
Chapter 6

A robust adaptive numerical method

for nonlinear singularly perturbed

Volterra integro-differential equations

We consider following singularly perturbed nonlinear Volterra integro-differential

equation (VIDE)


T y := εy′ + f(x, y(x)) +

� x

0

R(x, s, y(s)) ds = 0, x ∈ G = (0, 1],

y(0) = B,

(6.1)

where B is a given constant and 0 < ε ≤ 1 is a perturbation parameter which in

general takes small values. The functions f and R are considered to be sufficiently

smooth in Ḡ×R and Ḡ× Ḡ×R, respectively. Moreover, there exists an α > 0 such

that ∂f
∂y
≥ α in Ḡ× R.

To the best of our knowledge, no published article derived a posteriori error estimate

for nonlinear singularly perturbed VIDEs, that is the motivation of this chapter.

We discretize problem (6.1) by an implicit finite difference scheme on an arbitrary

non-uniform mesh. The scheme comprises of an implicit difference operator for the

derivative term and an appropriate quadrature rule for the integral term. We derive

a posteriori error estimate in the maximum norm, which can be used with any

adaptive moving mesh procedure. We used a variant of de Boor algorithm [54, 115]

for this purpose. Numerical experiments are performed and results are reported for

validation of the theoretical error estimate.
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This chapter is organized as follows: The next section, provides the stability result

for the continuous problem (6.1). In Section 6.2, a finite difference discretization

of problem (6.1) is described. A posteriori error estimate is derived in Section 6.3.

In Section 6.4, we provide numerical results for validation of the theoretical error

estimate. Finally, some conclusions are given in Section 6.5.

6.1 Stability of the continuous problem

This section provides the stability result for the continuous problem (6.1). It is used

later in a posteriori error analysis of the present numerical scheme for problem (6.1).

Lemma 6.1.1. The solution y of (6.1) satisfies the following stability estimate

‖y‖Ḡ ≤ (|B|+ α−1‖F‖G), where F (x) = −f(x, 0)−
� x

0

R(x, s, 0) ds. (6.2)

Further, if y1 and y2 are any two functions such that y1(0) = y2(0) and

T y1 − T y2 = T,

where T is a bounded piecewise continuous function. Then

‖y1 − y2‖Ḡ ≤ C‖T y1 − T y2‖G. (6.3)

Proof. We rewrite problem (6.1) as follows


T̃ y := εy′ + r(x)y(x) +

� x

0

K(x, s)y(s) ds = F (x), x ∈ G = (0, 1],

y(0) = B,

(6.4)
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where

r(x) =
∂f

∂y
(x, ỹ(x)),

K(x, s) =
∂R

∂y
(x, s, ŷ(s)), ỹ(x) = θy(x), ŷ(s) = γy(s), 0 < θ, γ < 1.

Now we can use the arguments in [109] to establish (6.2). For proving (6.3), we note

that T y1 − T y2 = T̃ (y1 − y2), where T̃ is defined by (6.4) with

r(x) =
∂f

∂y
(x, ȳ(x)), K(x, s) =

∂R

∂y
(x, s, y̆(s)), ȳ(x) = y2(x) + θ(y1(x)− y2(x)),

y̆(s) = y2(s) + γ(y1(s)− y2(s)), 0 < θ, γ < 1.

Thus, (6.3) follows using (6.2).

6.2 The discretization and its stability

We consider an arbitrary non-uniform mesh GN = {0 < x1 < · · · < xN = 1} to

discretize G. We define ḠN = {x0 = 0} ∪ GN and hi = xi − xi−1, 1 ≤ i ≤ N .

Further, we define D−Vi := Vi−Vi−1

hi
, for any mesh function V. Now integrating (6.1)

over (xi−1, xi), we get

h−1
i

� xi

xi−1

T y dx = 0. (6.5)

Using (6.1) and the right side rectangle formula we get

εD−y(xi) + f(xi, y(xi)) +

� xi

0

R(xi, s, y(s)) ds+K(1)
i +K(2)

i = 0, (6.6)

where

K(1)
i = −h−1

i

� xi

xi−1

(ζ − xi−1)
d

dζ
f(ζ, y(ζ)) dζ
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and

K(2)
i = −h−1

i

� xi

xi−1

(ζ − xi−1)
d

dζ

(� ζ

0

R(ζ, s, y(s)) ds

)
dζ.

