
Chapter 3

A robust adaptive numerical method

for singularly perturbed parabolic

reaction-diffusion problems with

Robin boundary conditions

In this chapter, we consider a singularly perturbed time-dependent reaction-diffusion

problem with Robin boundary conditions (RBCs). Let the domain be Ḡ = G∪ ∂G,

where G := Gx × (0, T ] with Gx = (0, 1). Suppose ∂G = Γb ∪ Γr ∪ Γl with Γb =

[0, 1]×{0}, Γl = {0} × (0, T ], and Γr = {1} × (0, T ]. On this domain we define the

model problem as follows



Ly(x, t) := ∂y
∂t

(x, t) + Lεy(x, t) = f(x, t), (x, t) ∈ G,

Dly(0, t) := y(0, t)−
√
ε ∂y
∂x

(0, t) = φl(t), t ∈ (0, T ],

Dry(1, t) := y(1, t) +
√
ε ∂y
∂x

(1, t) = φr(t), t ∈ (0, T ],

y(x, 0) = φb(x), x ∈ Ḡx,

(3.1)

where Lεy(x, t) := −ε ∂2y
∂x2

(x, t)+a(x)y(x, t) and 0 < ε ≤ 1 is a small positive constant

called the perturbation parameter. The functions a(x) and f(x, t) are assumed to

be sufficiently smooth on their respective domains, with 0 < α ≤ a(x) on Ḡx. It is

known that the solution exhibits layers near the boundaries x = 0 and x = 1, and

further the solution y(x, t) can be decomposed as a sum of a regular part v and a
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singular part w , satisfying [98, 117]

∥∥∥∥ ∂p+qy∂xp∂tq

∥∥∥∥
Ḡ

< Cε−
p
2 , for 1 ≤ p+ 2q ≤ 4, p, q ∈ N0, (3.2)

∥∥∥∥ ∂p+qv∂xp∂tq

∥∥∥∥
Ḡ

< C, for 1 ≤ p+ 2q ≤ 4, p, q ∈ N0, (3.3)

and

∣∣∣∣ ∂p+qw∂xp∂tq

∣∣∣∣
Ḡ

< Cε−
p
2 (e−x

√
α
ε +e−(1−x)

√
α
ε ), for 1 ≤ p+2q ≤ 4, p, q ∈ N0. (3.4)

Singularly perturbed problems similar to (3.1) with Dirichlet type boundary condi-

tions have been studied extensively in the literature (see [34, 83, 85, 93, 118–121]

and the references therein). However, there are only few studies of such problems

with Robin boundary conditions (RBCs) [98, 117, 122, 123]. Note that all of these

studies considered Shishkin meshes to resolve the layers and to develop parameter-

robust numerical methods. As per our knowledge, in the literature there is no result

considering the approximation of a time-dependent problem with Robin boundary

conditions on layer-adaptive equidistributed meshes. So, in this chapter, we con-

struct a parameter-robust numerical method on equidistributed meshes for problem

(3.1). We generate the adaptive mesh at each time level based on a suitable monitor

functionM. The time derivative is discretized by a modified Euler scheme, the space

derivative is discretized by the central difference scheme, and the Robin boundary

conditions are approximated by a special finite difference scheme to maintain the

accuracy. We provide convergence analysis of the proposed method and prove that

the method is parameter-robust convergent of first order in time and second or-

der in space. Some numerical experiments are conducted in order to validate our

theoretical results and demonstrate the effectiveness of the method.

This chapter is structured as follows: The problem discretization and the adaptive

mesh formation are given in Section 3.1. Section 3.2 is devoted to the analysis of a
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stationary version of problem (3.1). In Section 3.3, the error analysis of the proposed

method is done. Section 3.4 is devoted to the results and discussion of numerical

experiments for two test examples. Then the chapter concludes with Section 3.5.

