
Chapter 4

A robust adaptive numerical method

for singularly perturbed delay parabolic

problems with Robin boundary con-

ditions

In this chapter, we consider a singularly perturbed parabolic reaction-diffusion equa-

tion with time delay. We define the model problem as follows

Ly :=
∂y

∂t
+ Lεy = f(x, t)− b(x, t)y(x, t− τ), (x, t) ∈ (0, 1)× (0, T ], (4.1)

with the initial condition in time

y(x, t) = φb(x, t), (x, t) ∈ [0, 1]× [−τ, 0], (4.2)

and the Robin boundary conditions in space


D0y(0, t) := y(0, t)−

√
ε ∂y
∂x

(0, t) = φ0(t), t ∈ (0, T ],

D1y(1, t) := y(1, t) +
√
ε ∂y
∂x

(1, t) = φ1(t), t ∈ (0, T ],

(4.3)

where Lεy := −ε ∂2y
∂x2

+ a(x, t)y, and 0 < ε ≤ 1 and τ > 0 define the singular

perturbation parameter and the constant delay in the solution input, respectively.

In addition, we consider 0 < α ≤ a(x, t) and 0 < β ≤ b(x, t) in [0, 1] × [0, T ] for

some constants α and β, which ensures the maximum principle for the operator L.
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The existence and uniqueness of the solution can be confirmed from [98, Theorem

4] under sufficient smoothness of the input functions.

Some examples of singularly perturbed delay differential equations are found in pop-

ulation dynamics [126], variational problems in control theory [127], study of bistable

devices [128], explanation of human pupil–light reflex [129], tumor growth and neu-

ral networks [130]. In these models, the time delay factor includes some previous

behavior which helps to model the phenomena more practically. For example, in

population ecology the hatching period or gestation period is represented by the

delay term, in control systems the delay term appears because of the finite speed

of the controller and some other important examples of delay differential singular

perturbation problems can be found in [91].

The presence of the delay term in the differential equation and the Robin boundary

conditions indeed make the theoretical part little complicated, due to which problem

(4.1)-(4.3) is less studied in the literature. In the present chapter, our main motive is

to construct a high order parameter-robust numerical method for the time-delayed

reaction-diffusion problems with Robin boundary conditions using layer-adaptive

equidistribution meshes. Since, meshes are moving at every time step, we have to

use a modified version of Euler scheme in time. The moving mesh algorithm requires

discretization of the problem and the discretization of a suitable error monitor func-

tion. Here, we consider a special discretization for Robin boundary conditions which

will make the convergence, quadratic in space. To simplify the convergence analysis,

we assume T is divisible by τ . Next, we provide the convergence analysis and prove

that the present approach is first order accurate in time and second order accurate

in space. The validity and effectiveness of the present method is also shown through

some numerical experiments.
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This chapter is structured as follows: In Section 4.1, we provide some properties of

the solution of problem (4.1)-(4.3). A finite difference discretization of the problem

and the formation of adaptive mesh is given in Section 4.2. Section 4.3 is completely

devoted to the error analysis for the proposed method. In Section 4.4, the numerical

results for two test examples are given and discussed. Then, the chapter concludes

with Section 4.5.

4.1 Properties of the continuous problem

The continuous problem (4.1) satisfies the following maximum principle which is

useful for obtaining the uniform stability of the continuous solution.

Theorem 4.1.1. [98](Continuous maximum principle) Assume that the function z

satisfies Lz ≥ 0, for (x, t) ∈ (0, 1]× (0, T ], D0z(0, t) ≥ 0 for t ∈ (0, T ], D1z(1, t) ≥ 0

for t ∈ (0, T ] and z(x, 0) ≥ 0 for x ∈ [0, 1]. Then z(x, t) ≥ 0 for (x, t) ∈ [0, 1]× [0, T ].

The following uniform stability estimate holds for the continuous problem (4.1).

Corollary 4.1.1. [98] The solution y of (4.1) satisfies the following bound

‖y‖[0,1]×[0,T ] ≤ max

{
1

α
‖Ly‖[0,1]×[0,T ], ‖D0y‖{0}×[0,T ], ‖D1y‖{1}×[0,T ], ‖y‖[0,1]×[−τ,0]

}
.

We now describe a suitable solution decomposition which will help us to prove the

convergence analysis of our proposed method. Based on the method of steps, we

partition the time interval [0, T ] by using delay term τ , such as [0, τ ], [τ, 2τ ] and so

on, so that we can decompose the convergence analysis on each partition separately.

Note that in [0, τ ], the right hand side, f − bφb(x, t− τ) is independent of ε. Hence,
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for t ∈ [0, τ ], (4.1)-(4.3) can be written as

Ly = f − bφb(x, t− τ), (x, t) ∈ (0, 1)× (0, τ ], (4.4)

with y(x, 0) = φb(x, 0), x ∈ [0, 1], and


D0y(0, t) = φ0(t), t ∈ (0, τ ],

D1y(1, t) = φ1(t), t ∈ (0, τ ].

Now, we decompose the solution y into smooth and singular components s and w,

resp., so that y = s+w and smooth component’s derivatives are uniformly bounded

upto certain order. To derive this, the smooth component is further decomposed as

s = s0 + εs1, so that s0 and s1 satisfy the following problems

∂s0

∂t
(x, t) + as0(x, t) = f − bφb(x, t− τ), (x, t) ∈ (0, 1)× (0, τ ], (4.5)

with s0(x, 0) = φb(x, 0), x ∈ [0, 1],

and

Ls1 =
∂2s0

∂x2
(x, t), (x, t) ∈ (0, 1)× (0, τ ], (4.6)

with s1(x, 0) = 0, x ∈ [0, 1], and


D0s1(0, t) = 0, t ∈ (0, τ ],

D1s1(1, t) = 0, t ∈ (0, τ ],

respectively. Thus, the smooth component s satisfies

Ls = f(x, t)− bφb(x, t− τ), (x, t) ∈ (0, 1)× (0, τ ], (4.7)

with s(x, 0) = φb(x, 0), x ∈ [0, 1], and


D0s(0, t) = D0s0(0, t), t ∈ (0, τ ],

D1s(1, t) = D1s0(1, t), t ∈ (0, τ ],

and the singular component w is determined by the following problem

Lw = 0, (x, t) ∈ (0, 1)× (0, τ ], (4.8)
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with w(x, 0) = 0, x ∈ [0, 1], and


D0w(0, t) = φ0(t)−D0s0(0, t), t ∈ (0, τ ],

D1w(1, t) = φ1(t)−D1s0(1, t), t ∈ (0, τ ].

Now we break the singular component into left and right layer parts so that w =

wll + wrr, where the left component wll is computed by

Lwll = 0, (x, t) ∈ (0, 1)× (0, τ ], (4.9)

with wll(x, 0) = 0, x ∈ [0, 1], and


D0wll(0, t) = φ0(t)−D0s0(0, t), t ∈ (0, τ ],

D1wll(1, t) = 0, t ∈ (0, τ ],

and the right component wrr is computed by

Lwrr = 0, (x, t) ∈ (0, 1)× (0, τ ],

with wrr(x, 0) = 0, x ∈ [0, 1] and


D0wrr(0, t) = 0, t ∈ (0, τ ],

D1wrr(1, t) = φ1(t)−D1s0(1, t), t ∈ (0, τ ].