We next approximate the integral term by the composite left side rectangle formula

� xi

0

R(xi, s, y(s)) ds =
i∑

m=1

hmR(xi, xm−1, y(xm−1)) +K(3)
i ,

where

K(3)
i =

i∑
m=1

� xm

xm−1

(xm − ζ)
d

dζ
R(xi, ζ, y(ζ)) dζ.

On combining the approximations we have the relation

εD−y(xi) +f(xi, y(xi)) +
i∑

m=1

hmR(xi, xm−1, y(xm−1)) +Ki = 0, i = 1, . . . , N, (6.7)

where

Ki = K(1)
i +K(2)

i +K(3)
i

= −h−1
i

� xi

xi−1

(ζ − xi−1)
d

dζ
f(ζ, y(ζ)) dζ

− h−1
i

� xi

xi−1

(ζ − xi−1)
d

dζ

(� ζ

0

R(ζ, s, y(s)) ds

)
dζ

+
i∑

m=1

� xm

xm−1

(xm − ζ)
d

dζ
R(xi, ζ, y(ζ)) dζ. (6.8)

Hence, the discretization of problem (6.1) is proposed as follows


εD−Yi + f(xi, Yi) +

i∑
m=1

hmR(xi, xm−1, Ym−1) = 0, i = 1, . . . , N,

Y0 = B.

(6.9)

Remark 6.2.1. We remark that the authors in [109] used the composite trapezoid

rule to approximate the integral term in (6.6). The scheme was proved to be almost
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first order accurate on Shishkin meshes. According to us to get almost first order

accuracy it is not meaningful to use the composite trapezoid rule. Consequently,

we have used the composite left side rectangle formula to approximate the integral

term in (6.6). However, one can also use the composite right side rectangle formula

to approximate the integral. The discrete problem then will be as follows


εD−Yi + f(xi, Yi) +

i∑
m=1

hmR(xi, xm, Ym) = 0, i = 1, . . . , N,

Y0 = B.

(6.10)

The use of composite right side rectangle formula does not make any difference to

the further analysis and numerical results, but the condition α+ hi
∂R
∂y

(xi, xi, γYi) ≥

α0 > 0, 0 < γ < 1, is required for the proof of stability of the discretization (6.10).

A parallel error analysis can be easily done and a similar error estimate can be

obtained for scheme (6.10). Therefore, in rest of this chapter we shall be concerned

with the numerical scheme (6.9) only.

We next establish that the discrete problem (6.9) is parameter-uniform stable. The

following lemma will be used in the proof.

Lemma 6.2.1. Consider the discrete problem


Dhvi := εD−vi + rivi = Qi, i = 1, . . . , N,

v0 = B,

(6.11)

where ri ≥ α > 0, |Qi| ≤ Qi with Qi a non-decreasing function. Then, the solution

of (6.11) satisfies

|vi| ≤ |B|+ α−1Qi, i = 0, . . . , N.
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Proof. It is easy to see that the operator Dh satisfies the discrete maximum principle.

So, considering the mesh function

Ψ±i = ±vi + |B|+ α−1Qi,

we note that

Ψ±0 = ±v0 + |B|+ α−1Q0 = ±B + |B|+ α−1Q0 ≥ 0

and

DhΨ±i = ±Dhvi +Dh(|B|+ α−1Qi)

≥ ±Qi + riα
−1Qi ≥ ±Qi +Qi ≥ 0,

where we have used D−Qi ≥ 0 (as Qi is a non-decreasing function). Thus, by using

the maximum principle for Dh, we get, Ψ±i ≥ 0, i.e.

|vi| ≤ |B|+ α−1Qi, i = 0, . . . , N.

