
Chapter 5

A high order robust adaptive nu-

merical method for singularly per-

turbed parabolic reaction-diffusion

problems

Singularly perturbed parabolic reaction-diffusion problems are a frequently studied

class in literature. However, from the literature review we notice that the parameter-

robust convergence of high order on layer-adaptive equidistributed meshes is missing.

To fill this gap, in this chapter, we present an adaptive numerical method with

parameter-robust convergence of order four in space and of order one in time.

Let the domain be Ḡ = G ∪ ∂G, where G := Gx × (0, T ] with Gx = (0, 1). Suppose

∂G = Γb ∪ Γr ∪ Γl with Γb = [0, 1]×{0}, Γl = {0} × (0, T ], and Γr = {1} × (0, T ].

On this domain we define the model problem as follows


Ly := ∂y

∂t
+ Lεy = f for (x, t) ∈ G,

y(x, 0) = ρ(x) for x ∈ Ḡx,

y(0, t) = y(1, t) = 0 for t ∈ (0, T ],

(5.1)

where

Lεy := −ε∂
2y

∂x2
+ by,
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0 < ε� 1 is the perturbation parameter, functions b and f are sufficiently smooth

satisfying 0 < β ≤ b(x), x ∈ Ḡx. Under these sufficient smoothness and compatibil-

ity conditions, problem (5.1) has a unique solution [5, 34]. Moreover, we have the

following bounds [132]

∣∣∣∣ ∂p+sy∂xp∂ts
(x, t)

∣∣∣∣ ≤ C
(

1 + ε−
p
2

(
e−x
√

β
ε + e−(1−x)

√
β
ε

))
, 0 ≤ p+ 2s ≤ 6, p, s ∈ N0.

(5.2)

In this chapter, we propose a high order adaptive numerical method combining the

implicit Euler scheme in time and a non-monotone finite difference scheme in space.

We construct the adaptive mesh in space using equidistribution of the monitor func-

tion, and a uniform mesh in time. We use two-step discretization of the continuous

problem, in which firstly the problem is discretized in time on a uniform mesh us-

ing the implicit Euler method to get the linear stationary differential equations in

space. Then in the second step these equations are discretized on the non-uniform

equidistribution mesh using a non-monotone finite difference scheme. This two-step

discretization technique helps us to analyse the error contribution of time and space

discretizations separately. The method is proved to be convergent of order one in

time and four in space. Further, we use the Richardson extrapolation technique to

improve the order of convergence in time from one to two. At the end, the method

is implemented on three test examples to validate the theoretical result.

This chapter is organized as follows: In Section 5.1, we consider the time semidis-

cretization of (5.1). In Section 5.2, the construction of layer-adaptive equidistribu-

tion mesh is discussed. Section 5.3 is devoted to the spatial discretization of the time

semidiscretized problem. In Section 5.4, the totally discrete scheme is given and the

convergence results are combined for both time and space discretizations. Numerical

results are given for three test problems in Section 5.5. Section 5.6 concludes the

main outcomes of the chapter.
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5.1 The time semidiscretization

We consider a uniform mesh in time defined by {tn = n∆t, n = 0, ...,M} with time-

step ∆t = T
M

and discretize the differential equation in problem (5.1) in time using

implicit Euler scheme as follows

yn+1(x)− yn(x)

∆t
+ Lεyn+1(x) = f(x, tn+1). (5.3)

Thus, we can rewrite (5.1) as a system of ordinary differential equations in space

variable x for each time level tn+1, n = 0, ...,M − 1, as



y0(x) = ρ(x),

For n = 0, . . . ,M − 1, (I + ∆tLε)yn+1(x) = yn(x) + ∆tf(x, tn+1), x ∈ Gx,

yn+1(0) = 0, yn+1(1) = 0,

(5.4)

where I is the identity operator. Its solution gives the semidiscrete approximation

yn+1(x) to the exact solution y(x, t) of (5.1) at the time level tn+1, n = 0, ...,M − 1.

Now for the operator (I + ∆tLε), we have

∥∥(I + ∆tLε)−1
∥∥
Ḡx
≤ 1

1 + β∆t
. (5.5)

It follows that the semidiscrete scheme satisfies a discrete maximum principle; thus

ensuring the stability of the semidiscrete problem (5.4). Now, for the semidiscrete

problem (5.4), we define the local truncation error en+1 = y(x, tn+1)− ŷn+1(x), with
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ŷn+1(x) being the solution of the auxiliary problem

 (I + ∆tLε)ŷn+1(x) = y(x, tn) + ∆tf(x, tn+1),

ŷn+1(0) = 0, ŷn+1(1) = 0.
(5.6)

Lemma 5.1.1. If ∣∣∣∣∂py(x, t)

∂tp

∣∣∣∣ ≤ C, (x, t) ∈ Ḡ, 0 ≤ p ≤ 2,

then the local error satisfies

‖en+1‖Ḡx ≤ C∆t2.

Proof. From the above equation (5.6), we have

(I + ∆tLε)ŷn+1(x)−∆tf(x, tn+1) = y(x, tn).

Since the solution y of (5.1) is sufficiently smooth, we have

y(x, tn) = y(x, tn+1) + ∆tLεy(x, tn+1)−∆tf(x, tn+1) +

� tn+1

tn

(tn − s)
∂2y(x, s)

∂t2
ds

= (I + ∆tLε)y(x, tn+1)−∆tf(x, tn+1) +O(∆t2).

Therefore, the local error en+1 satisfies

(I + ∆tLε)en+1 = O(∆t2),

en+1(0) = en+1(1) = 0.

Now the required result follows using (5.5).
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To prove the uniform convergence of (5.4), we define the global error En = y(x, tn)−

yn(x) associated with (5.4). Hence, En = en + REn−1, where R ≡ (I + ∆tLε)−1 is

defined as follows: REn−1 is obtained with one step of (5.4) taking yn = En−1 and

f to be zero. Thus, we get

En =
n∑
i=1

Rn−iei.

Using the stability estimate (5.5), the transition operator R satisfies

‖Ri‖Ḡx ≤ C, i = 1, . . . , n. (5.7)

Thus, we have the following lemma.

Lemma 5.1.2. The global error satisfies

sup
n∆t≤T

‖En‖Ḡx ≤ C∆t.

Next, we recall the solution estimates for the semidiscrete problem (5.6) that we shall

require for the error analysis of the spatial discretization in the upcoming sections

∣∣∣∣dpŷn+1(x)

dxp

∣∣∣∣ ≤ C
(

1 + ε−
p
2

(
e−x
√

β
ε + e−(1−x)

√
β
ε

))
, 0 ≤ p ≤ 6. (5.8)

Also, the solution of the semidiscrete problem is decomposed as the regular and

singular components [85]:

ŷn+1(x) = v̂n+1(x) + ŵn+1(x). (5.9)

These components satisfy the following bounds

∣∣∣∣dpv̂n+1(x)

dxp

∣∣∣∣ ≤ C(1 + ε
4−p
2 ), 0 ≤ p ≤ 6, (5.10)



Chapter 5. A high order robust adaptive numerical method for singularly perturbed
parabolic reaction-diffusion problems 106

and

∣∣∣∣dpŵn+1(x)

dxp

∣∣∣∣ ≤ Ce−
p
2

(
e−x
√

β
ε + e−(1−x)

√
β
ε

)
, 0 ≤ p ≤ 6, x ∈ Ḡx. (5.11)

5.2 Mesh equidistribution

We generate the layer-adaptive equidistributed mesh with the help of a monitor

function. We choose a monitor function that involves the derivatives of the singular

component of the solution. Also, we notice from (5.2), that the width and location

of the boundary layers do not change in the time direction. Therefore, it is suitable

to generate the adaptive mesh at some fixed time level 0 ≤ t? ≤ T, and use it for all

the time levels. We consider

M(y(x, t?), x) = α? +

∣∣∣∣∂2w

∂x2
(x, t?)