Now, for t ∈ [τ, 2τ ], we write (4.1)-(4.3) as

Ly = f − by(x, t− τ), (x, t) ∈ (0, 1)× (τ, 2τ ], (4.10)

with y(x, t) = y(x, t), (x, t) ∈ [0, 1]×[0, τ ], and


D0y(0, t) = φ0(t), t ∈ (τ, 2τ ],

D1y(1, t) = φ1(t), t ∈ (τ, 2τ ].

Again we decompose the solution y into smooth and singular components as y =

s + w. The smooth component s is further decomposed as s = s0 + εs1, where s0

and s1 respectively, satisfy the following problems

∂s0

∂t
(x, t) + as0(x, t) = f − bs0(x, t− τ), (x, t) ∈ (0, 1)× (τ, 2τ ], (4.11)
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with s0(x, t) = y(x, t), (x, t) ∈ [0, 1]× [0, τ ],

and

Ls1 = −bs1(x, t− τ) +
∂2s0

∂x2
(x, t), (x, t) ∈ (0, 1)× (τ, 2τ ],

with s1(x, t) = 0, (x, t) ∈ [0, 1]× [0, τ ], and


D0s1(0, t) = 0, t ∈ (τ, 2τ ],

D1s1(1, t) = 0, t ∈ (τ, 2τ ].

Thus, the smooth component s satisfies

Ls = f(x, t)− bs(x, t− τ), (x, t) ∈ (0, 1)× (τ, 2τ ], (4.12)

with s(x, t) = y(x, t), (x, t) ∈ [0, 1]× [0, τ ],

and


D0s(0, t) = D0s0(0, t), t ∈ (τ, 2τ ],

D1s(1, t) = D1s0(1, t), t ∈ (τ, 2τ ],

and the singular component w is determined by

Lw = −bw(x, t− τ), (x, t) ∈ (0, 1)× (τ, 2τ ], (4.13)

with w(x, t) = 0, (x, t) ∈ [0, 1]× [0, τ ],

and


D0w(0, t) = φ0(t)−D0s0(0, t), t ∈ (τ, 2τ ],

D1w(1, t) = φ1(t)−D1s0(1, t), t ∈ (τ, 2τ ].

Similar to the interval [0, τ ], we break the singular component in left and right parts

as w = wll + wrr, where the left part wll is obtained by

Lwll = −bwll(x, t− τ), (x, t) ∈ (0, 1)× (τ, 2τ ], (4.14)

with wll(x, t) = 0, (x, t) ∈ [0, 1]× [0, τ ],
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and


D0wll(0, t) = φ0(t)−D0s0(0, t), t ∈ (τ, 2τ ],

D1wll(1, t) = 0, t ∈ (τ, 2τ ],

and the right part wrr is obtained by

Lwrr = −bwrr(x, t− τ), (x, t) ∈ (0, 1)× (τ, 2τ ], (4.15)

with wrr(x, t) = 0, (x, t) ∈ [0, 1]× [0, τ ],

and


D0wrr(0, t) = 0, t ∈ (τ, 2τ ],

D1wrr(1, t) = φ1(t)−D1s0(1, t), t ∈ (τ, 2τ ].

In an analogous way, we extend the decomposition approaches at each partitions to

get the decomposition on [0, T ]. Now, we can use the arguments given in [98], to

obtain the following result.

Theorem 4.1.2. The decomposition y = s + wll + wrr of (4.1)-(4.3) satisfies the

following bounds ∥∥∥∥ ∂p+qs∂xp∂tq

∥∥∥∥
[0,1]×[0,T ]

≤ C(1 + ε1−p/2), (4.16)

∣∣∣∣∂p+qwll∂xp∂tq

∣∣∣∣ ≤ Cε−
p
2 e
− x√

ε , (4.17)

∣∣∣∣∂p+qwrr∂xp∂tq

∣∣∣∣ ≤ Cε−
p
2 e
− (1−x)√

ε , 1 ≤ p+ 2q ≤ 4, p, q ∈ N0, (x, t) ∈ [0, 1]× [0, T ]. (4.18)

4.2 Discretization and mesh generation

4.2.1 The discrete problem

From Theorem 4.1.2, it can be observed that the boundary layer is not varying with

respect to time. Hence, we take a uniform mesh with total number of mesh points
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M for partitioning the time interval [0, T ]. In addition, we divide this domain in

m sub-intervals of equal length τ so that M = mMτ . Hence, each of these sub-

intervals is now divided in Mτ equal mesh-elements with time step-size ∆t = τ/Mτ .

We also divide [−τ, 0] into Mτ equal mesh-elements. On each time tj, a non-uniform

mesh {xji}Ni=0 is considered in the spatial direction with step size hji = xji − xji−1,

i = 1, . . . , N . Thus, the discretization of the domain is the tensor product of these

two 1D space-time meshes. On this discrete domain, (4.1) is discretized as follows

LN,MY j
i := δ?t Y

j
i +LN,Mε Y j

i = f ji − b
j
i Ỹ

j−Mτ

i , i = 1, ..., N − 1, j = 1, ...,M, (4.19)

with the discretized initial and boundary conditions

Y j
i = (φb)

j
i , i = 0, ..., N, j = −Mτ , ..., 0, (4.20)

and



DN,M
0 Y j

0 := Y j
0 −
√
εD+

x Y
j

0 +
hj1

2
√
ε
(aj0Y

j
0 + δ?t Y

j
0 )

= (φ0)j0 +
hj1

2
√
ε

(
f j0 − b

j
0Ỹ

j−Mτ

0

)
, j = 1, ...,M,

DN,M
1 Y j

N = Y j
N +
√
εD−x Y

j
N +

hjN
2
√
ε
(ajNY

j
N + δ?t Y

j
N)

= (φ1)jN +
hjN
2
√
ε

(
f jN − b

j
N Ỹ

j−Mτ

N

)
, j = 1, ...,M,

(4.21)

where

LN,Mε Y j
i = −εδ2

xY
j
i + ajiY

j
i , δ?t Y

j
i =

Y j
i − Ỹ

j−1
i

∆t
,

D+
x Y

j
i =

Y j
i+1 − Y

j
i

hji+1

, D−x Y
j
i =

Y j
i − Y

j
i−1

hji
, δ2

xY
j
i =

(D+
x −D−x )Y j

i

(hji + hji+1)/2
.

Here, Ỹ j−1
i and Ỹ j−Mτ

i represent the linear interpolants of Y j−1
i and Y j−Mτ

i , re-

spectively, at the spatial mesh points xji . The discretization satisfies the following

discrete maximum principle which can be obtained by following the arguments, given

in [98].
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Lemma 4.2.1. Consider a mesh function U such that LN,MU j
i ≥ 0, for i = 1, ..., N −

1, j = 1, ...,M, DN,M
0 U j

0 ≥ 0, DN,M
1 U j

N ≥ 0 for j = 1, ...,M and U j
i ≥ 0, i =

1, ..., N, j = 0. Then U j
i ≥ 0, for i = 0, ..., N, j = 0, ...,M.

From the above lemma, we also get the stability of the discrete solution.