3.1 Discretization and adaptive mesh generation

3.1.1 The discretization strategy

In time direction we take a uniform mesh {tj}Mj=0 with step size ∆t = T/M , where

M is the number of mesh intervals. Then an arbitrary non-uniform spatial mesh is

considered at any time level tj denoted by {xji}Ni=0 with step sizes hji = xji−x
j
i−1, i =

1, . . . , N. Thus, the complete discretization of the domain is the tensor product

of these two one-dimensional meshes. On this discrete domain, problem (3.1) is

discretized by



[LN,MY ]ji := δ?t Y
j
i + [LN,Mε Y ]ji = f ji , i = 1, ..., N − 1, j = 1, ...,M,

[DN,M
l Y ]j0 := Y j

0 −
√
εD+

x Y
j

0 +
hj1

2
√
ε
(a0Y

j
0 + δ?t Y

j
0 ) = φjl +

hj1
2
√
ε
f j0 , j = 1, ...,M,

[DN,M
r Y ]jN := Y j

N +
√
εD−x Y

j
N +

hjN
2
√
ε
(aNY

j
N + δ?t Y

j
N) = φjr +

hjN
2
√
ε
f jN , j = 1, ...,M,

Y 0
i = φb;i, i = 0, ..., N,

(3.5)

where

[LN,Mε Y ]ji := −εδ2
xY

j
i + aiY

j
i , δ?t Y

j
i =

Y j
i − Ỹ

j−1
i

∆t
,

D+
x Y

j
i =

Y j
i+1 − Y

j
i

hji+1

, D−x Y
j
i =

Y j
i − Y

j
i−1

hji
, δ2

xY
j
i =

(D+
x −D−x )Y j

i

(hji + hji+1)/2
,

ai = a(xji ), f
j
i = f(xji , tj), φb;i = φb(x

j
i ), and Ỹ j−1

i represents the linear interpolant

of Y j−1
i = Y (xj−1

i , tj−1), 0 ≤ i ≤ N, at the point xji . We also define [DN,M
r,x Y ]jN :=
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Y j
N +
√
εD−x Y

j
N +

hjN
2
√
ε
aNY

j
N and [DN,M

l,x Y ]j0 := Y j
0 −
√
εD+

x Y
j

0 +
hj1

2
√
ε
a0Y

j
0 , that we shall

use later in Section 3.17. Using standard arguments we can prove that the following

discrete maximum principle holds [98].

Lemma 3.1.1. (Discrete maximum principle) Consider a mesh function U such that

[LN,MU ]ji ≥ 0 for i = 1, ..., N − 1, j = 1, ...,M, and [DN,M
l U ]j0 ≥ 0, [DN,M

r U ]jN ≥

0 for j = 1, ...,M . Then U j
i ≥ 0 for i = 0, ..., N, j = 0, ...,M.

3.1.2 Layer-adaptive equidistribution mesh

The solution of problem (3.1) possesses boundary layers, so we need a layer resolving

mesh in the spatial direction. We here construct the layer resolving mesh using the

equidistribution principle. At any time level tk, the mesh {xki }Ni=0 is said to be

equidistributed with respect to the monitor function M(y(x, tk), x) if

� xki

xki−1

M(y(z, tk), z)dz =
1

N

� 1

0

M(y(z, tk), z)dz, 1 ≤ i ≤ N. (3.6)

The following monitor function is considered

M(y(x, tk), x) = ℵk +

∣∣∣∣∂2w

∂x2
(x, tk)

∣∣∣∣1/2, (3.7)

where ℵk is chosen according to the specifications in Lemma 3.1.2, below. A similar

monitor function is also considered in [56, 59] for problems with Dirichlet boundary

conditions. Using this monitor function, the equidistributed mesh at any time tk is

obtained by using the following relation

� xk(ξ)

0

M(y(z, tk), z)dz = ξ

� 1

0

M(y(z, tk), z)dz, ξ ∈ [0, 1], (3.8)
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which is equivalent to (3.6). To get the structure of the mesh generated using (3.8),

we follow the similar approach as in [56, 113]. Consider the derivative bounds of w

from (3.4) to approximate ∂2w
∂x2

as

∂2w

∂x2
(x, tk) ≈


ν1
ε
e−x
√

α
ε , x ∈ [0, 1/2],

ν2
ε
e−(1−x)

√
α
ε , x ∈ (1/2, 1],

where ν1 and ν2 are constants, independent of ε and x. So,

� 1

0

∣∣∣∣∂2w

∂x2
(z, tk)

∣∣∣∣1/2dz ≡ A ≈ 2

[
|ν1|1/2 + |ν2|1/2

α1/2

]
.