∣∣∣∣1/4, (5.12)

where the positive constant α? is chosen so that some mesh points are assured

external to boundary layer regions. A spatial mesh ḠN
x := {0 = x0 < x1 < · · · <

xN = 1} is said to equidistribute the monitor function M(y(x, t?), x) if

� xi

xi−1

M(y(x, t?), x)dx =

� xi+1

xi

M(y(x, t?), x)dx, 1 ≤ i ≤ N − 1.

Alternatively, mesh equidistribution can be seen as a mapping defined from the

computational coordinates ζ ∈ [0, 1] to the physical coordinates x ∈ [0, 1] given by

� x(ζ)

0

M(y(x, t?), x)dx = ζ

� 1

0

M(y(x, t?), x)dx. (5.13)
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For the analysis purpose we approximate the second order derivative of w from (5.11)

as

∂2w

∂x2
(x, t?) ≈


χ1

ε
e−x
√

β
ε , x ∈ [0, 1/2],

χ2

ε
e−(1−x)

√
β
ε , x ∈ (1/2, 1],

where χ1 and χ2 are constants, independent of ε and x. Hence,

� 1

0

∣∣∣∣∂2w

∂x2
(x, t?)

∣∣∣∣1/4dx ≡ K ≈ 4ε1/4

[
|χ1|1/4 + |χ2|1/4

β1/4

]
.

Using the approximate value of ∂2w
∂x2

(x, t?), equidistribution of (5.12), for x(ξ) ≤ 1
2

gives

ζ(
α?
K

+ 1) =
α?
K
x(ζ) + λ1(1− e−

x(ζ)
4

√
β
ε ), (5.14)

where

λ1 =
|χ1|1/4

|χ1|1/4 + |χ2|1/4
.

Similarly, for x(ζ) > 1
2
, equidistribution gives

(1− ζ)(
α?
K

+ 1) =
α?
K

(1− x(ζ)) + λ2(1− e−
1−x(ζ)

4

√
β
ε ), (5.15)

where

λ2 =
|χ2|1/4

|χ1|1/4 + |χ2|1/4
.

A non-uniform mesh in physical coordinates {xi}Ni=0 corresponds to an equispaced

mesh {ζi = i/N}Ni=0 in computational coordinates. So, equations (5.14) and (5.15)

can be written as

i

N
(
α?
K

+ 1) =
α?
K
xi + λ1(1− e−

xi
4

√
β
ε ) (5.16)

and

(1− i

N
)(
α?
K

+ 1) =
α?
K

(1− xi) + λ2(1− e−
(1−xi)

4

√
β
ε ) (5.17)
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Hence, the equidistributed mesh points xi’s are given by the solution of the non-

linear algebraic equations (5.16) and (5.17). We assume
√
ε � N−1, as otherwise

a uniform mesh could be used and a classical convergence analysis could be given.

The following lemmas provide some important properties of the mesh structure.

Lemma 5.2.1. The non-uniform mesh generated by (5.16) and (5.17) on taking α? =

K satisfies

xl < 4

√
ε

β
logN < xl+1 and xr−1 < 1− 4

√
ε

β
logN < xr,

where

l =

[
1

2

(
4

√
ε

β
N logN + λ1(N − 1)

)]
, r =

[
N − 1

2

(
4

√
ε

β
N logN + λ2(N − 1)

)]
+1,

and [·] denotes the integer part. Moreover, the mesh spacing satisfies

hi < C

√
ε

β
for i = 1, ..., l − 1 and i = r + 1, ..., N − 1,

with

|hi+1−hi| ≤ Ch2
i for i = 1, ..., l− 1 and |hi+1−hi| ≤ Ch2

i+1 for i = r+ 1, ..., N.

Proof. The proof follows from [56].

Lemma 5.2.2. The mesh widths of equidistributed mesh satisfy hi ≤ CN−1, for

i = 1, ..., N.
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Proof. From (5.12), we have that K = α? ≤ M(y(x, t?), x). Now from derivative

estimates (5.11), we have

� 1

0

M(y(x, t?), x)dx ≤ Cε1/4.

Thus, by the equidistribution principle, we get

α?hi ≤
� xi

xi−1

M(y(x, t?), x)dx =
1

N

� 1

0

M(y(x, t?), x)dx ≤ Cε1/4N−1.

Hence, hi ≤ CN−1.

5.3 The spatial discretization and error analysis

In this section, we first introduce a non-monotone high order scheme to discretize

problem (5.6) in spatial direction. Then we discuss the stability and error analysis

of the spatial discretization.

5.3.1 The discretization strategy

We represent the time discretization scheme (5.6) as follows:

 L̃εŷ
n+1(x) = f̃n+1(x), x ∈ Gx

ŷn+1(0) = 0, ŷn+1(1) = 0,
(5.18)

where

L̃ε = (I + ∆tLε) = −ε∆t d
2

dx2
+ b̃(x)I,

b̃(x) = (1 + b(x)∆t) and f̃n+1(x) = (y(x, tn) + ∆tf(x, tn+1)).
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Suppose a non-uniform spatial mesh ḠN
x = {xi}Ni=0 is considered to discretize the

domain Ḡx with mesh width hi = xi−xi−1, i = 1, . . . , N and ~i = (hi+hi+1)/2, i =

1, . . . , N − 1. The discrete scheme is defined by

 [L̃ε,N Ŷ
n+1]i = −ε∆tδ2

xŶ
n+1
i + Γ[b̃Ŷ n+1]i = Γ[f̃n+1]i for i = 1, . . . , N − 1,

Ŷ n+1
0 = 0, Ŷ n+1

N = 0.

(5.19)

where

δ2
xŶ

n+1
i =

1

~i

(
Ŷ n+1
i+1 − Ŷ n+1

i

hi+1

−
Ŷ n+1
i − Ŷ n+1

i−1

hi

)
,

Γ[b̃Ŷ n+1]i = ν−i b̃i−1Ŷ
n+1
i−1 + νci b̃iŶ

n+1
i + ν+

i b̃i+1Ŷ
n+1
i+1 ,

and Γ[f̃n+1]i = ν−i f̃
n+1
i−1 + νci f̃

n+1
i + ν+

i+1f̃
n+1
i+1 ,

with ν− = 2hi−hi+1

12~i , νci = 5
6
, ν+

i = 2hi+1−hi
12~i .