4.2.2 Mesh equidistribution

We construct the adaptive mesh in the spatial direction based on the equidistribution

principle [47, 65, 131]. At any time level tk, the equidistributed mesh {xki } is obtained

by the following equidistribution principle

� xki

xki−1

M(y(γ, tk), γ)dγ =
1

N

� 1

0

M(y(γ, tk), γ)dγ, i = 1, ..., N, (4.22)

where M(y(x, tk), x) > 0 is called the monitor function. This principle can also be

formulated as follows:

� xk(ξ)

0

M(y(γ, tk), γ)dγ = ξ

� 1

0

M(y(γ, tk), γ)dγ, (4.23)

where (4.22) is formulated as an invertible mapping from the computational uniform

coordinates ξ ∈ [0, 1] to the physical non-uniform coordinates xk ∈ [0, 1].

In the literature, several type of monitor functions are available, based on the prob-

lem being considered and the discretization being used. In the present research,

we consider a monitor function constituting the second derivative of the singular

component of the solution and a positive constant ℵk, independent of N, (motivated

from [56]). The choice of singular component will make our analysis simpler. In

practice, this component can be replaced by the solution, itself. The positive con-

stant ℵk is chosen to prevent mesh starvation in the regular part of the solution and
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to improve the robustness of the adaptive mesh. Here, we consider the following

monitor function

M(y(x, tk), x) = ℵk +

∣∣∣∣∂2w

∂x2
(x, tk)

∣∣∣∣1/2, (4.24)

where ℵk can be chosen according to Lemma 4.2.2 given later.

Now we check the mesh structure generated by the equidistribution of the monitor

function (4.24). Let us use the approximation

∣∣∣∣∂2w

∂x2
(x, tk)

∣∣∣∣1/2 ≈ |ν1|1/2ε−1/2e
− x

2
√
ε + |ν2|1/2ε−1/2e

− (1−x)
2
√
ε , x ∈ [0, 1], (4.25)

where ν1 and ν2 are the constants independent of ε and x. Thus,

� 1

0

∣∣∣∣∂2w

∂s2
(s, tk)

∣∣∣∣1/2ds ≈ 2(|ν1|1/2 + |ν2|1/2)(1− e−
1

2
√
ε ) := K.

Using the approximation (4.25) in the monitor function (4.24), the equidistribution

principle (4.23) leads to the following mapping

ξ

(
ℵk

K
+ 1

)
=
ℵk

K
xk(ξ) + λ1

(
1− e−

xk(ξ)

2
√
ε

)
+ λ2

(
e
− (1−xk(ξ))

2
√
ε − e−

1
2
√
ε

)
, (4.26)

where

λ1 =
|ν1|1/2

(|ν1|1/2 + |ν2|1/2)(1− e−
1

2
√
ε )

and λ2 =
|ν2|1/2

(|ν1|1/2 + |ν|1/22 )(1− e−
1

2
√
ε )
.

Note that 0 ≤ λ1, λ2 ≤ 1+O(e−1/
√
ε). Hence, the uniform mesh {ξi = i/N}Ni=0 on the

computational domain is mapped to a non-uniform equidistributed mesh {xki }Ni=0 on

the physical domain by the following way

i

N

(
ℵk

K
+ 1

)
=
ℵk

K
xki + λ1

(
1− e−

xki
2
√
ε

)
+ λ2

(
e
− (1−xki )

2
√
ε − e−

1
2
√
ε

)
. (4.27)
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Lemma 4.2.2. Assuming ℵk = K, the equidistributed mesh obtained from (4.27)

satisfies

xkS < 2
√
ε ln(N) < xkS+1 and xk℘−1 < 1− 2

√
ε ln(N) < xk℘,

where

S =

[
1

2

(
2
√
εN ln(N) + λ1(N − 1) + λ2N(N − 1)e

− 1
2
√
ε

)]
,

℘ =

[
N − 1

2

(
2
√
εN ln(N) + λ1N(N − 1)e

− 1
2
√
ε + λ2(N − 1)

)]
+ 1,

and [·] is the integer part of the value. Moreover, the mesh spacing for i = 1, ...,S

and for i = ℘+ 1, ..., N satisfies hki < C
√
ε with

|hki+1 − hki | ≤ C(hki )
2, i = 1, 2, . . . ,S − 1,

and |hki+1 − hki | ≤ C(hki+1)2, i = ℘+ 1, ..., N − 1.

Further, we have

e
− xki

2
√
ε ≤ CN−1 for i ≥ S − 1, and e

− (1−xki )
2
√
ε ≤ CN−1 for i ≤ ℘+ 1.

Proof. It can be easily observed that there must exist two positive integers S and

℘ such that xkS < 2
√
ε ln(N) < xkS+1 and xk℘−1 < 1 − 2

√
ε ln(N) < xk℘ respectively,

since, 0 < 2
√
ε ln(N) < 1 and also 0 < 1− 2

√
ε ln(N) < 1, are true, for sufficiently

small ε.

By substituting xki = 2
√
ε ln(N) in (4.27) and considering ℵk = K, the value of S

follows by solving for i. The procedure for obtaining ℘ is analogous.

To prove the bound on mesh spacing for i = 1, ...,S − 1, we find upper and

lower bounds of the position of mesh points xki . Taking ℵk = K and noting that
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e
− (1−xki )

2
√
ε − e−

1
2
√
ε

)
= O(e−1/

√
ε), from (4.27) we get xki < xk, where

2i

λ1N
=

(
1− e−

xki
2
√
ε

)
.

Hence

xki = −2
√
ε ln

(
1− 2i

λ1N

)
. (4.28)

Now using this upper bound in (4.27) we have xki > xki , where

xki = −2
√
ε ln

(
1− 1

λ1

(
2i

N
+ 2
√
ε ln

(
1− 2i

λ1N

)))
. (4.29)

Thus, from equations (4.28) and (4.29), we have

hki < xki − xki−1 = 2
√
ε ln

(
1 +

2 + 2
√
εN ln (λ1N/(λ1N − 2(i− 1)))

λ1N − 2i

)
< C

√
ε.

Similarly we can prove the result for i = ℘+ 1, ..., N − 1.

Now taking ℵk = K and noting that

(
e
− (1−xki )

2
√
ε − e−

1
2
√
ε

)
= O(e−1/

√
ε), from (4.27),

we have

e
−
xkS−1
2
√
ε =

1

λ1

(
λ1 + xS−1 −

2(S − 1)

N

)
≤ 1

λ1

(
λ1 + 2

√
ε ln(N)− 1

N

[
2
√
εN ln(N) + λ1(N − 1)

+ λ2N(N − 1)e
− 1

2
√
ε − 2

])
≤ CN−1.

Thus, for i ≥ S − 1, we obtain e
−
xkS−1
2
√
ε ≤ CN−1. A similar proof can be done for

i ≤ ℘+ 1.
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Lemma 4.2.3. For i = 1, ..., N , the mesh spacing satisfies

hki ≤ CN−1.

Proof. The proof is a direct consequence of the equidistribution principle (4.22) and

the choice ℵk = K, cf. Lemma 3.16.

4.3 Error analysis

In this section, we discuss the convergence analysis of the proposed method on

equidistributed meshes. The main result is proved in the following theorem.

Theorem 4.3.1. Let y(xji , tj) and Y j
i be the solutions of (4.1)-(4.3) and (4.19)-(4.21),

respectively. If for some 0 < ρ < 1, N−ρ ≤ C∆t, then we have the following estimate

|y(xji , tj)− Y
j
i | ≤ C(∆t+N−2+ρ) for all i = 0, . . . , N, j = 0, . . . ,M.