Hence, from (3.7) and (3.8), for xk(ξ) ≤ 1
2
, we have the mapping

ξ(
ℵk

A
+ 1) =

ℵk

A
xk(ξ) + λ1(1− e−

xk(ξ)
2

√
α
ε ), (3.9)

where

λ1 =
|ν1|1/2

|ν1|1/2 + |ν2|1/2
.

Similarly, for xk(ξ) > 1
2
, the equidistribution principle gives

(1− ξ)(ℵ
k

A
+ 1) =

ℵk

A
(1− xk(ξ)) + λ2(1− e−

1−xk(ξ)
2

√
α
ε ), (3.10)

where

λ2 =
|ν2|1/2

|ν1|1/2 + |ν2|1/2
.

Thus, corresponding to a uniform mesh {ξi = i/N}Ni=0 in computational space we

obtain a non-uniform mesh {xki }Ni=0 in physical space at each time level using the

following relations

i

N
(
ℵk

A
+ 1) =

ℵk

A
xki + λ1(1− e−

xki
2

√
α
ε ), xki ≤ 1/2 (3.11)
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and

(1− i

N
)(
ℵk

A
+ 1) =

ℵk

A
(1− xki ) + λ2(1− e−

(1−xki )
2

√
α
ε ), xki > 1/2. (3.12)

The following lemma provides information about the distribution of the mesh points

and also gets some bounds on the mesh spacing.

Lemma 3.1.2. Taking ℵk = A, the non-uniform mesh generated by (3.11) and (3.12)

satisfies

xk` < 2

√
ε

α
logN < xk`+1 and xkr−1 < 1− 2

√
ε

α
logN < xkr , (3.13)

where

` =

[
1

2

(
2

√
ε

α
N logN+λ1(N−1)

)]
, r =

[
N−1

2

(
2

√
ε

α
N logN+λ2(N−1)

)]
+1

and [·] is the integer part function. Moreover, the mesh spacing satisfies

hki < C

√
ε

α
for i = 1, ..., ` and i = r + 1, ..., N − 1 (3.14)

with

|hki+1 − hki | ≤ C(hki )
2 for i = 1, ..., `− 1 and |hki+1 − hki | ≤ C(hki+1)2, (3.15)

for i = r + 1, ..., N − 1. Further, we have

hki ≤ CN−1 for i = 1, ..., N. (3.16)

Proof. The proof of (3.13)-(3.15) can be obtained using arguments similar to those in

[56]. To prove (3.16), we shall work as is done in [90, 124]. Note that for the monitor
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function (3.7) we have A = ℵk ≤M(y(x, tk), x). So, using derivative bounds we get

� 1

0

M(y(z, tk), z)dz ≤ C.

Thus, by the equidistribution principle, we get

ℵkhki ≤
� xki

xki−1

M(y(z, tk), z)dz =
1

N

� 1

0

M(y(z, tk), z)dz ≤ CN−1.

Hence, hki ≤ CN−1.

3.2 A stationary problem

The stationary version of problem (3.1) is an important ingredient needed to study

the time dependent problem (3.1). So, this section is devoted to parameter-robust

convergence analysis of a finite difference scheme (similar to (3.5)) on equidistributed

meshes for the following stationary problem


Lεy := −ε d2y

dx2
+ a(x)y = f(x), x ∈ (0, 1),

Dl,xy(0) := y(0)−
√
ε dy
dx

(0) = φl,

Dr,xy(1) := y(1) +
√
ε dy
dx

(1) = φr.