5.3.2 Stability of scheme (5.19)

Note that the discrete operator L̃ε,N is not inverse monotone. Therefore, for the proof

of stability of scheme (5.19), we shall follow the idea used in [133] for a different

scheme. On an arbitrary non-uniform spatial mesh ḠN
x with maximal step size hmax,

we consider another discrete operator [Λε,N ] defined by

[Λε,N Ŷ
n+1]i := −ε∆tδ2

xŶ
n+1
i − hi+1

12~i
b̃iŶ

n+1
i−1 +

5

6
b̃iŶ

n+1
i − hi

12~i
b̃iŶ

n+1
i+1 . (5.20)

The matrix corresponding to the operator Λε,N has positive entries on the diagonal

and non-positive entries on off-diagonal with row sum 2
3
b̃i > 0. Therefore, it is an

M -matrix and satisfies the following comparison principle.
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Lemma 5.3.1. Let ψn+1 and φn+1 be two mesh functions that satisfy [Λε,Nψ
n+1]i ≥

[Λε,Nφ
n+1]i for i = 1, . . . , N − 1, ψn+1

0 ≥ φn+1
0 and ψn+1

N ≥ φn+1
N , then ψn+1

i ≥ φn+1
i

for i = 0, . . . , N.

Dividing (5.20) by b̃i, we obtain an M -matrix with row sum 2/3. Thus, we obtain

‖ψn+1‖ḠNx ≤
3

2

∥∥∥∥Λε,Nψ
n+1

b̃

∥∥∥∥
ḠNx

, (5.21)

for all mesh functions ψn+1 with ψn+1
0 = ψn+1

N = 0. This result will be used to

establish the stability of the operator L̃ε,N as given in the following theorem.

Theorem 5.3.1. Let κ ∈ (0, 1) be an arbitrary but fixed number. Then, the following

stability estimate holds

∥∥ψn+1
∥∥
ḠNx
≤ 3

1− κ

∥∥∥∥∥ L̃ε,Nψn+1

b̃

∥∥∥∥∥
ḠNx

for any mesh function ψn+1 with ψn+1
0 = ψn+1

N = 0, provided hmax is bounded by

some threshold value that is independent of ε.

Proof. Let ψn+1 be an arbitrary mesh function with ψn+1
0 = ψn+1

N = 0. Then, on

using (5.19) and (5.20), we can write

[Λε,Nψ
n+1]i = [L̃ε,Nψ

n+1]i −
hi+1

12~i
b̃iψ

n+1
i−1 −

hi
12~i

b̃iψ
n+1
i+1 − ν−i b̃i−1ψ

n+1
i−1 − ν+

i b̃i+1ψ
n+1
i+1 .

Further simplifications give

[Λε,Nψ
n+1]i = [L̃ε,Nψ

n+1]i −
hi
6~i

b̃i−1ψ
n+1
i−1 −

hi+1

6~i
b̃i+1ψ

n+1
i+1 +

hi
12~i

(b̃i+1 − b̃i)ψn+1
i+1

+
hi+1

12~i
(b̃i−1 − b̃i)ψn+1

i−1 .
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Thus,

∣∣[Λε,Nψ
n+1]i

∣∣ ≤ ∣∣∣[L̃ε,Nψn+1]i

∣∣∣+(hi+1b̃i+1 + hib̃i−1

6~i
+
hi|b̃i+1 − b̃i|+ hi+1|b̃i−1 − b̃i|

12~i

)

×
∥∥ψn+1

∥∥
ḠNx
.

Now using equation (5.21), we have

∥∥ψn+1
∥∥
ḠNx
≤ 3

2

∥∥∥∥∥ L̃ε,Nψn+1

b̃

∥∥∥∥∥
ḠNx

+
3

2

∥∥ψn+1
∥∥
ḠNx

max
i=1,...,N−1

(
hi+1b̃i+1 + hib̃i−1

6b̃i~i
+
hi|b̃i+1 − b̃i|+ hi+1|b̃i−1 − b̃i|

12b̃i~i

)
(5.22)

As b is sufficiently smooth, there exists a constant γ such that |b(z1)− b(z2)| ≤

γ|z2 − z1|, for all z1, z2 ∈ [0, 1]. Consequently,

hi+1b̃i+1 + hib̃i−1

6b̃i~i
+
hi|b̃i+1 − b̃i|+ hi+1|b̃i−1 − b̃i|

12b̃i~i
≤ 1

3
+
γhmax

3β
≤ 1 + κ

3
,

provided hmax is bounded by a value that is independent of ε. Thus, from (5.22),

we have ∥∥ψn+1
∥∥
ḠNx
≤ 3

2

∥∥∥∥∥ L̃ε,Nψn+1

b̃

∥∥∥∥∥
ḠNx

+
1 + κ

2

∥∥ψn+1
∥∥
ḠNx
. (5.23)

Hence, the theorem follows from (5.23).

5.3.3 Error analysis

Now we discuss error analysis of the spatial discretization scheme on non-uniform

equidistributed meshes. Suppose η = ŷn+1 − Ŷ n+1 denotes the error of the spatial
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discretization and it can be decomposed into the sum of two parts η = ψ+φ, where

ψ, φ ∈ RN+1
0 ≡ {γ ∈ RN+1 : γ0 = γN = 0} and satisfy

[L̃ε,Nη]i = ε∆t

[
Γ

[
d2ŷn+1

dx2

]
− δ2

xŷ
n+1

]
i

, i = 1, . . . , N − 1,

and

[Λε,Nη]i = [Λε,Nψ]i + [Λε,Nφ]i, i = 1, . . . , N − 1,

where

[Λε,Nψ]i = [L̃ε,Nη]i

and

[Λε,Nφ]i = −hi+1

12~i
b̃iηi−1 −

hi
12~i

b̃iηi+1 − ν−i b̃i−1ηi−1 − ν+
i b̃i+1ηi+1.

Let κ ∈ (0, 1) be arbitrary, but fixed. Using the arguments as in Theorem 5.3.1, we

have

|[Λε,Nφ]i| ≤
(1 + κ)

3
b̃i‖η‖ḠNx for i = 1, . . . , N − 1,

provided N is greater than some threshold value that is independent of ε. Then the

stability result gives

‖φ‖ḠNx ≤
(1 + κ)

2
‖η‖ḠNx .

On applying the triangle inequality we obtain

‖η‖ḠNx ≤ ‖ψ‖ḠNx + ‖φ‖ḠNx ≤ ‖ψ‖ḠNx +
(1 + κ)

2
‖η‖ḠNx .

Thus, we obtain the bound on the error in terms of ψ as follows

‖ŷn+1 − Ŷ n+1‖ḠNx ≤
2

(1− κ)
‖ψ‖ḠNx . (5.24)
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Now we estimate ‖ψ‖ by using the truncation error and the barrier function tech-

nique. The truncation error of scheme (5.19) can be obtained by using the Taylor

expansions. We have

|[Λε,Nψ]i| = |[L̃ε,Nη]i| = ε∆t

∣∣∣∣ [Γ [d2ŷn+1

dx2

]
− δ2

xŷ
n+1

]
i

∣∣∣∣, i = 1, . . . , N − 1.