Lemma 6.2.2. The solution Y of the discrete problem (6.9) satisfies

||Y ||ḠN ≤ C(|B|+ ‖F‖GN ), where Fi = f(xi, 0) +
i∑

m=1

hmR(xi, xm−1, 0).

Proof. We rewrite the discrete problem (6.9) as follows

εD−Yi + riYi = Qi, i = 1, . . . , N, Y0 = B
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with

ri =
∂f

∂y
(xi, Ỹi), Qi = −Fi −

i∑
m=1

hm
∂R

∂y
(xi, xm−1, Ŷm−1)Ym−1,

Ỹi = θYi, Ŷm = γYm, 0 < θ, γ < 1.

Now

|Qi| ≤ |Fi|+
i∑

m=1

hm

∣∣∣∣∂R∂y (xi, xm−1, Ŷm−1)

∣∣∣∣ |Ym−1|

≤ ‖F‖GN +
i∑

m=1

hmΛ|Ym−1|,

where Λ = max |∂R
∂y
|. Thus, applying Lemma 6.2.1, we get

|Yi| ≤ |B|+ α−1‖F‖GN + α−1

i∑
m=1

hmΛ|Ym−1|.

So, applying the discrete analogue of Gronwall’s inequality [134], we get

||Y ||ḠN ≤ (|B|+ α−1‖F‖GN )eα
−1Λ.

Hence, the lemma is proved.

6.3 Error analysis

In this section we derive a posteriori error estimate for the discrete problem (6.9).

Suppose Ỹ is the piecewise linear interpolant of the numerical solution {Yi}, so that

Ỹ is continuous on G, linear on each [xi−1, xi], and Ỹ (xi) = Yi, 0 ≤ i ≤ N. Further,
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for x ∈ (xi−1, xi), we have

Ỹ (x) = Yi + (x− xi)D−Yi and Ỹ (x) = Yi−1 + (x− xi−1)D−Yi.

Theorem 6.3.1. Suppose y is the solution of (6.1), Y is the solution of (6.9) on an

arbitrary mesh {xi}, and Ỹ is its piecewise linear interpolant. Then

‖Ỹ − y‖Ḡ ≤ C max
1≤i≤N

hi
{

1 + |D−Yi|+ hi|D−Yi|2
}
.

Proof. Using (6.1) we get

T Ỹ (x)− T y(x) = ε(Ỹ (x))′ + f(x, Ỹ (x)) +

� x

0

R(x, s, Ỹ (s))ds.

Note that (Ỹ (x))′ = D−Yi, x ∈ (xi−1, xi), 1 ≤ i ≤ N. We define auxiliary functions

p and q by p(x) := f(x, Ỹ (x)) and q(x, s) := R(x, s, Ỹ (s)), respectively. Suppose p̃ is

the piecewise linear interpolant of p on ḠN . Further, suppose q̃ is the piecewise linear

interpolant of q in s variable on ḠN . Note that p(xi) = f(xi, Yi) and q(xi, xm−1) =

R(xi, xm−1, Ym−1). Also, for x ∈ (xi−1, xi) and s ∈ (xm−1, xm), we have

p̃(x) = p(xi)+(x−xi)D−p(xi) and q̃(x, s) = q(x, xm−1)+(s−xm−1)D−q(x, xm).

Using these auxiliary functions and their interpolants, for x ∈ (xi−1, xi), we have

T Ỹ (x)− T y(x) = ε(Ỹ (x))′ + p(x) +

� x

0

q(x, s) ds

= ε(Ỹ (x))′ + p̃(x) + (p(x)− p̃(x))

+

� x

0

(
q̃(x, s) +

(
q(x, s)− q̃(x, s)

))
ds

= εD−Yi +
(
p(xi) + (x− xi)D−p(xi)

)
+
(
p(x)− p̃(x)

)
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+
i−1∑
m=1

� xm

xm−1

[
q(x, xm−1) + (s− xm−1)D−q(x, xm)