Proof. For tj ∈ [0, τ ], we have

LN,MY j
i = f ji − b

j
i (φb)

j−Mτ

i , i = 1, ..., N − 1, j = 1, ...,Mτ , (4.30)

with Y 0
i = (φb)

0
i , i = 0, ..., N,

and


DN,M

0 Y j
0 = φ0(tj) +

hj1
2
√
ε

(
f j0 − b

j
0(φb)

j−Mτ

0

)
, j = 1, ...,Mτ ,

DN,M
1 Y j

N = φ1(tj) +
hjN
2
√
ε

(
f jN − b

j
N(φb)

j−Mτ

N

)
, j = 1, ...,Mτ .
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Analogous to the decomposition of y of (4.4), we consider the decomposition of

discrete solution Y as Y = S +W , where S satisfies the following discrete problem

LN,MSji = f ji − b
j
i (φb)

j−Mτ

i , i = 1, ..., N − 1, j = 1, ...,Mτ , (4.31)

with S0
i = (φb)

0
i , i = 0, ..., N,

and


DN,M

0 Sj0 = D0s(0, tj) +
hj1

2
√
ε

(
f j0 − b

j
0(φb)

j−Mτ

0

)
, j = 1, ...,Mτ ,

DN,M
1 SjN = D1s(1, tj) +

hjN
2
√
ε

(
f jN − b

j
N(φb)

j−Mτ

N

)
, j = 1, ...,Mτ ,

and W is the solution of the following discrete problem

LN,MW j
i = 0, i = 1, ..., N − 1, j = 1, ...,Mτ , (4.32)

with W 0
i = 0, i = 0, ..., N,

and


DN,M

0 W j
0 = φ0(tj)−D0s(0, tj), j = 1, ...,Mτ ,

DN,M
1 W j

N = φ1(tj)−D1s(1, tj), j = 1, ...,Mτ .

Then the error can be decomposed as

|y − Y | ≤ |s− S|+ |w −W |. (4.33)

Hence, we can estimate the errors in smooth and singular components separately.

First, to estimate the truncation error for the smooth component, using the contin-

uous problem (4.7) and the discrete problem (4.31), we have

[LN,M(s− S)]ji = −ε
(
δ2
x −

∂2

∂x2

)
s(xji , tj) +

(
δ?t −

∂

∂t

)
s(xji , tj).
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Now we use Taylor expansion with standard interpolation error estimate, and the

condition N−ρ ≤ C∆t for some 0 < ρ < 1 and obtain

|[LN,M(s− S)]ji | ≤ max
η∈[xji−1,x

j
i+1]

∣∣∣∣∂3s

∂x3
(η, tj)

∣∣∣∣ε|hji + hji+1|
3

+ max
µ∈[tj−1,tj ]

∣∣∣∣∂2s

∂t2
(xi, µ)

∣∣∣∣∆t2 + CN−2+ρ. (4.34)

By using the derivative bounds of s from Theorem 4.1.2 with hji +hji+1 ≤ CN−1 and

√
ε� N−1, we get

|[LN,M(s− S)]ji | ≤ CN−2 + C∆t+ CN−2+ρ ≤ C(∆t+N−2+ρ). (4.35)

Now, for the left side boundary, we have

[DN,M
0 (s− S)]j0 = [DN,M

0 s]j0 −

[
D0s(0, tj) +

hj1
2
√
ε

(
f j0 − b

j
0(φb)

j−Mτ

0

)]

= s(xj0, tj)−
√
εD+

x s(x
j
0, tj) +

hj1
2
√
ε

(
aj0s(x

j
0, tj) + δ?t s(x

j
0, tj)

)
−

[
s(xj0, tj)−

√
ε
∂s

∂x
(xj0, tj) +

hj1
2
√
ε

(
f j0 − b

j
0(φ)j−Mτ

0

)]

=
√
ε

[
∂s

∂x
−D+

x s

]
(xj0, tj)

+
hj1

2
√
ε

[
−f j0 + bj0(φ)j−Mτ

0 + aj0s(x
j
0, tj) + δ?t s(x

j
0, tj)

]
=
√
ε

[
∂s

∂x
−

(
D+
x s−

hj1
2

∂2s

∂x2

)]
(xj0, tj) +

hj1
2
√
ε

[
δ?t s−

∂s

∂t

]
(xj0, tj)

= −∂
3s

∂x3
(η, tj)

(hj1)2
√
ε

6
− ∂2s

∂t2
(xj0, µ)

hj1∆t

4
√
ε
,

for some η ∈ (xj0, x
j
1), and µ ∈ (tj−1, tj). Here, interpolation error in the discretiza-

tion of time derivative is excluded because the interpolation does not make any

difference at the boundary points. Using the derivative bounds of s and results in
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Lemmas 4.2.2 and 4.2.3, we obtain

|[DN,M
0 (s− S)]j0| ≤ max

η∈[xj0,x
j
1]

∣∣∣∣∂3s

∂x3
(η, tj)

∣∣∣∣(hj1)2
√
ε

6
+ max

µ∈[tj−1,tj ]

∣∣∣∣∂2s

∂t2
(xj0, µ)

∣∣∣∣hj1∆t

4
√
ε

≤ C(∆t+N−2). (4.36)

Similarly, for the right side boundary, we can obtain

|[DN,M
1 (s− S)]j0| ≤ C(∆t+N−2). (4.37)

Now, we consider the mesh function

(Ψ±)ji = C(∆t+N−2+ρ)± (s(xji , tj)− S
j
i ).

From (4.35), we have LN,M(Ψ±)ji ≥ 0. Further, (4.36) and (4.37) give DN,M
0 (Ψ±)j0 ≥

0 and DN,M
1 (Ψ±)jN ≥ 0, respectively. Thus, using the discrete maximum principle

(Lemma 4.2.1) we get

|s(xji , tj)− S
j
i | ≤ C(∆t+N−2+ρ), for i = 0, ..., N, j = 0, ...Mτ . (4.38)

Next, to estimate the truncation error for the singular component, we use (4.8) and

(4.32) to get

|[LN,M(w −W )]ji | = −ε
(
δ2
x −

∂2

∂x2

)
w(xji , tj) +

(
δ?t −

∂

∂t

)
w(xji , tj).

We estimate the error in the singular component according to the location of the

mesh points. For outside the layer regions, that is, for i = S, ..., ℘, Taylor expansion

with standard interpolation error estimate and the condition N−ρ ≤ C∆t for some
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0 < ρ < 1, lead to

|[LN,M(w−W )]ji | ≤ Cε max
η∈[xji−1,x

j
i+1]

∣∣∣∣∂2w

∂x2
(η, tj)

∣∣∣∣+ max
µ∈[tj−1,tj ]

∣∣∣∣∂2w

∂t2
(xji , µ)

∣∣∣∣∆t2 +CN−2+ρ.

Now, using the derivative bounds of w, we have

|[LN,M(w −W )]ji | ≤ C


e
−
x
j
i−1√
ε + C∆t+ CN−2+ρ, xji ≤ 1

2
,

e
−

(1−xj
i+1

)
√
ε + C∆t+ CN−2+ρ, xji >

1
2
.