Now according to the decomposition of ŷn+1, we can split the truncation error as

ε∆t

∣∣∣∣ [Γ [d2ŷn+1

dx2

]
− δ2

xŷ
n+1

]
i

∣∣∣∣
≤ ε∆t

∣∣∣∣ [Γ [d2v̂n+1

dx2

]
− δ2

xv̂
n+1

]
i

∣∣∣∣+ ε∆t

∣∣∣∣ [Γ [d2ŵn+1

dx2

]
− δ2

xŵ
n+1

]
i

∣∣∣∣, (5.25)

and estimate the local truncation errors separately for the regular and singular

components. Firstly, for the regular component, we have

ε∆t

∣∣∣∣ [Γ [d2v̂n+1

dx2

]
− δ2

xv̂
n+1

]
i

∣∣∣∣ ≤ Cε∆t

[
(hi+1 − hi)2

∣∣∣∣d4v̂n+1
i

dx4

∣∣∣∣
+ (h2

i+1 + h2
i )|hi+1 − hi|

∣∣∣∣d5v̂n+1
i

dx5

∣∣∣∣+ (h4
i+1 + h4

i ) max
xi−1≤x≤xi+1

∣∣∣∣d6v̂n+1(x)

dx6

∣∣∣∣],
which on using the bounds on derivatives of v̂n+1 from (5.10) and Lemma 5.2.2 gives

ε∆t

∣∣∣∣ [Γ [d2v̂n+1

dx2

]
− δ2

xv̂
n+1

]
i

∣∣∣∣ ≤ Cε∆tN−2 + C
√
ε∆tN−3 + C∆tN−4.

Then from the assumption N−1 �
√
ε, it follows that

ε∆t

∣∣∣∣ [Γ [d2v̂n+1

dx2

]
− δ2

xv̂
n+1

]
i

∣∣∣∣ ≤ C∆tN−4. (5.26)

Next, for the singular component, the analysis is done in two parts: inside and

outside the boundary layer regions. Firstly, for outside the boundary layers i.e. for
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i = l, ..., r, for some θi ∈ (xi−1, xi+1), we have

ε∆t

∣∣∣∣ [Γ [d2ŵn+1

dx2

]
− δ2

xŵ
n+1

]
i

∣∣∣∣ = ε∆t

∣∣∣∣ (ν−i d2ŵn+1
i−1

dx2
+ νci

d2ŵn+1
i

dx2
+ ν+

i

d2ŵn+1
i+1

dx2

)
− d2ŵn+1(θi)

dx2

∣∣∣∣
≤ ε∆t max

xi−1≤x≤xi+1

∣∣∣∣d2ŵn+1(x)

dx2

∣∣∣∣(|ν−i |+ νci + |ν+
i |)

≤ Cε∆tϕi max
xi−1≤x≤xi+1

∣∣∣∣d2ŵn+1(x)

dx2

∣∣∣∣,
where

ϕi =


1− 2ν−i , if 2hi ≤ 2hi+1,

1− 2ν+
i , if 2hi > 2hi+1 and ν+

i < 0,

1, if 2hi > 2hi+1 and ν+
i > 0.

It is easy to see that ϕi ≤ C; hence

ε∆t

∣∣∣∣ [Γ [d2ŵn+1

dx2

]
− δ2

xŵ
n+1

]
i

∣∣∣∣ ≤ Cε∆t max
xi−1≤x≤xi+1

∣∣∣∣d2ŵ

dx2
(x, tn+1)

∣∣∣∣.
Now using bound (5.11), we get

ε∆t

∣∣∣∣ [Γ [d2ŵn+1

dx2

]
− δ2

xŵ
n+1

]
i

∣∣∣∣ ≤ C∆t


e−xi−1

√
β
ε , xi ≤ 1

2
,

e−(1−xi+1)
√

β
ε , xi >

1
2
.

When l ≤ i and xi ≤ 1
2
,

ε∆t

∣∣∣∣ [Γ [d2ŵn+1

dx2

]
− δ2

xŵ
n+1

]
i

∣∣∣∣ ≤ C∆t

(
e−

xl−1
4

√
β
ε

)4

.
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Now, from the mesh equidistribution condition (5.16), we have

e−
xl−1

4

√
β
ε =

1

λ1

(
xl−1 + λ1 −

2(l − 1)

N

)
≤

(
4

√
ε

β
logN + λ1 −

1

N

(
λ1(N − 1) + 4

√
ε

β
logN − 4

))
≤ CN−1.

Therefore, for l ≤ i and xi ≤ 1
2
, we obtain

ε∆t

∣∣∣∣ [Γ [d2ŵn+1

dx2

]
− δ2

xŵ
n+1

]
i

∣∣∣∣ ≤ C∆tN−4.

Again, the same bound can be obtained by giving the similar argument for i ≤ r

and xi >
1
2
. Thus, for i = l, ..., r,

ε∆t

∣∣∣∣ [Γ [d2ŵn+1

dx2

]
− δ2

xŵ
n+1

]
i

∣∣∣∣ ≤ C∆tN−4. (5.27)

Now, inside the boundary layers i.e. for n = 0, ...,M − 1, i = 1, ..., l − 1 and for

i = r + 1, ..., N − 1, we have

ε∆t

∣∣∣∣ [Γ [d2ŵn+1

dx2

]
− δ2

xŵ
n+1

]
i

∣∣∣∣ ≤ Cε∆t

[(
hi+1 − hi

)2

∣∣∣∣d4ŵn+1
i

dx4

∣∣∣∣+
(
h2
i+1 + h2

i

)
|hi+1 − hi|

×
∣∣∣∣d5ŵn+1

i

dx5

∣∣∣∣+
(
h4
i+1 + h4

i

)
max

xi−1≤x≤xi+1

∣∣∣∣d6ŵn+1(x)

dx6

∣∣∣∣]
≤ C∆t

[
h4
i ε
−1e−xi

√
β
ε + h4

i ε
−3/2e−xi

√
β
ε + h4

i ε
−2e−xi

√
β
ε

]
≤ C∆tε−2h4

i e
−xi
√

β
ε ,

where we have used the fact that

e−xi−1

√
β
ε = e−xi

√
β
ε ehi
√

β
ε ≤ Ce−xi

√
β
ε , using Lemma 5.2.1.
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Now, using the equidistribution principle, it holds

h4
i e
−
√

β
ε
xi ≤

( � xi

xi−1

e−
x
4

√
β
ε dx

)4

≤
(
ε

1
4

� xi

xi−1

M(y(x, t?), x)dx

)4

≤ CεK4N−4 ≤ Cε2N−4.

Hence, we get

ε∆t

∣∣∣∣ [Γ [d2ŵn+1

dx2

]
− δ2

xŵ
n+1

]
i

∣∣∣∣ ≤ C∆tN−4. (5.28)

On combining the various bounds for the truncation errors from (5.26)-(5.28) with

(5.25), we obtain

|[Λε,Nψ]i| = |[L̃ε,Nη]i| = ε∆t

∣∣∣∣ [Γ [d2ŷn+1

dx2

]
− δ2

xŷ
n+1

]
i

∣∣∣∣ ≤ C∆tN−4. (5.29)

Combine (5.29) with the stability result 5.21 to obtain

‖ψ‖ḠNx ≤ C∆tN−4. (5.30)

Hence, using (5.30) in (5.24) we obtain

‖ŷn+1 − Ŷ n+1‖ḠNx ≤ C∆tN−4.