(3.17)

We assume that the functions a(x) and f(x) are sufficiently smooth and that 0 <

α ≤ a(x), x ∈ [0, 1]. This problem has been previously studied in [90], where y is

decomposed as y = v + w, and the following bounds were obtained

∣∣∣∣dpv(x)

dxp

∣∣∣∣ ≤ C(1 + ε1−p/2), (3.18)
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dxp

∣∣∣∣ ≤ Cε−
p
2 (e−x

√
α
ε + e−(1−x)

√
α
ε ), 0 ≤ p ≤ 4, x ∈ [0, 1]. (3.19)

A coupled system of two stationary problems with RBCs is studied in [124]. In

[90, 124], for boundary conditions a scheme based on cubic splines is used and for

interior points differential equation is discretized using the classical central difference

scheme. But, here we discretize problem (3.17) using a scheme similar to (3.5). The

discretization is as follows


[LNε Y ]i := −εδ2

xYi + aiYi = fi, i = 1, ..., N − 1,

[DN
l,xY ]0 := Y0 −

√
εD+

x Y0 + h1
2
√
ε
a0Y0 = φl + h1

2
√
ε
f0,

[DN
r,xY ]N := YN +

√
εD−x YN + hN

2
√
ε
aNYN = φr + hN

2
√
ε
fN ,

(3.20)

where the difference operators D+
x , D

−
x and δ2

x defined analogously as for the dis-

cretization (3.5), and the mesh {xi}Ni=0 is the following equidistributed mesh with

step sizes hi = xi − xi−1,

i

N
(
ℵ
A

+ 1) =
ℵ
A
xi + λ1(1− e−

xi
2

√
α
ε ), xi ≤ 1/2 (3.21)

and

(1− i

N
)(
ℵ
A

+ 1) =
ℵ
A

(1− xi) + λ2(1− e−
(1−xi)

2

√
α
ε ), xi > 1/2, (3.22)

which is obtained using the monitor function M = ℵ+ |d2w
dx2
|1/2 (see Section 3.1 for

details). The discretization (3.20) satisfies the following discrete maximum principle

which can be proved using standard arguments [98].

Lemma 3.2.1. (Discrete maximum principle) Consider a mesh function U such that

[LNε U ]i ≥ 0 for i = 1, ..., N − 1, and [DN
l,xU ]0 ≥ 0, [DN

r,xU ]N ≥ 0. Then Ui ≥ 0 for

i = 0, ..., N.
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Theorem 3.2.1. Let y and Y be the solutions of (3.17) and (3.20), respectively. Then,

for i = 0, . . . , N , we have

|y(xi)− Yi| ≤ CN−2.

Proof. At the left boundary, we proceed as follows

[DN
l,x(y − Y )]0 = [DN

l,xy]0 −
(
φl +

h1

2
√
ε
f0

)
=

[
y(x0)−

√
εD+

x y(x0) +
h1

2
√
ε
a0y(x0)

]
−
[
y(x0)−

√
ε
dy

dx
(x0) +

h1

2
√
ε
f0

]
=
√
ε

(
dy

dx
(x0)−D+

x y(x0)

)
+

h1

2
√
ε

(
a0y(x0)− f0

)
=
√
ε

(
dy

dx
(x0)−D+

x y(x0)

)
+
h1

√
ε

2

d2y

dx2
(x0)

= −h
2
1

√
ε

6

d3y

dx3
(η) for some η ∈ (x0, x1).

Now using the solution decomposition we have

|[DN
l,x(y − Y )]0| =

h2
1

√
ε

6

∣∣∣∣d3y

dx3
(η)

∣∣∣∣ ≤ h2
1

√
ε

6

∣∣∣∣d3v

dx3
(η)

∣∣∣∣+
h2

1

√
ε

6

∣∣∣∣d3w

dx3
(η)

∣∣∣∣ .
Using the derivative bounds of v from (3.18) and Lemma 3.1.2, we get

h2
1

√
ε
d3v

dx3
(η) ≤ CN−2.