]
ds

+

� x

xi−1

[
q(x, xi−1) + (s− xi−1)D−q(x, xi)

]
ds+

� x

0

(
q(x, s)

− q̃(x, s)
)
ds+

i∑
m=1

hmq(xi, xm−1)−
i∑

m=1

hmq(xi, xm−1)

= (x− xi)D−p(xi) +
(
p(x)− p̃(x)

)
+

i∑
m=1

hm
(
q(x, xm−1)− q(xi, xm−1)

)
+

i−1∑
m=1

� xm

xm−1

(s− xm−1)D−q(x, xm) ds+

� x

xi−1

(s− xi−1)D−q(x, xi) ds

+

� x

0

(q(x, s)− q̃(x, s)) ds+ (x− xi−1)q(x, xi−1). (6.12)

Now we estimate separately each of the terms in (6.12). Using the standard inter-

polation error estimate, for x ∈ (xi−1, xi), we have

|p(x)− p̃(x)| ≤

{
h2
i

8
sup

(xi−1,xi)

|p′′(x)|

}
,

where

p′′(x) = fxx(x, Ỹ (x)) + 2(Ỹ (x))′fxy(x, Ỹ (x)) + [(Ỹ (x))′]2fyy(x, Ỹ (x)).

Therefore, for x ∈ (xi−1, xi), we have

|p(x)− p̃(x)| ≤ Ch2
i

(
1 + |D−Yi|+ |D−Yi|2

)
. (6.13)

Similarly, for x ∈ (xi−1, xi) and s ∈ (xm−1, xm), m = 1, 2 . . . , i, we have

|q(x, s)− q̃(x, s)| ≤ Ch2
m

(
1 + |D−Ym|+ |D−Ym|2

)
.
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Consequently,

∣∣∣∣� x

0

(q(x, s)− q̃(x, s)) ds
∣∣∣∣ ≤ i−1∑

m=1

� xm

xm−1

|q(x, s)− q̃(x, s)| ds

+

� x

xi−1

|q(x, s)− q̃(x, s)| ds

≤ C max
1≤m≤i

{
h2
m

(
1 + |D−Ym|+ |D−Ym|2

)}
×

(
i−1∑
m=1

� xm

xm−1

ds+

� x

xi−1

ds

)

≤ C max
1≤m≤i

{
h2
m

(
1 + |D−Ym|+ |D−Ym|2

)}
. (6.14)

Also,

|D−p(xi)| =

∣∣∣∣∣f(xi, Ỹ (xi))− f(xi−1, Ỹ (xi−1))

hi

∣∣∣∣∣
=

∣∣∣∣∣f(xi, Ỹ (xi))− f(xi−1, Ỹ (xi)) + f(xi−1, Ỹ (xi))− f(xi−1, Ỹ (xi−1))

hi

∣∣∣∣∣
≤
∣∣∣∣∂f∂x (ξ

(1)
i , Ỹ (xi))

∣∣∣∣+

∣∣∣∣∂f∂y (xi−1, σ
(1)
i )

∣∣∣∣ |D−Yi|, (6.15)

where ξ
(1)
i ∈ (xi−1, xi) and σ

(1)
i ∈ (Ỹ (xi−1), Ỹ (xi)). Thus, we get

|D−p(xi)| ≤ C(1 + |D−Yi|). (6.16)

Using similar calculations we get

|D−q(x, xm)| ≤
∣∣∣∣∂R∂s (x, ξ(2)

m , Ỹ (xm))

∣∣∣∣+

∣∣∣∣∂R∂y (x, xm, σ
(2)
m )

∣∣∣∣ |D−Ym|,
where ξ

(2)
m ∈ (xm−1, xm) and σ

(2)
m ∈ (Ỹ (xm−1), Ỹ (xm)). Thus, we get

|D−q(x, xm)| ≤ C(1 + |D−Ym|). (6.17)
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Now