When S ≤ i and xji ≤ 1
2
,

|[LN,M(w −W )]ji | ≤ C

(
e
−
x
j
S−1
2
√
ε

)2

+ C∆t+ CN−2+ρ.

Now, from the mesh structure of the equidistributed mesh (Lemma 4.2.2), we have

e
−
x
j
S−1
2
√
ε ≤ CN−1. Therefore, for S ≤ i and xji ≤ 1

2
, we obtain

|[LN,M(w −W )]ji | ≤ CN−2 + C∆t+ CN−2+ρ ≤ C(∆t+N−2+ρ).

Again, the same bound can be obtained by using the similar arguments for i ≤ ℘

and xji >
1
2
.

Next, to estimate the truncation error for i = 1, ...,S−1 and i = ℘+1, ..., N −1, we

provide the details of the left side boundary layer region as it will be analogous for the

right side boundary layer region. Using Taylor expansions, standard interpolation
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error estimate and the condition N−ρ ≤ C∆t for some 0 < ρ < 1, we get

|[LN,M(w −W )]ji | ≤
ε

hji + hji+1

[
max

η∈[xji−1,x
j
i+1]

∣∣∣∣∂3w

∂x3
(η, tj)

∣∣∣∣|(hji+1)2 − (hji )
2|

+ max
η∈[xji−1,x

j
i+1]

∣∣∣∣∂4w

∂x4
(η, tj)

∣∣∣∣(hji )2(hji + hji+1)

]

+ max
µ∈[tj−1,tj ]

∣∣∣∣∣∂2w(xji , µ)

∂t2

∣∣∣∣∣∆t2 + CN−2+ρ.

Using the derivative bounds of w and Lemmas 4.2.2 and 4.2.3, we get

|[LN,M(w −W )]ji | ≤ Cε−1(hji )
2e
−
x
j
i√
ε + C∆t+ CN−2+ρ.

Now we can use the equidistribution principle to bound the first term of the left

hand side, as follows

Cε−1(hji )
2e
−
x
j
i√
ε ≤ Cε−1

(� xji

xji−1

e
− ξ

2
√
ε dξ

)2

≤ Cε−1

(
√
ε

� xji

xji−1

M(y(γ), γ)dγ

)2

≤ CK2N−2.

Thus, we have

|[LN,M(w −W )]ji | ≤ C(∆t+N−2+ρ). (4.39)

For the left side boundary, the truncation error is given by

|[DN,M
0 (w −W )]j0| ≤ max

η∈[xj0,x
j
1]

∣∣∣∣∂3w

∂x3
(η, tj)

∣∣∣∣(hj1)2
√
ε

6
+ max

µ∈[tj−1,tj ]

∣∣∣∣∂2w

∂t2
(xji , µ)

∣∣∣∣hj1∆t

4
√
ε
.
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Hence, using derivative bounds of w, Lemma 4.2.2 and the equidistribution principle,

we get

|[DN,M
0 (w −W )]j0| ≤ Cε−1(hj1)2e−x

j
0

√
1
ε + C∆t

≤ Cε−1

( � xj1

xj0

e−
γ
2

√
1
εdγ

)2

+ C∆t

≤ Cε−1

(√
ε

� xj1

xj0

M(y(γ, tj), γ)dγ

)2

+ C∆t

≤ CK2N−2 + C∆t

≤ C(∆t+N−2). (4.40)

Similarly for the right side boundary we can obtain

|[DN,M
1 (w −W )]jN | ≤ C(∆t+N−2). (4.41)

Now, we consider the mesh function

(Φ±)ji = C(∆t+N−2+ρ)± (w(xji , tj)−W
j
i ).

From (4.39), we have LN,M(Φ±)ji ≥ 0. Further, (4.40) and (4.41) give DN,M
0 (Φ±)j0 ≥ 0

and DN,M
1 (Φ±)jN ≥ 0, respectively. Thus, using discrete maximum principle in

Lemma 4.2.1, we get

|w(xji , tj)−W
j
i | ≤ C(∆t+N−2+ρ), for i = 0, ..., N, j = 0, ...,Mτ . (4.42)

Hence, combining the error bounds of the smooth and singular components from

(4.38) and (4.42), for tj ∈ [0, τ ], we get

|y(xji , tj)− Y
j
i | ≤ C(∆t+N−2+ρ), i = 0, ..., N. (4.43)
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Now, to prove the convergence result for tj ∈ [τ, 2τ ], we consider the discretization

of the continuous problem (4.10) as follows

LN,MY j
i = f ji − b

j
i Ỹ

j−Mτ

i , i = 1, ..., N − 1, j = Mτ + 1, ..., 2Mτ , (4.44)

with Y j
i = Y j

i , i = 0, ..., N, j = 1, ...,Mτ ,

and


DN,M

0 Y j
0 = (φ0)(tj) +

hj1
2
√
ε

(
f j0 − b

j
0Ỹ

j−Mτ

0

)
, j = Mτ + 1, ..., 2Mτ ,

DN,M
1 Y j

N = (φ1)(tj) +
hjN
2
√
ε

(
f jN − b

j
N Ỹ

j−Mτ

N

)
, j = Mτ + 1, ..., 2Mτ .

Again, we consider the decomposition of discrete solution Y as Y = S + W , where

S is the solution of the following discrete problem

LN,MSji = f ji − b
j
i S̃

j−Mτ

i , i = 1, ..., N − 1, j = Mτ + 1, ..., 2Mτ , (4.45)

with Sji = Y j
i , i = 0, ..., N, j = 1, ...Mτ ,

and


DN,M

0 Sj0 = D0s(0, tj) +
hj1

2
√
ε

(
f j0 − b

j
0S̃

j−Mτ

0

)
, j = Mτ + 1, ..., 2Mτ ,

DN,M
1 SjN = D1s(1, tj) +

hjN
2
√
ε

(
f jN − b

j
N S̃

j−Mτ

N

)
, j = Mτ + 1, ..., 2Mτ ,

and W satisfies

LN,MW j
i = −bjiW̃

j−Mτ

i , i = 1, ..., N − 1, j = Mτ + 1, ..., 2Mτ , (4.46)

with W j
i = 0, i = 0, ..., N, j = 1, ...Mτ ,

and


DN,M

0 W j
0 = φ0(tj)−D0s(0, tj) +

hj1
2
√
ε

(
−bj0W̃

j−Mτ

0

)
, j = Mτ + 1, ..., 2Mτ ,

DN,M
1 W j

N = φ1(tj)−D1s(1, tj) +
hjN
2
√
ε

(
−bjNW̃

j−Mτ

N

)
, j = Mτ + 1, ..., 2Mτ .

Thus, the error can be decomposed as

|y − Y | = |s− S|+ |w −W |. (4.47)
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For the smooth component s, we have

[LN,M(s− S)]ji = −bji
(
s(xji , tj−Mτ )− S̃

j−Mτ

i

)
− ε

(
δ2
x −

∂2

∂x2

)
s(xji , tj) +

(
δ?t −

∂

∂t

)
s(xji , tj).

The first term can be bounded using (4.38) and standard interpolation error bounds.