For layer component, we use derivative bounds from (3.19) and proceed as follows

h2
1

√
ε
d3w

dx3
(η) ≤ Cε−1h2

1e
−x0
√

α
ε

≤ Cε−1

( � x1

x0

e−
z
2

√
α
ε dz

)2

≤ Cε−1

(√
ε

� x1

x0

M(y(z), z)dz

)2

≤ CA2N−2 ≤ CN−2.
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Hence

|[DN
l,x(y − Y )]0| ≤ CN−2. (3.23)

Similarly

|[DN
r,x(y − Y )]N | ≤ CN−2. (3.24)

We can use the arguments in [56] to show that

|[LNε (y − Y )]i| ≤ CN−2 for i = 1, ..., N − 1. (3.25)

Thus, we consider the barrier function Ψ±i = CN−2±(y(xi)−Yi) and use the discrete

maximum principle (Lemma 3.2.1) to get the desired result.

3.3 Error analysis

The parameter-robust convergence analysis of the difference scheme (3.5) is provided

in the following theorem.

Theorem 3.3.1. Let y(xji , tj) and Y j
i be the solutions of (3.1) and (3.5), respectively.

If for some 0 < γ < 1 it is N−γ ≤ C∆t, then for i = 0, . . . , N, j = 0, . . . ,M , we

have the following bound

|y(xji , tj)− Y
j
i | ≤ C(∆t+N−2+γ).

Proof. Suppose ηji = y(xji , tj) − Y j
i denotes the error in the numerical solution at

(xji , tj). So, we can write the truncation error as follows

[δ?t η]ji + [LN,Mε η]ji = X j
1;i + X j

2;i, for i = 1, ..., N − 1, j = 1, ...,M,
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where

X j
1;i = [LN,Mε y]ji − (Lεy)ji and X j

2;i = δ?t y(xji , tj)−
∂y

∂t
(xji , tj).

Also,

[DN,M
l η]j0 = ζjl,1;0 + ζjl,2;0,

[DN,M
r η]jN = ζjr,1;N + ζjr,2;N ,

where

ζjl,1;0 = [DN,M
l,x y]j0−

(
(Dly)j0 +

hj1
2
√
ε

(Lεy)j0

)
, ζjl,2;0 =

hj1
2
√
ε

(δ?t y(xj0, tj)−
∂y

∂t
(xj0, tj)),

ζjr,1;N = [DN,M
r,x y]jN−

(
(Dry)jN +

hjN
2
√
ε

(Lεy)jN

)
, ζjr,2;N =

hjN
2
√
ε

(δ?t y(xjN , tj)−
∂y

∂t
(xjN , tj)).

Now we split the error ηji as ηji = ρji + ωji , where ρji , for each fixed j, is the solution

of the following stationary discrete problem


[LN,Mε ρ]ji = X j

1;i, i = 1, ..., N − 1,

[DN,M
l,x ρ]j0 = ζjl,1;0,

[DN,M
r,x ρ]jN = ζjr,1;N ,

(3.26)

and ωji is the solution of the following parabolic discrete problem



[δ?tω + LN,Mε ω]ji = X j
2;i − δ?t ρ

j
i , i = 1, ..., N − 1, j = 1, ...,M,

[DN,M
l ω]j0 = ζjl,2;0 −

hj1
2
√
ε
δ?t ρ

j
0, j = 1, ...,M,

[DN,M
r ω]jN = ζjr,2;N −

hjN
2
√
ε
δ?t ρ

j
N , j = 1, ...,M,

ω0
i = −ρ0

i , i = 0, ..., N.

(3.27)

Here we see that equation (3.26) is the same that we obtain when we analyse the
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error component ρ in a stationary problem that is discretized using Lε with Robin

boundary conditions, and X j
1,i, ζ

j
l,1;0, ζ

j
r,1;N , the corresponding truncation errors (see

Theorem 3.2.1). So, we can invoke the error bound of Theorem 3.2.1 to get

|ρji | ≤ CN−2 for all i, j. (3.28)

Now we shall obtain a bound for the error component ωji . Note that the problem

(3.27) is similar to the discrete problem (3.5). Hence, using the discrete maximum

principle (Lemma 3.1.1) we get

|ωji | ≤ C(max
i
|ρ0
i |+ max

j
|[DN,M

l ω]j0|+ max
j
|[DN,M

r ω]jN |+ max
i,j
|X j

2;i − δ?t ρ
j
i |)