∣∣∣∣∣
i−1∑
m=1

� xm

xm−1

(s− xm−1)D−q(x, xm) ds

∣∣∣∣∣+

∣∣∣∣� x

xi−1

(s− xi−1)D−q(x, xi) ds

∣∣∣∣
≤

i−1∑
m=1

hm|D−q(x, xm)|
� xm

xm−1

ds+ hi|D−q(x, xi)|
� x

xi−1

ds

≤ max
1≤m≤i

hm|D−q(x, xm)|

(
i−1∑
m=1

� xm

xm−1

ds+

� x

xi−1

ds

)
≤ C max

1≤m≤i
hm(1 + |D−Ym|), (6.18)

i∑
m=1

hm
∣∣q(x, xm−1)− q(xi, xm−1))

∣∣ ≤ Chi and |(x− xi−1)q(x, xi−1)| ≤ Chi. (6.19)

Now using all these estimates from (6.13)-(6.19) in (6.12), we obtain

‖T Ỹ − T y‖G ≤ C max
1≤i≤N

hi
{

1 + |D−Yi|+ hi|D−Yi|2
}
. (6.20)

Hence, from Lemma 6.1.1, we get the desired a posteriori error estimate.

6.4 Numerical experiments

We consider the following test problem

 εy′ + y3 + 3y +
� x

0
y2(s) ds = e−

3x
ε − 1

2
εe−

2x
ε + 2e−

x
ε + ε

2
, x ∈ (0, 1],

y(0) = 1.
(6.21)

The exact solution of the test problem is given by y(x) = e−
x
ε . The quasilinearization

technique for nonlinear problems is a Newton like method which gives an iterative
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scheme [109, 135] for the discrete problem (6.9) as follows


Y

(r)
i =

PiY
(r)
i−1−f(xi,Y

(r−1)
i )− ∂f

∂y
(xi,Y

(r−1)
i )Y

(r−1)
i −Ai

Pi+
∂f
∂y

(xi,Y
(r−1)
i )

, i = 1, . . . , N,

Y
(r)

0 = B,

(6.22)

where Y
(0)
i is given and

Pi = ε/hi,

Ai =
i∑

k=1

hkR(xi, xk−1, Y
(r)
k−1). (6.23)

We use the condition

max
i

∣∣∣Y (r)
i − Y (r−1)

i

∣∣∣ ≤ 10−5,

as the stopping criterion and Y
(0)
i = 0 as the initial iteration for the iterative scheme.

We consider adaptive mesh generation algorithm originally proposed by de Boor

[136]. In literature, it has been utilized for several classes of singularly perturbed

problems (see [61, 62, 107, 115, 137, 138] and the references therein). The con-

vergence of the algorithm is studied in [71] for singularly perturbed problems and

in [116] for regular boundary value problems. Starting with a uniform mesh the

algorithm constructs a mesh that solves the equidistribution problem

hiψi =
1

N

N∑
j=1

ψjhj, 1 ≤ i ≤ N, (6.24)

where ψ is the monitor function. For our problem, ψi = 1 + |D−Yi| + hi|D−Yi|2,

as suggested by Theorem 6.3.1. It was pointed out in [71] that it is not necessary

to enforce (6.24) strictly. It is sufficient to stop the algorithm when the following
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weakened equidistribution principle

hiψi ≤
C0

N

N∑
j=1

ψjhj, 1 ≤ i ≤ N, (6.25)

is satisfied for some constant C0 > 1.

Algorithm 5: Numerical algorithm for the adaptive mesh and adaptive solution

Input: N ∈ N, 0 < ε ≤ 1 and C0 = 1.1.
Output: Equidistribution mesh {xi} and the solution Yi.

1. Define the initial iteration of the adaptive mesh (k = 0) as a uniform mesh

x
(0)
i = i/N, i = 0, . . . , N .

2. Calculate Y
(k)
i solving the discrete problem (6.9) on the mesh {x(k)

i }.

3. Set h
(k)
i = x

(k)
i − x

(k)
i−1 and evaluate the discretized monitor function

ψ
(k)
i , for i = 1, . . . , N . Compute Ψ

(k)
i =

i∑
j=1

h
(k)
j ψ

(k)
j .