Thus, we have the following theorem.

Theorem 5.3.2. Let ŷn+1 be the exact solution of (5.6) and Ŷ n+1 be its numerical

approximation using (5.19) on the equidistributed mesh (5.16)-(5.17). Then the

following error estimate holds

‖ŷn+1 − Ŷ n+1‖ḠNx ≤ C∆tN−4.
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5.4 The total discretization scheme

Now we combine the time semidiscretization process with the spatial semidiscretiza-

tion process to obtain the total discretization scheme for computing the approxi-

mate solution of (5.1). Let Y n
i be the numerical approximations to y(xi, tn), for

n = 0, . . . ,M, and i = 0, . . . , N . The discretization scheme is given as


Y 0
i = ρi, i = 0, . . . , N,

[LMN Y ]n+1
i := Q[Y n+1

i ] = Γ[f̃n+1
i ], i = 1, . . . , N − 1, n = 0, . . . ,M − 1,

Y n+1
0 = 0, Y n+1

N = 0, n = 0, . . . ,M − 1,

(5.31)

where f̃n+1
i = Y n

i + ∆tf(xi, tn+1 and b̃i = 1 + ∆tb(xi). Here, Q and Γ are the

discretization operators given as

Q[Y n+1
i ] = q−i Y

n+1
i−1 + qciY

n+1
i + q+

i Y
n+1
i+1 , Γ[f̃n+1

i ] = ν−i f̃
n+1
i−1 + νci f̃

n+1
i + ν+

i f̃
n+1
i+1 ,

where

q−i = −ε∆t
hi~i

+ ν−i b̃i−1, qci =
2ε∆t

hi+1hi
+ νci b̃i, q+

i = − ε∆t

hi+1~i
+ ν+

i b̃i+1,

ν−i =
2hi − hi+1

12~i
, νci =

5

6
, ν+

i =
2hi+1 − hi

12~i
,

with

hi = xi − xi−1 and ~i =
hi + hi+1

2
.

Now we conclude this section with the following main theorem.
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Theorem 5.4.1. Let y be the exact solution of (5.1) and Y n be its numerical approx-

imation obtained using the totally discrete scheme (5.31) at time level tn. Then the

global error at time level tn satisfies

‖y(xi, tn)− Y n
i ‖ḠNx ≤ C(∆t+N−4).

Proof. Suppose EN
n = y(xi, tn) − Y n

i , e
N
n = y(xi, tn) − ŷn(xi) and dNn = ŷn(xi) −

Ŷ n(xi). Then

EN
n = eNn + dNn +RNE

N
n−1,

where RN is the transition operator associated to the totally discrete scheme (5.31).

RNV is the application of one step of the totally discrete scheme (5.31), with Y n = V

and zero source term f . From the above recurrence relation, we obtain the following

inequality

‖EN
n ‖ḠNx ≤

n∑
j=1

‖Rn−j
N )‖ḠNx (‖eNj ‖ḠNx + ‖dNj ‖ḠNx ).

Now taking into account that the powers of the transition operator of the totally

discrete schemeRj
N preserve the uniform boundedness behaviour (due to the stability

result) as observed for Rj, it follows that

‖EN
n ‖ḠNx ≤ C

n∑
j=1

((∆t)2 + ∆tN−4)

≤ C(∆t+N−4).
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5.5 Numerical results

In this section, we perform some numerical experiments to verify the theoretical error

bound obtained in the previous section. Firstly the equidistributed mesh is generated

at a specific time level by using the De Boor algorithm [47]. Then, in the second

step, the adaptive solution is found on this mesh at each time step. The maximum

pointwise errors and the corresponding rates of convergence are calculated by using

the known solution or by using the double mesh principle if the exact solution is not

available. For the test problems, we shall observe the influence of the discretization

parameters in space and time on the maximum error and rate of convergence. The

numerical observations are given in the form of tables and figures. In our numerical

experiments the equidistributed mesh is generated at the time level t1 and we have

taken %0 = 1.1 as stopping criterion in the algorithm. The smooth component V n
i

is approximated by


V 0
i = ρi, i = 0, . . . , N,

(1 + ∆tb(xi))V
n+1
i = V n

i + ∆tf(xi, tn+1), i = 0, . . . , N, n = 0, . . . ,M − 1.

(5.32)

Richardson extrapolation

We can further improve the theoretically proved first order rate of convergence in

time by using the Richardson extrapolation technique in time. We set the extrapo-

lated solution (Y n+1
i )ext as

(Y n+1
i )ext = 2Y n+1

2,i − Y n+1
1,i , (5.33)

where Y n+1
1,i and Y n+1

2,i are the solutions of the totally discrete scheme (5.31) with

time step sizes ∆t = T/M and ∆t = T/2M , respectively.
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Algorithm 4: Numerical algorithm for the adaptive mesh and adaptive solution

Input: N, M ∈ N, 0 < ε ≤ 1 and % > 1.
Output: Adaptive mesh {xi} and adaptive solution Y n

i at the time level tn.

1. Initialise the mesh iterations {x(r)
i } with r = 0 as the uniform mesh for n = 1.

2. Solve the discrete problem (5.31) for Y
n,(r)
i , and (5.32) for V

n,(r)
i on {x(r)

i }
and compute W

n,(r)
i = Y

n,(r)
i − V n,(r)

i .

3. Find M(r)
i = α(r) + |δ2

xW
n,(r)
i |1/4, i = 1, ..., N − 1 where α(r) is defined by

α(r) = h
(r)
1 |δ2

xW
n,(r)
1 |1/4 +

N−1∑
i=2

h
(r)
i

{
|δ2
xW

n,(r)
i−1 |1/4 + |δ2

xW
n,(r)
i |1/4

2

}
+ h

(r)
N |δ

2
xW

n,(r)
N−1 |

1/4.

4. Set H
(r)
i =

(
M(r)

i−1+M(r)
i

2

)
h

(r)
i , i = 1, ..., N , with M(r)

0 =M(r)
1 and

M(r)
N =M(r)

N−1. Then define Bi by Bi =
∑i

j=1H
(r)
j for i = 1, ..., N and

B0 = 0.

5. Stopping criterion: Choose a constant %0 > 1 defined by
%(r) = N

BN
max

i=1,...,N
H

(r)
i . If %(r) ≤ %0 then go to Step 7, else continue with Step

6.

6. Define Zi = iBN
N
, i = 0, ..., N . Generate a new mesh {x(r+1)

i } by evaluating

the interpolant of (Bi, x
(r)
i ) at the points Zi and return to Step 2 setting

r = r + 1.

7. Take {x(r)
i } as the layer-adaptive mesh {xi} for all time levels and Y

n,(r)
i as

the required adaptive solution Y n
i at the time level n = 1.