The other terms can be bounded by using the previous arguments as in (4.35)). Thus,

we obtain

|[LN,M(s− S)]ji | ≤ C(∆t+ CN−2+ρ). (4.48)

At the boundaries, we again use the previous arguments to get

|[DN,M
0 (s− S)]j0| ≤ C(∆t+N−2) (4.49)

and

|[DN,M
1 (s− S)]jN | ≤ C(∆t+N−2), tj ∈ (τ, 2τ ]. (4.50)

Now, considering (Ψ±)ji = C(∆t+N−2+ρ)±(s(xji , tj)−S
j
i ), (4.48) gives LN,M(Ψ±)ji ≥

0, and (4.49), (4.50) give DN,M
0 (Ψ±)j0 ≥ 0 and DN,M

1 (Ψ±)jN ≥ 0, respectively. Thus,

using discrete maximum principle (Lemma 4.2.1), we get

|s(xi, tj)− Sji | ≤ C(∆t+N−2+ρ), for i = 0, ..., N, j = Mτ , ..., 2Mτ . (4.51)
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Next, to estimate the truncation error for the singular component, we have from

(4.13) and (4.46),

|[LN,M(w −W )]ji | = −b
j
i

(
w(xji , tj−Mτ )− W̃

j−Mτ

i

)
− ε

(
δ2
x −

∂2

∂x2

)
w(xji , tj) +

(
δ?t −

∂

∂t

)
w(xji , tj).

The first term can be bounded using standard interpolation error bounds and (4.42).

Using arguments similar for tj ∈ [0, τ ], we get the following estimate for tj ∈ (τ, 2τ ] :

∣∣[LN,M(W − w)]ji
∣∣ ≤ C(∆t+N−2+ρ). (4.52)

Again for the boundaries, we use previous arguments to get

|[DN,M
0 (w −W )]j0| ≤ C(∆t+N−2+ρ) (4.53)

and

|[DN,M
1 (w −W )]jN | ≤ C(∆t+N−2+ρ), tj ∈ (τ, 2τ ]. (4.54)

Now, considering (Φ±)ji = C(∆t+N−2+ρ)±(w(xji , tj)−W
j
i ), (4.52) gives LN,M(Φ±)ji ≥

0, and (4.53), (4.54) give DN,M
0 (Φ±)j0 ≥ 0 and DN,M

1 (Φ±)jN ≥ 0, respectively. Now,

using discrete maximum principle (Lemma 4.2.1), we get

|w(xi, tj)−W j
i | ≤ C(∆t+N−2+ρ), for i = 0, ..., N, j = Mτ , ..., 2Mτ . (4.55)

Therefore, combining the error bounds in (4.51) and (4.55), we get

|y(xi, tj)− Y j
i | ≤ C(∆t+N−2+ρ), for i = 0, ..., N, j = Mτ , ..., 2Mτ . (4.56)

Hence, the result follows by using mathematical induction.
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Remark 4.3.1. We want to note that the assumption N−ρ ≤ C∆t, for some 0 < ρ <

1, in the above theorem, does not have any influence in the convergence behavior of

the numerical solution, which can be seen in the next section.

4.4 Numerical experiments

Now, we provide strong numerical evidences in favor of our theoretical findings.

We use the following moving mesh algorithm to construct the equidistributed mesh

and the boundary layer-adaptive solution on this mesh. This algorithm is originally

proposed by de Boor [47] and has been also used by several researchers, for example

[58, 61, 62, 71, 115]. The convergence analysis of de Boor algorithm is discussed in

[116]. In practice, we can write the discrete version of the equidistribution problem

as

hkiMk
i =

1

N

N∑
i=1

hkiMk
i , i = 1, ..., N, (4.57)

where Mk
i is the discrete approximation of M(xki , tk). However, for the numerical

experiments, we need to reformulate (4.57) into the following weakened form of the

equidistribution principle

hkiMk
i ≤

%

N

N∑
i=1

hkiMk
i , i = 1, ..., N. (4.58)

Here, % > 1 is a user chosen constant. If we choose % near to 1, the obtained

solution will be more accurate and correspondingly, the number of iteration will

become larger. In our numerical experiments, we have taken % = 1.1. Note that, the

second order derivative of regular component of the solution is uniformly bounded

from (4.16). Hence, it will be appropriate to use Y in place of the layer component

W in (4.24) (see also [124]).
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Algorithm 3: Algorithm for the adaptive mesh and adaptive solution

Input: N, M ∈ N, 0 < ε ≤ 1 and % > 1.
Output: Adaptive mesh {xki } and adaptive solution Y m

i at each time level tm.

1. Take uniform mesh in each sub-interval [0, τ ], [τ, 2τ ], · · · , [(m− 1)τ, T ] (of the
time domain) containing exactly Mτ mesh partitions at every subinterval.

Initialize (iteration r = 1) the spatial mesh {xk,(r)i } as the uniform mesh at
time level tk = t1. Now we show the procedure for obtaining solution at [0, τ ].

2. Solve the discrete problem (4.19) for Y
k,(r)
i on {xk,(r)i } using linear

interpolants of Y k−1
i and Y k−Mτ

i on the mesh {xk,(r)i }. Here the delayed
solution will be used.

3. Find the discrete monitor function, defined by

Mk,(r)
i = ℵk,(r) + |δ2

xY
k,(r)
i |1/2, for i = 1, ..., N − 1,

where ℵk,(r) is defined by

ℵk,(r) = h
k,(r)
1 |δ2

xY
k,(r)

1 |1/2 +
N−1∑
i=2

h
k,(r)
i

{
|δ2
xY

k,(r)
i−1 |1/2 + |δ2

xY
k,(r)
i |1/2

2

}
+ h

k,(r)
N |δ2

xY
k,(r)
N−1 |

1/2.

4. Set H
k,(r)
i = h

k,(r)
i

(Mk,(r)
i−1 +Mk,(r)

i

2

)
for i = 1, ..., N , take Mk,(r)

0 =Mk,(r)
1 and

Mk,(r)
N =Mk,(r)

N−1. Then, define A
k,(r)
i byA

k,(r)
i =

∑i
j=1 H

k,(r)
j for i = 1, ..., N

and A
k,(r)
0 = 0.

5. Stopping criterion: Define %(r) by %(r) = N

A
k,(r)
N

max
i=1,...,N

H
k,(r)
i . Go to Step 7,

if %(r) ≤ %, else continue with Step 6.

6. Define Q
k,(r)
i = i

A
k,(r)
N

N
for i = 0, ..., N . New mesh {xk,(r+1)

i } is generated by

evaluating the interpolation of the points (A
k,(r)
i , x

k,(r)
i ) at Q

k,(r)
i . Set

r = r + 1 and return to Step 2.

7. Take {xk,∗i } = {xk,(r)i } as the final layer-adaptive mesh at t = tk; and

Y k,∗
i = Y

k,(r)
i as the required adaptive solution at this time.

8. Go to Step 2 with k = k + 1, to find the numerical solution at next time level
with {xki } as the initial iteration for time level tk+1. Repeat the process, till
we reach the endpoint t = τ of the first time subinterval [0, τ ].