≤ C(∆t+N−2+γ + max
i,j
|δ?t ρ

j
i |), (3.29)

where we have used the triangle inequality, the inequality in (3.28), and the fact

that X j
2,i, ζ

j
l,2;0, and ζjr,2;N are bounded by C(∆t + N−2+γ) for some 0 < γ <

1 such that N−γ ≤ C∆t, which can be verified using Taylor expansion, standard

interpolation error estimates, and (3.2). So, now it remains to bound the term δ?t ρ
j
i

in (3.29). Using (3.26), a straightforward calculation shows that δ?t ρ
j
i satisfies


[LN,Mε δ?t ρ]ji = δ?tX

j
1;i, i = 1, ..., N − 1,

[DN,M
l,x δ?t ρ]j0 = δ?t ζ

j
l,1;0,

[DN,M
r,x δ?t ρ]jN = δ?t ζ

j
r,1;N .

(3.30)



Chapter 3. A robust adaptive numerical method for singularly perturbed parabolic
reaction-diffusion problems with Robin boundary conditions 57

To analyse the problem (3.30), we write the right hand side as

δ?tX
j
1;i =

1

∆t

[
X j

1;i − X̃
j−1
1;i

]
=

1

∆t

[(
[LN,Mε y]ji − (Lεy)ji

)
−
((

[LN,Mε y]j−1
n−1 − (Lεy)j−1

n−1

)
ψn−1(xji )

+
(
[LN,Mε y]j−1

n − (Lεy)j−1
n

)
ψn(xji )

)]
,

where

ψn−1(x) =
xj−1
n − x

xj−1
n − xj−1

n

and ψn(x) =
x− xj−1

n−1

xj−1
n − xj−1

n−1

with xj−1
n−1 ≤ xji ≤ xjn−1 for some n.

Set Ľεy = −ε ∂2y
∂x2

and suppose its discretization is [ĽN,Mε Y ]ji = −εδ2
xY

j
i . Now by

using the fact that the linear interpolation error is O(N−2), we can write

|δ?tX
j
1,i| ≤

∣∣∣∣ 1

∆t

� tj

tj−1

[
ĽN,Mε

∂y

∂t
(xji , t)− Ľε

∂y

∂t
(xji , t)

]
dt

∣∣∣∣+ CN−2.

Thus, using the Peano kernel theorem [20, 125] and the bounds in (3.2), we get

the same bound for δ?tX
j
1;i that we get for the corresponding truncation error for

stationary problem. Similarly we can obtain also same bounds for δ?t ζ
j
l,1;0 and δ?t ζ

j
r,1;N .

Hence, we get δ?t ρ
j
i ≤ CN−2 for all i, j. Therefore, on combining (3.28) and (3.29)

we get the desired result.

Remark 3.3.1. The assumption N−γ ≤ C∆t for some 0 < γ < 1 used in the above

theorem is for the theoretical proof only. However, in the numerical experiments

there is no influence of this restriction on the parameter-robust convergence behavior.

Such an assumption is common in the literature (see, e.g. [58]).
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3.4 Numerical experiments

We now present the numerical experiments that we performed for two test examples

to verify our theoretical result. To construct the adaptive mesh we use Algorithm 2.

In the stopping criterion we have taken the value % = 1.1. As the second derivative of

the smooth part v is bounded independently of ε, in practice, it is observed that the

monitor function with w replaced by y also produces similar layer-adapted meshes

and numerical results [124].

Example 3.4.1. Consider the problem



∂y
∂t
− ε ∂2y

∂x2
+ 1+x2

2
y = t3, (x, t) ∈ (0, 1)× (0, 1],

Dly(0, t) = −128
35
π−1/2t7/2, t ∈ (0, 1],

Dry(1, t) = −128
35
π−1/2t7/2, t ∈ (0, 1],

y(x, 0) = 0, x ∈ [0, 1].