8. Use the spatial mesh {xi} at each time level and solve (5.31) to compute the
adaptive solution Y n

i for n = 2, 3, . . . ,M .
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5.5.1 Numerical experiments

Example 5.5.1. Consider the problem [88]


∂y
∂t
− ε ∂2y

∂x2
+ (1 + xe−t)y = f(x, t), (x, t) ∈ G,

y(x, 0) = 0, x ∈ Ḡx, y(0, t) = 0, y(1, t) = 0, t ∈ (0, T ],

(5.34)

with the term f(x, t) defined according to the known solution

y(x, t) = (1− e−t)

(
e
−x√
ε + e

−(1−x)√
ε

1 + e
−1√
ε

− cos2(πx)

)
.

Figure 5.1 displays the numerical solution of Example 5.5.1 for ε = 10−5, from which

1
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Figure 5.1: Surface plot of numerical solution of Example 5.5.1 for ε =
10−5, N = 512 and M = 16
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we can clearly observe the boundary layers at both the ends x = 0 and x = 1. For

different values of ε, N and M , we calculate the pointwise errors by

Eε,N,M
i,n = |Y n

i − y(xi, tn)|,

where Y
n

i = Y n
i (if scheme 5.31 is used) or Y

n

i = (Y n
i )ext (if scheme (5.31) is used

with the extrapolation technique (5.33)). Using these values the maximum errors

and the numerical rates of convergence are computed by the formulas

Eε,N,M = max
i,n

Eε,N,M
i,n , F ε,N,M = log2

(
Eε,N,M

Eε,2N,2M

)
.

Finally, the parameter-robust errors and the parameter-robust rates of convergence

over the set of values of ε are obtained by

EN,M = max
ε
Eε,N,M , FN,M = log2

(
EN,M

E2N,2M

)
.
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Figure 5.2: Mesh trajectory and final position of space mesh points with ε =
10−7 and N = 256 for Example 5.5.1.
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Table 5.1: Errors Eε,N,M , E,N,M and rates of convergence F ε,N,M , FN,M using
scheme (5.31) without Richardson extrapolation for Example 5.5.1.

ε N = 128 N = 256 N = 512 N = 1024 N = 2048
M = 4 M = 8 M = 16 M = 32 M = 64

100 = 1 5.47E-03 2.97E-03 1.56E-03 7.99E-04 4.05E-04
0.88 0.93 0.96 0.97

10−1 6.67E-03 3.52E-03 1.80E-03 9.15E-04 4.61E-04
0.93 0.96 0.98 0.99

10−2 1.72E-02 9.08E-03 4.68E-03 2.38E-03 1.20E-03
0.92 0.96 0.98 0.99

10−3 3.35E-02 1.76E-02 9.02E-03 4.57E-03 2.30E-03
0.93 0.96 0.98 0.99

10−4 3.97E-02 2.08E-02 1.07E-02 5.39E-03 2.71E-03
0.93 0.96 0.98 0.99

10−5 4.12E-02 2.16E-02 1.11E-02 5.61E-03 2.82E-03
0.93 0.96 0.98 0.99

10−6 4.16E-02 2.18E-02 1.12E-02 5.66E-03 2.85E-03
0.93 0.96 0.98 0.99

10−7 4.17E-02 2.18E-02 1.12E-02 5.67E-03 2.85E-03
0.93 0.96 0.98 0.99

10−8 4.17E-02 2.18E-02 1.12E-02 5.67E-03 2.85E-03
0.93 0.96 0.98 0.99

EN,M 4.17E-02 2.18E-02 1.12E-02 5.67E-03 2.85E-03
FN,M 0.93 .96 0.98 0.99

In Table 5.1, we have presented the maximum pointwise errors and the correspond-

ing rates of convergence for the numerical solution computed by the algorithm given

above for different values of the perturbation parameter and the discretization pa-

rameters in space (N) and time (M) varying with the same ratio (N and M both

multiplied by 2) without using the Richardson extrapolation in time. In Tables 5.2

and 5.3, the solutions are computed by the above algorithm using extrapolation in

time; taking the discretization parameters N and M multiplied by 2 in earlier, and
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Table 5.2: Errors Eε,N,M , EN,M and rates of convergence F ε,N,M , FN,M using
scheme (5.31) with Richardson extrapolation for Example 5.5.1.

ε N = 128 N = 256 N = 512 N = 1024 N = 2048
M = 4 M = 8 M = 16 M = 32 M = 64

100 = 1 5.87E-04 2.74E-04 8.70E-05 2.65E-05 7.28E-06
1.10 1.66 1.71 1.87

10−1 5.26E-04 1.62E-04 4.78E-05 1.31E-05 3.45E-06
1.70 1.76 1.87 1.93

10−2 1.12E-03 3.23E-04 8.88E-05 2.33E-05 5.96E-06
1.79 1.86 1.93 1.97

10−3 1.82E-03 5.18E-04 1.37E-04 3.55E-05 9.03E-06
1.81 1.91 1.95 1.98

10−4 2.09E-03 5.79E-04 1.53E-04 3.94E-05 9.99E-06
1.85 1.92 1.96 1.98

10−5 2.15E-03 5.94E-04 1.57E-04 4.04E-05 1.02E-05
1.86 1.92 1.96 1.98

10−6 2.17E-03 5.97E-04 1.58E-04 4.06E-05 1.03E-05
1.86 1.92 1.96 1.98

10−7 2.17E-03 5.98E-04 1.58E-04 4.06E-05 1.03E-05
1.86 1.92 1.96 1.98

10−8 2.17E-03 5.98E-04 1.58E-04 4.06E-05 1.03E-05
1.86 1.92 1.96 1.98

EN,M 2.17E-03 5.98E-04 1.58E-04 4.06E-05 1.03E-05
FN,M 1.86 1.92 1.96 1.98

N multiplied by 2 and M multiplied by 4 in later to compute the rates of conver-

gence. In each table, the last two rows represent the uniform errors and uniform

rates of convergence.

In Table 5.2, the second order convergence is seen which is because of the time

discretization error dominance in the global error over the space discretization error

for this problem. The fourth order convergence results shown in Table 5.3 clearly

confirms this assertion. Also, from these tables, we can conclude the improvement

in rate of convergence using the Richardson extrapolation technique. In Table 5.3
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Table 5.3: Errors Eε,N,M , E,N,M and rates of convergence F̂ ε,N,M , F̂N,M using
scheme (5.31) with Richardson extrapolation for Example 5.5.1.