9. Now use the same procedure to find the adaptive solution at every time
subinterval [τ, 2τ ], · · · , [(m− 1)τ, T ] till the final time is reached, by
repeating the procedures from Step 2 (say with the time t = τ for the time
subinterval [τ, 2τ ]), and r = 1.
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Numerical Examples

Example 4.4.1. Let us consider the following time delayed Robin type boundary

value problem:

∂y

∂t
− ε∂

2y

∂x2
+ (1 + xe−t)y = f(x, t)− y(x, t− 1), (x, t) ∈ (0, 1)× (0, 2],

with y(x, t) = φb(x, t), (x, t) ∈ [0, 1]× [−1, 0],

and


D0y(0, t) = φ0(t), t ∈ (0, 2],

D1y(1, t) = φ1(t), t ∈ (0, 2],

where the functions f(x, t), φ0(t), φ1(t) and φb(x, t) are chosen to satisfy the exact

solution

y(x, t) = t

(
e−x/

√
ε + e−(1−x)/

√
ε

1 + e−1/
√
ε

− cos2(πx)

)
.

Figure 4.1 displays the solution plot of Example 4.4.1 for ε = 10−6 with N = 64

and M = 32. The presence of boundary layers at x = 0 and x = 1, can be clearly

confirmed from this figure. In addition, Figure 4.2 shows that the initial uniform

mesh points have moved to the boundary layer regions based on the above iterative

moving mesh algorithm, and the equidistributed mesh is also dense to the boundary

regions for Example 4.4.1. Now, we calculate the maximum pointwise errors and

rates of convergence for different values of ε and discretization parameters M and

N by using the following formulas

Eε,N,M = max
i,k
|Y k
i − y(xki , tk)|, F ε,N,M = log2

(
Eε,N,M

Eε,2N,2M

)
.
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Figure 4.1: Boundary layer-adapted numerical soluton of Example 4.4.1 with
N = 64, M = 32 and ε = 10−6.

The parameter-robust errors and the corresponding rates of convergence are calcu-

lated by

EN,M = max
ε
Eε,N,M , FN,M = log2

(
EN,M

E2N,2M

)
,

respectively.

Table 4.1 represents the parameter-robust convergence for Example 4.4.1. The over-

all second order accuracy in space and time, is due to the fact that the present

problem is space dominated for the input data given in Table 4.1. The expected

rate of accuracy for a general problem, which matches with theoretical findings, will

be clear from Example 4.4.2.

Further, we give a comparison of uniform accuracy between the proposed approach
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Figure 4.2: Iteration-wise moving mesh trajectory and mesh density in space at
final time resp., for N = 64, M = 32 and ε = 10−6 of Example 4.4.1.

on equidistributed mesh with the approximate solution, obtained on existed Shishkin

mesh in Table 4.2 for Example 4.4.1. The Shishkin mesh is defined using the tran-

sition parameter σ = min{1/4, 2
√
ε ln(N)}. It clearly shows that, the numerical

solution obtained on a Shishkin mesh, is lesser accurate compared to the present

approach. This is also expected from our theoretical findings, as the order of accu-

racy of approximate solution on Shishkin mesh is at most O(N−2 ln2(N)) in space,

for the present scheme. Also, note that the errors at equidistributed mesh is far less

compared to errors on Shishkin mesh irrespective of the perturbation parameters.

Example 4.4.2. Now, let us consider the time delayed parabolic PDE with Robin

type boundary conditions:

∂y

∂t
− ε∂

2y

∂x2
+

1 + x2

2
y = t3 − y(x, t− 1), (x, t) ∈ (0, 1)× (0, 2],

with y(x, t) = 0, (x, t) ∈ [0, 1]× [−1, 0],

and


D0y(0, t) = −128

35
π−1/2t7/2, t ∈ (0, 2],

D1y(1, t) = −128
35
π−1/2t7/2, t ∈ (0, 2].
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Table 4.1: Maximum pointwise errors Eε,N,M , parameter-robust errors EN,M ,
rates of convergence F ε,N,M and parameter-robust convergence rates FN,M using

scheme (4.19) for Example 4.4.1.

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
∆t = 1/8 ∆t = 1/16 ∆t = 1/32 ∆t = 1/64 ∆t = 1/128 ∆t = 1/256

10−1 3.3229e-03 8.5091e-04 2.1776e-04 5.4424e-05 1.3610e-05 3.4041e-06
1.9654 1.9662 2.0004 1.9996 1.9993

10−2 5.7689e-03 1.4149e-03 3.5227e-04 8.7940e-05 2.1981e-05 5.4947e-06
2.0276 2.0059 2.0021 2.0003 2.0001

10−3 1.7627e-02 4.5435e-03 1.0607e-03 2.5933e-04 6.4431e-05 1.6081e-05
1.9559 2.0988 2.0322 2.0090 2.0024

10−4 3.1762e-02 7.3546e-03 1.7625e-03 4.3722e-04 1.1139e-04 2.7438e-05
2.1106 2.0610 2.0112 1.9728 2.0213

10−5 4.4253e-02 9.3469e-03 2.2562e-03 5.5237e-04 1.3756e-04 3.4357e-05
2.2432 2.0506 2.0302 2.0056 2.0014

10−6 5.4466e-02 1.0587e-02 2.4723e-03 6.0734e-04 1.5054e-04 3.7571e-05
2.3631 2.0983 2.0253 2.0123 2.0025

10−7 6.3989e-02 1.1225e-02 2.5919e-03 6.3013e-04 1.5585e-04 3.8828e-05
2.5111 2.1147 2.0403 2.0155 2.0050

10−8 6.7095e-02 1.2316e-02 2.6467e-03 6.4081e-04 1.5801e-04 3.9357e-05
2.4456 2.2183 2.0462 2.0199 2.0053

EN,M 6.7095e-02 1.2316e-02 2.6467e-03 6.4081e-04 1.5801e-04 3.9357e-05
FN,M 2.4456 2.2183 2.0462 2.0199 2.0053

Table 4.2: Comparison of parameter-robust errors EN,M and corresponding
convergence rates FN,M obtained on Shishkin and equidistribution meshes using

scheme (4.19) for Example 4.4.1.

N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε ∈ Eε ∆t = 1/8 ∆t = 1/16 ∆t = 1/32 ∆t = 1/64 ∆t = 1/128 ∆t = 1/256

Shishkin mesh [98] 7.0933e-02 2.8034e-02 9.9156e-03 3.2837e-03 1.0439e-03 3.2271e-04
1.3393 1.4994 1.5944 1.6533 1.6938

Equidistribution mesh 6.7095e-02 1.2316e-02 2.6467e-03 6.4081e-04 1.5801e-04 3.9357e-05
2.4456 2.2183 2.0462 2.0199 2.0053

The exact solution of this example is unknown. Hence, we use a variant of the double

mesh principle [58, 113] to compute the pointwise errors and corresponding rates of

convergence. Based on this principle, the numerical solution on equidistributed mesh

will be compared with the solution, which is obtained on the bisected equidistributed
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Figure 4.3: Boundary layer-adapted numerical solution of Example 4.4.2 with
N = 64, M = 32 and ε = 10−6.

mesh. The error and rate of convergence formulae based on this technique are

Eε,N,M = max
i,k
|Y k,2N,2M
i − Y k,N,M

i |, F ε,N,M = log2

(
Eε,N,M

E2N,2M
ε

)
.

The uniform errors and corresponding rates of convergence are calculated as before.

As like in Example 4.4.1, one can also observe the boundary layer phenomena for

Example 4.4.2 from Figure 4.3, which is plotted with a very small perturbation

parameter ε = 10−6. Here, note that the present method with discretized Robin

boundary condition, is first order uniform accurate in space and time from Table

4.3. This is matching with our theoretical findings. This also shows the dominant
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Table 4.3: Maximum pointwise errors Eε,N,M , parameter-robust errors EN,M ,
rates of convergence F ε,N,M and parameter-robust convergence rates FN,M using

scheme (4.19) for Example 4.4.2.