The surface plot in Figure 3.1 displays the numerical solution of Example 3.4.1 for

ε = 10−4 with N = 128 and M = 32. This clearly shows the existence of boundary

layers near x = 0 and x = 1. The exact solution of Example 3.4.1 is unknown, so

the maximum pointwise errors and rates of convergence are calculated by using the

double mesh principle. We bisect the meshes in space and time, and calculate the

pointwise errors at the coarse mesh points using the formula

Eε,N,M
i,k = |Y 2k,2N,2M

2i − Y k,N,M
i |.
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Algorithm 2: Algorithm for the adaptive mesh and adaptive solution

Input: N, M ∈ N, 0 < ε ≤ 1 and % > 1.
Output: Adaptive mesh {xki } and adaptive solution Y k

i at each time level tk.

1. Initialization: Initialize the mesh (for iteration r = 1) taking {xk,(r)i } as the
uniform mesh for k = 1, otherwise xk−1 for kth time level.

2. Solve the discrete problem (3.5) for Y
k,(r)
i on {xk,(r)i }.

3. Find the discrete monitor function defined by

Mk,(r)
i = ℵk,(r) + |δ2

xY
k,(r)
i |1/2, for i = 1, ..., N − 1,

where ℵk,(r) is defined by

ℵk,(r) = h
k,(r)
1 |δ2

xY
k,(r)

1 |1/2 +
N−1∑
i=2

h
k,(r)
i

{
|δ2
xY

k,(r)
i−1 |1/2 + |δ2

xY
k,(r)
i |1/2

2

}
+ h

k,(r)
N |δ2

xY
k,(r)
N−1 |

1/2.

4. Set H
k,(r)
i = h

k,(r)
i

(Mk,(r)
i−1 +Mk,(r)

i

2

)
for i = 1, ..., N , take Mk,(r)

0 =Mk,(r)
1 and

Mk,(r)
N =Mk,(r)

N−1. Then define L
k,(r)
i byL

k,(r)
i =

∑i
j=1 H

k,(r)
j for i = 1, ..., N and

L
k,(r)
0 = 0.

5. Stopping criterion: Define %(r) by %(r) = N

L
k,(r)
N

max
i=1,...,N

H
k,(r)
i . Go to Step 7 if

%(r) ≤ %, else continue with Step 6.

6. Define Z
k,(r)
i = i

L
k,(r)
N

N
for i = 0, 1, ..., N . New mesh {xk,(r+1)

i } is generated by

evaluating the interpolant function of the points (L
k,(r)
i , x

k,(r)
i ) at Z

k,(r)
i , set

r = r + 1 and return to Step 2.

7. Take {xk,(r−1)
i } as the final layer-adaptive mesh and Y

k,(r−1)
i as the required

adaptive solution at the kth time level.

8. Go to Step 1 with k = k + 1, repeat the same process for the adaptive mesh
and solution at (k + 1)th time level.
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Figure 3.1: Surface plot of the numerical solution of Example 3.4.1 with N =
128, M = 32, and ε = 10−4.

Using these values, the maximum pointwise errors and the parameter-robust errors

are calculated by

Eε,N,M = max
i,k

Eε,N,M
i,k and EN,M = max

ε
Eε,N,M ,

respectively. We then calculate the rates of convergence and the parameter-robust

rates of convergence by

F ε,N,M = log2

(
Eε,N,M

Eε,2N,2M

)
and FN,M = log2

(
EN,M

E2N,2M

)
,

respectively. The numerical results for Example 3.4.1 are presented in Table 3.1.
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Table 3.1: Errors and convergence rates for Example 3.4.1.