4. Check for the stopping criterion; if max
1≤i≤N

h
(k)
i ψ

(k)
i ≤ C0

Ψ
(k)
N

N
holds, go to Step

6, else continue with next step.

5. Set Zi = iΨN
N

for i = 0, . . . , N . Generate a new mesh {x(k+1)
i } by

interpolating the points (Ψk
i , x

k
i ) and evaluating this interpolant at Zi,

i = 0, 1, . . . , N . Return to Step 2 setting k = k + 1.

6. Take {x(k)
i } as the final adaptive mesh and Y

(k)
i as the adaptive solution.

Stop.

Now we shall apply the proposed method on the test problem (6.21) and discuss

the numerical observations in the form of tables and figures. The numerical solution

obtained on the adaptive mesh is compared with the exact solution for two different

values of ε in Figure 6.1, which also confirms the presence of a boundary layer near

x = 0. We compute the solutions for the set Eε = {10−1, 10−2, ..., 10−7} of values

of ε and using different values of the discretization parameter N . The maximum
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Figure 6.1: Comparison of the exact and numerical solutions obtained using
proposed method with N = 64.

pointwise errors and corresponding rates of convergence are calculated by

Eε,N = max
1≤i≤N

∣∣∣Y ε,N
i − yε,Ni

∣∣∣ , F ε,N = log2 (Eε,N/Eε,2N).

Parameter-robust errors and rates of convergence are computed as follows

EN = max
ε
{Eε,N}, FN = log2 (EN/E2N).

In Table 6.1, the results are given on the mesh generated using the proposed al-

gorithm. Tables 6.2 and 6.3 show the results on Shishkin and Bakvalov meshes,

respectively. The experimentally obtained errors and convergence rates in Table
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Table 6.1: Errors FN
ε and FN , and convergence rates %Nε and %N using the

proposed method.

ε = 10−r N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048
r = 1 7.6288e-03 3.8598e-03 1.9535e-03 9.8294e-04 4.9301e-04 2.4689e-04 1.2354e-04

0.9886 0.9825 0.9909 0.9955 0.9977 0.9989
r = 2 8.8662e-03 4.6227e-03 2.3514e-03 1.1873e-03 5.8714e-04 2.9690e-04 1.4924e-04

0.9396 0.9752 0.9858 1.0159 0.9837 0.9923
r = 3 9.1101e-03 4.7863e-03 2.4622e-03 1.2483e-03 6.3252e-04 3.1732e-04 1.5908e-04

0.9285 0.9590 0.9800 0.9808 0.9952 0.9962
r = 4 9.1352e-03 4.5723e-03 2.4789e-03 1.2625e-03 6.3824e-04 3.2124e-04 1.6124e-04

0.9985 0.8832 0.9734 0.9841 0.9905 0.9944
r = 5 9.1385e-03 4.8102e-03 2.3495e-03 1.2637e-03 6.3907e-04 3.2177e-04 1.6157e-04

0.9926 1.0338 0.8947 0.9836 0.9899 0.9939
r = 6 9.1381e-03 4.8110e-03 2.4804e-03 1.1964e-03 6.3916e-04 3.2182e-04 1.6161e-04

0.9256 0.9558 1.0518 0.9045 0.9899 0.9938
r = 7 9.1502e-03 4.8109e-03 2.4892e-03 1.2638e-03 6.3919e-04 3.2183e-04 1.6161e-04

0.9275 0.9506 0.9779 0.9835 0.9899 0.9938
FN 9.1502e-03 4.8109e-03 2.4892e-03 1.2638e-03 6.3919e-04 3.2183e-04 1.6161e-04
%N 0.9275 0.9506 0.9779 0.9835 0.9899 0.9938

Table 6.2: Errors FN
ε and FN , and convergence rates %Nε and %N using Shishkin

mesh.