ε N = 128 N = 256 N = 512 N = 1024 N = 2048
M = 4 M = 16 M = 64 M = 256 M = 1024

100 = 1 5.87E-04 8.70E-05 7.28E-06 4.92E-07 3.14E-08
2.75 3.58 3.89 3.97

10−1 5.26E-04 4.78E-05 3.45E-06 2.25E-07 1.43E-08
3.46 3.79 3.94 3.98

10−2 1.12E-03 8.88E-05 5.96E-06 3.79E-07 2.38E-08
3.65 3.90 3.97 3.99

10−3 1.82E-03 1.37E-04 9.03E-06 5.71E-07 3.58E-08
3.72 3.93 3.98 4.00

10−4 2.09E-03 1.53E-04 9.99E-06 6.32E-07 3.96E-08
3.78 3.94 3.98 4.00

10−5 2.15E-03 1.57E-04 1.02E-05 6.46E-07 4.05E-08
3.78 3.94 3.98 4.00

10−6 2.17E-03 1.58E-04 1.03E-05 6.50E-07 4.07E-08
3.78 3.94 3.99 4.00

10−7 2.17E-03 1.58E-04 1.03E-05 6.50E-07 4.08E-08
3.78 3.94 3.99 4.00

10−8 2.17E-03 1.58E-04 1.03E-05 6.50E-07 4.08E-08
3.78 3.94 3.99 4.00

EN,M 2.17E-03 1.58E-04 1.03E-05 6.50E-07 4.08E-08

F̂N,M 3.78 3.94 3.99 4.00

we use the following formulas for orders of convergence

F̂ ε,N,M = log2

(
Eε,N,M

Eε,2N,4M

)
and F̂N,M = log2

(
EN,M

E2N,4M

)
.

In addition, the adaptive movement of mesh points towards the boundary layers and

the heavy density of mesh points in layer regions are shown in Figure 5.2. In Figure

5.3, we have plotted the log-log graph between maximum pointwise error and the

space discretization parameter N for the comparative convergence behavior of the
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Table 5.4: Errors Eε,N,M , E,N,M , and rates of convergence F ε,N,M , FN,M using
scheme (5.31) without Richardson extrapolation for Example 5.5.2.

ε N = 128 N = 256 N = 512 N = 1024 N = 2048
M = 4 M = 8 M = 16 M = 32 M = 64

100 = 1 6.79E-03 5.51E-03 3.51E-03 2.08E-03 1.14E-03
0.30 0.65 0.76 0.86

10−1 1.71E-02 9.64E-03 5.14E-03 2.66E-03 1.35E-03
0.83 0.91 0.95 0.95

10−2 2.63E-02 1.50E-02 8.02E-03 4.16E-03 2.12E-03
0.81 0.90 0.95 0.97

10−3 2.76E-02 1.57E-02 8.45E-03 4.39E-03 2.23E-03
0.81 0.90 0.95 0.97

10−4 2.77E-02 1.58E-02 8.50E-03 4.41E-03 2.25E-03
0.81 0.89 0.94 0.97

10−5 2.77E-02 1.58E-02 8.50E-03 4.41E-03 2.25E-03
0.81 0.89 0.94 0.97

10−6 2.77E-02 1.58E-02 8.50E-03 4.41E-03 2.25E-03
0.81 0.89 0.94 0.97

10−7 2.77E-02 1.58E-02 8.50E-03 4.41E-03 2.25E-03
0.81 0.89 0.94 0.97

10−8 2.77E-02 1.58E-02 8.50E-03 4.41E-03 2.25E-03
0.81 0.89 0.94 0.97

EN,M 2.77E-02 1.58E-02 8.50E-03 4.41E-03 2.25E-03
FN,M 0.81 0.89 0.94 0.97

scheme (5.31) with and without the Richardson extrapolation for two values of ε and

for different discretization parameter ratios between space and time variables. Here,

from the slopes of these plots we can clearly see that for Example 5.5.1 the rate of

convergence of the scheme (5.31) is increased to second order from first on using

the Richardson extrapolation technique. Certainly, these results highly validate the

theoretical results.
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Table 5.5: Errors Eε,N,M , E,N,M and rates of convergence F ε,N,M , FN,M using
scheme (5.31) with Richardson extrapolation for Example 5.5.2.

ε N = 128 N = 256 N = 512 N = 1024 N = 2048
M = 4 M = 8 M = 16 M = 32 M = 64

100 = 1 1.40E-03 1.51E-03 6.78E-04 2.23E-04 6.51E-05
1.12 1.16 1.60 1.78

10−1 2.19E-03 6.51E-04 1.79E-04 6.51E-05 1.21E-05
1.75 1.86 1.46 2.42

10−2 3.63E-03 1.09E-03 3.01E-04 7.92E-05 2.03E-05
1.73 1.86 1.93 1.96

10−3 3.88E-03 1.17E-03 3.23E-04 8.51E-05 2.18E-05
1.73 1.86 1.93 1.96

10−4 3.90E-03 1.18E-03 3.26E-04 8.57E-05 2.20E-05
1.73 1.86 1.93 1.96

10−5 3.90E-03 1.18E-03 3.26E-04 8.57E-05 2.20E-05
1.73 1.86 1.93 1.96

10−6 3.90E-03 1.18E-03 3.26E-04 8.57E-05 2.20E-05
1.73 1.86 1.93 1.96

10−7 3.90E-03 1.18E-03 3.26E-04 8.57E-05 2.20E-05
1.73 1.86 1.93 1.96

10−8 3.90E-03 1.18E-03 3.26E-04 8.57E-05 2.20E-05
1.73 1.86 1.93 1.96

EN,M 3.90E-03 1.18E-03 3.26E-04 8.57E-05 2.20E-05
FN,M 1.73 1.86 1.93 1.96

Example 5.5.2. Consider the problem [88]


∂y
∂t
− ε ∂2y

∂x2
+ (1 + x2 + t2et)y = et − 1 + sin(πx), (x, t) ∈ G,

y(x, 0) = 0, x ∈ Ḡx, y(0, t) = 0, y(1, t) = 0, t ∈ (0, T ].

(5.35)

For this test example we do not know the exact solution. Therefore, for numerical

errors and rates of convergence we shall use a variant of the double mesh principle.

For this purpose we bisect the spatial mesh into 2N intervals and the time mesh
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Table 5.6: Errors Eε,N,M , E,N,M and rates of convergence F̂ ε,N,M , F̂N,M using
scheme (5.31) with Richardson extrapolation for Example 5.5.2.

ε N = 128 N = 256 N = 512 N = 1024 N = 2048
M = 4 M = 16 M = 64 M = 256 M = 1024

100 = 1 1.40E-03 6.78E-04 6.50E-05 4.61E-06 2.98E-07
1.05 3.38 3.82 3.95

10−1 2.19E-03 1.79E-04 1.21E-05 7.73E-07 4.86E-08
3.61 3.89 3.97 3.99

10−2 3.63E-03 3.01E-04 2.03E-05 1.29E-06 8.12E-08
3.59 3.89 3.97 3.99

10−3 3.88E-03 3.23E-04 2.18E-05 1.39E-06 8.73E-08
3.58 3.89 3.97 3.99

10−4 3.90E-03 3.26E-04 2.20E-05 1.40E-06 3.94E-08
3.58 3.89 3.97 3.99

10−5 3.90E-03 3.26E-04 2.20E-05 1.40E-06 3.94E-08
3.58 3.89 3.97 3.99

10−6 3.90E-03 3.26E-04 2.20E-05 1.40E-06 3.94E-08
3.58 3.89 3.97 3.99

10−7 3.90E-03 3.26E-04 2.20E-05 1.40E-06 3.94E-08
3.58 3.89 3.97 3.99

10−8 3.90E-03 3.26E-04 2.20E-05 1.40E-06 3.94E-08
3.58 3.89 3.97 3.99

EN,M 3.90E-03 3.26E-04 2.20E-05 1.40E-06 3.94E-08

F̂N,M 3.58 3.89 3.97 3.99

into 2M and 4M intervals so that now the pointwise errors are calculated by

Eε,N,M
i,n = |Y n,2N,2M

i − Y n,N,M
i |,

when scheme (5.31) is used, and

Eε,N,M
i,n = |(2Y n,2N,4M

i − Y n,2N,2M
i )− (2Y n,N,2M

i − Y n,N,M
i )|,
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Table 5.7: Errors Eε,N,M , E,N,M and rates of convergence F ε,N,M , FN,M using
scheme (5.31) without Richardson extrapolation for Example 5.5.3.