N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε ∆t = 1/8 ∆t = 1/16 ∆t = 1/32 ∆t = 1/64 ∆t = 1/128 ∆t = 1/256

10−1 6.0082e-02 3.0886e-02 1.5975e-02 8.1454e-03 4.1073e-03 2.0650e-03
0.9600 0.9511 0.9718 0.9878 0.9921

10−2 1.2543e-01 6.3953e-02 3.2216e-02 1.6183e-02 8.1117e-03 4.0604e-03
0.9718 0.9892 0.9933 0.9964 0.9984

10−3 1.3828e-01 6.9972e-02 3.5175e-02 1.7642e-02 8.8342e-03 4.4210e-03
0.9827 0.9922 0.9956 0.9978 0.9987

10−4 1.4091e-01 7.1091e-02 3.5705e-02 1.7892e-02 8.9564e-03 4.4807e-03
0.9870 0.9936 0.9968 0.9983 0.9992

10−5 1.4139e-01 7.1290e-02 3.5793e-02 1.7934e-02 8.9762e-03 4.4903e-03
0.9879 0.9940 0.9970 0.9985 0.9993

10−6 1.4152e-01 7.1340e-02 3.5813e-02 1.7941e-02 8.9790e-03 4.4916e-03
0.9882 0.9942 0.9973 0.9986 0.9993

10−7 1.4152e-01 7.1357e-02 3.5817e-02 1.7943e-02 8.9798e-03 4.4919e-03
0.9879 0.9944 0.9973 0.9986 0.9994

10−8 1.4988e-01 7.1365e-02 3.5818e-02 1.7944e-02 8.9798e-03 4.4919e-03
1.0705 0.9945 0.9972 0.9987 0.9994

EN,M 1.4988e-01 7.1365e-02 3.5818e-02 1.7944e-02 8.9798e-03 4.4919e-03
FN,M 1.0705 0.9945 0.9972 0.9987 0.9994

behavior of the time discretization error over space errors when we compute the

global errors.

To show the global first order accuracy is due to time in Table 4.3, we balance the

contribution of time and space discretizations by making the number of mesh points

double in space and quadruple in time. That is,

F̂ ε,N,M = log2

(
Eε,N,M

Eε,2N,4M

)
, F̂N,M = log2

(
EN,M

E2N,4M

)
.

Based on this formulae, Table 4.4 shows the second order parameter-robust accuracy.

This means that the rate of space accuracy, is two. This can also be confirmed from

the log-log plots of the maximum pointwise errors in Figure 4.4. In addition, a

comparison of the proposed method on equidistributed meshes with the result on
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10
1

10
2

10
3

N

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

M
a
x
im

u
m

 p
o

in
tw

is
e
 e

rr
o

r

-2

-6

O(N
-2

)

(b) For Example 4.4.2

Figure 4.4: Log-log plots for order of convergence of error vs N.

Table 4.4: Maximum pointwise errors Eε,N,M , parameter-robust errors EN,M ,
rates of convergence F ε,N,M and parameter-robust convergence rates FN,M using

scheme (4.19) for Example 4.4.2.

N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε ∆t = 1/8 ∆t = 1/32 ∆t = 1/128 ∆t = 1/512 ∆t = 1/2048 ∆t = 1/8192

10−1 6.0082e-02 1.4588e-02 3.6751e-03 9.4177e-04 2.3091e-04 5.7627e-05
2.0422 1.9889 1.9644 2.0281 2.0025

10−2 1.2543e-01 3.2020e-02 8.0533e-03 2.0131e-03 5.0410e-04 1.2613e-04
1.9698 1.9913 2.0002 1.9976 1.9988

10−3 1.3828e-01 3.5060e-02 8.8002e-03 2.2004e-03 5.4968e-04 1.3744e-04
1.9797 1.9942 1.9997 2.0011 1.9998

10−4 1.4091e-01 3.5676e-02 8.9445e-03 2.2378e-03 5.5923e-04 1.3958e-04
1.9817 1.9959 1.9989 2.0006 2.0023

10−5 1.4139e-01 3.5766e-02 8.9699e-03 2.2438e-03 5.6076e-04 1.4001e-04
1.9830 1.9954 1.9991 2.0005 2.0019

10−6 1.4152e-01 3.5804e-02 8.9743e-03 2.2446e-03 5.6087e-04 1.4005e-04
1.9828 1.9962 1.9994 2.0007 2.0017

10−7 1.4152e-01 3.5813e-02 8.9773e-03 2.2967e-03 5.6096e-04 1.4676e-04
1.9825 1.9961 1.9667 2.0336 1.9344

10−8 1.4988e-01 3.5801e-02 8.9782e-03 2.2455e-03 5.6084e-04 1.8090e-04
2.0657 1.9955 1.9994 2.0014 1.6324

EN,M 1.4988e-01 3.5813e-02 8.9782e-03 2.2967e-03 5.6096e-04 1.8090e-04

FN,M 2.0653 1.9960 1.9669 2.0336 1.6327

Shishkin mesh is also provided in Table 4.5 which clearly gives the benifit of the

proposed approach.

Further, we can visualize the mesh movement towards the boundary layers, based
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Table 4.5: Comparison of parameter-robust errors EN,M and corresponding
convergence rates FN,M obtained on Shishkin and equidistribution meshes using

scheme (4.19) for Example 4.4.2.

N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
ε ∈ Eε ∆t = 1/8 ∆t = 1/32 ∆t = 1/128 ∆t = 1/512 ∆t = 1/2048 ∆t = 1/8192

Shishkin 8.3543e-01 3.7914e-01 1.4170e-01 4.7917e-02 1.5362e-02 4.7667e-03

mesh [98] 1.1398 1.4200 1.5642 1.6412 1.6883

Equidistribution 1.4988e-01 3.5813e-02 8.9782e-03 2.2967e-03 5.6096e-04 1.8090e-04

mesh 2.0653 1.9960 1.9669 2.0336 1.6327
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Figure 4.5: Iteration-wise moving mesh trajectory and mesh density in space at
final time, resp., for N = 64, M = 32 and ε = 10−6 of Example 4.4.2.

on moving mesh algorithm by Figure 4.5. It shows the mesh trajectory at each iter-

ation to generate a layer-adaptive equidistributed mesh. This also pictorially point

out that the classical uniform mesh is not sufficient for any general class of Robin

type time delayed singularly perturbed problems with arbitrary small perturbation

parameters.

4.5 Conclusions

We have proposed a higher order parameter-robust approximation in space for a

class of singularly perturbed time delayed parabolic reaction-diffusion problem with

Robin boundary conditions. This is not obvious with classical upwind schemes (like
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forward-backward discretization at boundary conditions) for problems with Robin

type boundary conditions. It is observed that equidistribution based adaptive mesh

is very effective for this purpose, as it keeps the optimal accuracy in space, in the

interior part of the domain. Theoretical findings of first order uniform accuracy in

time and second order uniform accuracy in space, are strongly confirmed experimen-

tally. The present direction on higher order scheme generations for a general system

of parabolic problems, will be helpful for next generation researchers working on

Robin/mixed type problems.

***********