ε = 10−r N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048
r = 1 1.5734e-02 9.6739e-03 5.7331e-03 2.9809e-03 1.4979e-03 7.5086e-04 3.7591e-04

0.7017 0.7548 0.9435 0.9928 0.9964 0.9982
r = 2 1.4715e-02 9.0424e-03 5.3571e-03 3.0921e-03 1.7502e-03 9.7587e-04 5.3785e-04

0.7025 0.7553 0.7929 0.8210 0.8428 0.8595
r = 3 1.4612e-02 8.9788e-03 5.3219e-03 3.0717e-03 1.7391e-03 9.6988e-04 5.3457e-04

0.7026 0.7546 0.7929 0.8207 0.8425 0.8594
r = 4 1.4602e-02 8.9724e-03 5.3183e-03 3.0697e-03 1.7380e-03 9.6928e-04 5.3424e-04

0.7026 0.7545 0.7929 0.8206 0.8425 0.8594
r = 5 1.4601e-02 8.9718e-03 5.3180e-03 3.0694e-03 1.7379e-03 9.6922e-04 5.3421e-04

0.7026 0.7545 0.7929 0.8206 0.8425 0.8594
r = 6 1.4601e-02 8.9717e-03 5.3179e-03 3.0694e-03 1.7379e-03 9.6921e-04 5.3421e-04

0.7026 0.7545 0.7929 0.8206 0.8425 0.8594
r = 7 1.4601e-02 8.9717e-03 5.3179e-03 3.0694e-03 1.7379e-03 9.6921e-04 5.3421e-04

0.7026 0.7545 0.7929 0.8206 0.8425 0.8594
FN 1.4601e-02 8.9717e-03 5.3179e-03 3.0694e-03 1.7379e-03 9.6921e-04 5.3421e-04
%N 0.7026 0.7545 0.7929 0.8206 0.8425 0.8594

6.1 clearly confirms the optimal first order parameter-robust convergence of the pro-

posed method. A comparison of the results is given in Table 6.4. In addition, log-log

graphs of the maximum pointwise errors are plotted (in Figure 6.2) for each mesh

with two different values of ε. The slopes of these plots matches with the slopes of

the theoretical order plots, which again authenticates our theoretical findings. One
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Table 6.3: Errors FN
ε and FN , and convergence rates %Nε and %N using

Bakhvalov mesh.

ε = 10−r N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048
r = 1 9.6826e-03 5.0027e-03 2.5462e-03 1.2850e-03 6.4553e-04 3.2354e-04 1.6196e-04

0.9527 0.9744 0.9866 0.9932 0.9966 0.9983
r = 2 9.4011e-03 4.8938e-03 2.5095e-03 1.2743e-03 6.4341e-04 3.2372e-04 1.6250e-04

0.9419 0.9636 0.9777 0.9859 0.9910 0.9943
r = 3 9.3859e-03 4.8786e-03 2.4987e-03 1.2689e-03 6.4064e-04 3.2229e-04 1.6177e-04

0.9440 0.9653 0.9775 0.9860 0.9912 0.9944
r = 4 9.3838e-03 4.8770e-03 2.4973e-03 1.2684e-03 6.4035e-04 3.2214e-04 1.6170e-04

0.9442 0.9656 0.9774 0.9861 0.9912 0.9944
r = 5 9.3836e-03 4.8768e-03 2.4972e-03 1.2683e-03 6.4032e-04 3.2213e-04 1.6169e-04

0.9442 0.9656 0.9774 0.9861 0.9912 0.9944
r = 6 9.3836e-03 4.8768e-03 2.4972e-03 1.2683e-03 6.4031e-04 3.2213e-04 1.6169e-04

0.9442 0.9656 0.9774 0.9861 0.9912 0.9944
r = 7 9.3836e-03 4.8768e-03 2.4972e-03 1.2683e-03 6.4031e-04 3.2213e-04 1.6169e-04

0.9442 0.9656 0.9774 0.9861 0.9912 0.9944
FN 9.3836e-03 4.8768e-03 2.4972e-03 1.2683e-03 6.4031e-04 3.2213e-04 1.6169e-04
%N 0.9442 0.9656 0.9774 0.9861 0.9912 0.9944

Table 6.4: Parameter-uniform errors FN and parameter-uniform convergence
rates %N using scheme (6.9) on various meshes.

