ′(x) = 0. The rule of Fermat remains valid for the differentiable

function of several variables and differentiable functions defined on topological and

Hilbert vector spaces.

Optimization is not just mathematical analysis. Many decision-making problems

in management, engineering, economics, computer sciences, and statistics are for-

mulated as mathematical programs to find the maximization or minimization of an

objective function subject to constraints and conditions. Such programs often have

special structures: convex, nonconvex, linear, nonlinear, quadratic, semidefinite, dy-

namic, integer, stochastic programming, etc. This was the source of more theory

and efficient algorithms to find the solutions. For these types of problems, there are

vast mathematical principles and optimization techniques to handle them.

Now-a-days, there are many optimization and real-world problems with imprecise or

uncertain parameters that cannot be handled by only deterministic or probabilistic

and linear or nonlinear models. To determine the imprecise or uncertain parameters

in such problems, interval analysis was introduced by Moore [57]. Interval analysis is

based on the representation of an uncertain variable by an interval, and it provides

a natural way of incorporating the uncertainties of parameters. The importance of

interval analysis from a theoretical and practical view point is explained by Moore
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[57] in his book. Advances of interval analysis have been motivated by its wide ap-

plication areas, such as control theory, dynamical theory, machine learning, artificial

intelligence, etc.

Since its introduction almost 60 years ago, the subject has developed rapidly. It is

serving as an impetus for research and rigor in numerical computations on machines.

An element of interval analysis has a dual nature as both a number and a set

of real numbers. Most of the algorithms for interval methods make use of this

duality nature and combine set-theoretic operations such as set intersection with

arithmetic operations. For the problem in which coefficients and initial data are

acceptable as intervals values, the entire set of possible values of the solution will

obtain in a single computation. The ability to compute with sets of values in interval

arithmetic provides for some simple computational tests for existence, uniqueness,

and convergence.

In this thesis, the author discusses some properties of interval analysis, smooth and

nonsmooth analysis of interval-valued functions (IVFs), and optimality conditions

for interval optimization problems (IOPs). The basic introduction of optimization,

interval analysis with its origin, interval-valued functions, interval optimization prob-

lem with its origin are given at the starting of the first chapter. Interval arithmetic

and some important properties of intervals are also explained. The definitions of

continuity and convexity for IVFs along with their basic results, are explained in

the last section of the first chapter.

The notions of directional, Gâteaux and Fréchet derivatives for IVFs are studied.

Further, the conditions for the existence of these derivatives for IVFs are given. To

observe the properties of these derivatives, the concepts of bounded, linear, mono-

tonic, and Lipschitz continuity for IVFs are newly defined. It is also explained that

the proposed derivatives are useful to check the convexity of IVFs. Further, it is

observed that the efficient solutions of IOPs can find out with the help of these

xix



derivatives. The entire study on these derivatives for IVFs is supported by suitable

illustrative examples.

The concepts of Clarke derivative, pseudoconvex and quasiconvex for IVFs are pro-

posed. To describe the properties of Clarke derivative, the concepts of limit supe-

rior, limit inferior, and sublinear for IVFs are studied. Further, by using the derived

concepts, the existence of Clarke derivative, the relation of Clarke derivative with

directional derivative, the relation of convex with pseudoconvex, and relation of

pseudoconvex with quasiconvex are shown for IVFs. With the help of the studied

pseudoconvex, quasiconvex, and Lipschitz IVFs, we present a few results on char-

acterizing efficient solutions to an interval optimization problem with upper Clarke

and Fréchet differentiable IVF. The entire study on these concepts is supported by

suitable illustrative examples.

Next, the notion of Hadamard semiderivative for IVFs is explained. In the presence

of directonal derivative, continuity and Lipschitz continuity of IVFs, a necessary

and sufficient condition for the existence of Hadamard semiderivative of IVFs are

derived. The relation of Hadamard semiderivative with directional derivative and

Gâteaux derivative for IVFs are shown. Further, the behavior of composition of two

Hadamard semidifferentiable IVFs and maximum of Hadamard semidifferentiable

IVFs are explained. Proposed semiderivative is observed to be useful to check the

convexity of an IVF and also helpful to find out the efficient points of IOPs. For

constraint IOPs, the Karush-Kuhn-Tucker sufficient condition to obtain efficient

solutions are derived. The entire study on Hadamard semiderivative for IVFs is

supported by suitable illustrative examples.

The Hadamard derivative for IVFs is studied subsequently. For an IVF, the relation

of Hadamard derivative with Fréchet derivative and continuity are shown. Further,

behavior of composition of two Hadamard differentiable IVFs and the maximum of

Hadamard differentiable IVFs are explained. The proposed derivative is observed

xx



to be useful to check the convexity of an IVF and also helpful to characterize the

efficient solutions of IOPs. For constraint IOPs, an extended Karush-Kuhn-Tucker

necessary and sufficient condition by using the proposed derivative is derived. The

entire study on Hadamard derivative for IVFs is supported by suitable illustrative

examples.

Next, the notions of upper and lower Dini semiderivatives, upper and lower Hadamard

semiderivatives for IVFs are studied. For an IVF, the relation of upper Dini semideriva-

tive and upper Hadamard semiderivative with directional derivative, Clarke deriva-

tive, Hadamard semiderivative and continuity are shown. Proposed semiderivative is

observed to be useful to characterize the efficient solutions of IOPs. The entire study

on these semiderivatives for IVFs is supported by suitable illustrative examples.
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