ε N = 128 N = 256 N = 512 N = 1024 N = 2048
M = 4 M = 8 M = 16 M = 32 M = 64

100 = 1 6.60E-08 4.24E-09 2.45E-10 1.43E-11 1.39E-12
3.96 4.11 4.10 3.37

10−1 3.35E-08 1.90E-09 1.01E-10 7.10E-12 3.95E-13
4.14 4.24 3.82 4.17

10−2 1.50E-07 7.14E-09 4.35E-10 3.55E-11 2.56E-12
4.40 4.04 3.62 3.79

10−3 2.10E-06 9.00E-08 4.77E-09 3.70E-10 3.45E-11
4.55 4.24 3.69 3.42

10−4 8.34E-06 3.86E-07 1.90E-08 1.66E-09 9.06E-11
4.43 4.34 3.52 4.20

10−5 1.05E-05 6.16E-07 3.46E-08 2.69E-09 1.69E-10
4.08 4.15 3.68 4.00

10−6 1.77E-05 8.33E-07 4.11E-08 3.02E-09 2.08E-10
4.41 4.34 3.77 3.86

10−7 1.72E-05 1.04E-06 4.92E-08 3.17E-09 2.81E-10
4.05 4.41 3.96 3.50

10−8 1.67E-05 8.23E-07 4.83E-08 3.62E-09 2.49E-10
4.34 4.09 3.74 3.86

EN,M 1.77E-05 8.33E-07 4.92E-08 3.62E-09 2.81E-10
FN,M 4.40 4.08 3.76 3.69

when scheme (5.31) is used with extrapolation technique (5.33). Using these values,

maximum errors for each value of ε and the rates of convergence are calculated by

Eε,N,M = max
i,n

Eε,N,M
i,n , F ε,N,M = log2

(
Eε,N,M

Eε,2N,2M

)
.
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Table 5.8: Errors Eε,N,M , E,N,M and rates of convergence F ε,N,M , FN,M using
scheme (5.31) with Richardson extrapolation for Example 5.5.3.

ε N = 128 N = 256 N = 512 N = 1024 N = 2048
M = 4 M = 8 M = 16 M = 32 M = 64

100 = 1 6.59E-08 4.24E-09 2.45E-10 1.42E-11 5.20E-12
3.96 4.11 4.11 1.44

10−1 3.25E-08 1.87E-09 9.97E-11 7.00E-12 7.26E-13
4.12 4.23 3.83 3.27

10−2 1.50E-07 7.14E-09 4.35E-10 3.55E-11 2.56E-12
4.40 4.04 3.62 3.79

10−3 2.10E-06 9.00E-08 4.77E-09 3.70E-10 3.45E-11
4.54 4.24 3.69 3.42

10−4 8.32E-06 3.86E-07 1.90E-08 1.66E-09 9.06E-11
4.43 4.34 3.52 4.20

10−5 1.04E-05 6.16E-07 3.46E-08 2.69E-09 1.69E-10
4.08 4.15 3.68 4.00

10−6 1.76E-05 8.33E-07 4.11E-08 3.02E-09 2.08e-10
4.40 4.34 3.77 3.86

10−7 1.72E-05 1.04E-06 4.92E-08 3.17E-09 2.81e-10
4.04 4.41 3.96 3.50

10−8 1.67E-05 8.23E-07 4.83E-08 3.62E-09 2.49E-10
4.34 4.09 3.74 3.86

EN,M 1.76E-05 8.33E-07 4.92E-08 3.62E-09 2.81e-10
FN,M 4.40 4.08 3.76 3.69

Then the parameter-robust errors and parameter-robust rates of convergence over

the set of ε are obtained by

EN,M = max
ε
F ε,N,M , FN,M = log2

(
EN,M

E2N,2M

)
.

Figure 5.4 displays the numerical solution of Example 5.5.2 for ε = 10−5. Again, we

observe the boundary layers at x = 0 and x = 1. From Tables 5.4 and 5.5, we see

that the order of parameter-robust convergence of the discretization scheme (5.31)
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Figure 5.3: Log-log plot for maximum error vs N for Example 5.5.1.

is increased from first to second order on using the Richardson extrapolation in

time. Also, Tables 5.5 and 5.6 show the orders of convergence of the discretization

scheme (5.31) with the Richardson extrapolation in time when the discretization

parameter in time (M) is doubled and quadrupled, respectively. Clearly, these

numerical results are in good agreement with the theoretical results. In Table 5.6

the orders of convergence are computed using the formulas as defined for Table 5.3.

Example 5.5.3. Consider the problem [87]


∂y
∂t
− ε ∂2y

∂x2
+ (1 + xe−t)y = f(x, t), (x, t) ∈ G,

y(x, 0) = 0, x ∈ Ḡx, y(0, t) = 0, y(1, t) = 0, t ∈ (0, T ],

(5.36)

with the term f(x, t) taken according to the exact solution given by

y(x, t) = t

(
e
−x√
ε + e

−(1−x)√
ε

1 + e
−1√
ε

− cos2(πx)

)
.
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Figure 5.4: Surface plot of numerical solution of Example 5.5.2 for ε =
10−5, N = 512, and M = 16.

For this problem we have the exact solution, so for the pointwise errors, maximum

errors and parameter-robust rates of convergence we can use the same formulas as

defined for Example 5.5.1. Similarly, the parameter-robust errors and parameter-

robust rates of convergence are calculated. In this problem the contribution of the

error corresponding the time discretization to the global error is negligible. That is

why even without the Richardson extrapolation in time we are getting the fourth

order convergence as shown in Table 5.7. In Table 5.8, the maximum pointwise

errors and rates of convergence are shown for the scheme (5.31) with the Richardson

extrapolation in time. So, for this test example, the results also authenticate the

validity of the theoretical results.
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5.6 Conclusions

We presented a high order parameter-robust convergent adaptive numerical method

for singularly perturbed time dependent reaction-diffusion problems. The problem is

discretized firstly in time using the implicit Euler scheme on a uniform mesh. Then

the obtained semidiscrete problems are discretized in space using a non-monotone

finite difference scheme. After that the totally discrete scheme is defined and it is

proved to be convergent of order one in time and four in space, independent of the

perturbation parameter. Further, the Richardson extrapolation technique is applied

to improve the order of convergence in time from one to two. Numerical results are

given in support of the theory.

***********