Mesh N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048
FN 4.8109e-03 2.4892e-03 1.2638e-03 6.3919e-04 3.2183e-04 1.6161e-04

A posteriori mesh %N 0.9506 0.9779 0.9835 0.9899 0.9938

FN 8.9717e-03 5.3179e-03 3.0694e-03 1.7379e-03 9.6921e-04 5.3421e-04
Shishkin mesh %,N 0.7545 0.7929 0.8206 0.8425 0.8594

FN 4.8768e-03 2.4972e-03 1.2683e-03 6.4031e-04 3.2213e-04 1.6169e-04
Bakhvalov mesh %N 0.9656 0.9774 0.9861 0.9912 0.9944

Table 6.5: Maximum errors FN
ε , convergence rates %Nε , and the number of

iterations k taking ε = 2−10 and using different values of C0 in the algorithm.

C0 N = 64 N = 128 N = 256 N = 512 N = 1024 N = 2048
FN
ε 4.6827e-03 2.4396e-03 1.2467e-03 6.3188e-04 3.1696e-04 1.5153e-04

C0 = 1.15 %Nε 0.9407 0.9685 0.9804 0.9954 1.0647
k 3 3 3 3 3 2
FN
ε 4.6827e-03 2.4396e-03 1.3907e-03 5.6301e-04 2.8688e-04 1.5153e-04

C0 = 1.5 %Nε 0.9407 0.8109 1.3046 0.9727 0.9208
k 3 3 2 2 2 2
FN
ε 4.6827e-03 3.4833e-03 1.3907e-03 5.6301e-04 2.8688e-04 1.5153e-04

C0 = 2.0 %Nε 0.4269 1.3247 1.3046 0.9727 0.9208
k 3 2 2 2 2 2
FN
ε 8.5563e-03 3.4833e-03 1.3907e-03 5.6301e-04 2.8688e-04 1.5153e-04

C0 = 3.0 %Nε 1.2965 1.3247 1.3046 0.9727 0.9208
k 2 2 2 2 2 2
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Figure 6.2: Log-log plots of maximum pointwise errors vs N for ε = 10−2 and
ε = 10−5.
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Figure 6.3: Mesh trajectory and final position mesh points for N = 64 and
ε = 2−10.

can observe that the errors are larger for Shishkin meshes than on Bakhvalov and

adaptively generated meshes, as seen with the theory as well. Further, the errors

are similar on Bakhvalov meshes and adaptively generated meshes. However, the

construction of Bakhvalov meshes requires a priori information about the location

and width of the layers. Whereas, with the current method no a priori information

is required for the solution.

To show the adaptive nature of the proposed mesh generation, in Figure 6.3, we have

given the mesh trajectory as the algorithm moves with the iterations and the final

mesh points position. The mesh points are condensing towards the left boundary
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and finally adapts the solution behaviour by itself. This confirms the adaptivity

of the generated mesh. Further, to show the influence of the value of C0, in Table

6.5, we give the maximum pointwise errors, rates of convergence and the number

of iterations the mesh generation algorithm takes before satisfying the stopping

criterion for different values of C0. From this table we can observe that as we choose

the values C0 close to 1 the number of iterations is more but the solutions are more

accurate. However, we can conclude that the numerical solution converges after few

iterations.

6.5 Conclusions

A nonlinear singularly perturbed VIDE is considered. The discretization of the

problem is done on an arbitrary non-uniform mesh by an implicit finite difference

scheme which comprises of an implicit difference operator for the derivative term

and an appropriate quadrature rule for the integral term. We derived a posteriori

error estimate in the maximum norm for the scheme that holds true uniformly in ε.

Numerical experiments are performed and results are reported for validation of the

theoretical error estimates.

***********