ε N = 32 N = 64 N = 128 N = 256 N = 512
M = 8 M = 16 M = 32 M = 64 M = 128

100 3.2130e-02 1.6470e-02 8.3343e-03 4.1915e-03 2.1018e-03
0.9641 0.9827 0.9916 0.9958

10−1 9.5181e-03 5.0272e-03 2.5857e-03 2.1018e-03 6.5953e-04
0.9209 0.9592 2.9895 1.6721

10−2 2.4266e-02 1.1996e-02 5.9569e-03 2.9678e-03 1.4812e-03
1.0164 1.0099 1.0052 1.0027

10−3 2.5267e-02 1.2420e-02 6.1519e-03 3.0609e-03 1.5266e-03
1.0246 1.0135 1.0071 1.0036

10−4 2.5445e-02 1.2489e-02 6.1824e-03 3.0754e-03 1.5336e-03
1.0268 1.0144 1.0074 1.0038

10−5 2.5488e-02 1.2505e-02 6.1883e-03 3.0776e-03 1.5346e-03
1.0274 1.0149 1.0077 1.0039

10−6 2.5493e-02 1.2507e-02 6.1893e-03 3.0780e-03 1.5348e-03
1.0274 1.0149 1.0078 1.0039

10−7 2.5495e-02 1.2507e-02 6.1897e-03 3.0782e-03 1.5348e-03
1.0275 1.0148 1.0078 1.0040

10−8 2.5497e-02 1.2508e-02 6.1896e-03 3.0782e-03 1.5348e-03
1.0275 1.0149 1.0078 1.0040

EN,M 3.2130e-02 1.6470e-02 8.3343e-03 4.1915e-03 2.1018e-03
FN,M 0.9641 0.9827 0.9916 0.9958

From this table, we observe that the error is decreasing as the number of mesh

points is increasing. Moreover, the rate of convergence is one. This is due to the

fact that the time discretization errors are dominating the global errors in this case.

In order to show the contribution of the space discretization errors to the global

errors we calculate the following convergence rates

F̂ ε,N,M = log2

(
Eε,N,M

Eε,2N,4M

)
and F̂N,M = log2

(
EN,M

E2N,4M

)
.

Observe that the number of mesh points in space is doubled, whereas the number of



Chapter 3. A robust adaptive numerical method for singularly perturbed parabolic
reaction-diffusion problems with Robin boundary conditions 62

Table 3.2: Errors and convergence rates for Example 3.4.1.

ε N = 32 N = 64 N = 128 N = 256 N = 512
M = 8 M = 32 M = 128 M = 512 M = 2048

100 3.2130e-02 8.3210e-03 2.980e-03 5.2559e-04 1.3143e-04
1.9490 1.9877 1.9969 1.9995

10−1 9.5181e-03 2.5657e-03 6.5031e-04 1.6078e-04 4.0673e-05
1.8193 1.9801 2.0160 1.9829

10−2 2.4266e-02 5.9485e-03 1.4783e-03 3.6896e-04 9.2221e-05
2.0283 2.0084 2.0024 2.0003

10−3 2.5267e-02 6.1456e-03 1.5248e-03 3.8039e-04 9.5049e-05
2.0396 2.0108 2.0031 2.0007

10−4 2.5445e-02 6.1794e-03 1.5329e-03 3.8240e-04 9.5546e-05
2.0418 2.0112 2.0030 2.0008

10−5 2.5488e-02 6.1871e-03 1.5342e-03 3.8272e-04 9.5608e-05
2.0425 2.0117 2.0032 2.0011

10−6 2.5493e-02 6.1889e-03 1.5345e-03 3.8278e-04 9.5627e-05
2.0423 2.0119 2.0032 2.0011

EN,M 3.2130e-02 8.3210e-03 2.980e-03 5.2559e-04 1.3143e-04

F̂N,M 1.9490 1.9877 1.9969 1.9995

mesh points in time is quadrupled. In this way, the contributions of time and space

discretizations are balanced. The results are displayed in Table 3.2. From these

results, we observe that the rate of convergence is two.

Example 3.4.2. Consider the problem



∂y
∂t
− ε ∂2y

∂x2
+ (1 + xe−t)y = f(x, t), (x, t) ∈ (0, 1)× (0, 1],

Dly(0, t) = φl(t), t ∈ (0, 1],

Dry(1, t) = φr(t), t ∈ (0, 1],

y(x, 0) = 0, x ∈ [0, 1],
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where the functions f(x, t), φl(t), and φr(t) are such that

y(x, t) = t

(
e−x/

√
ε + e−(1−x)/

√
ε

1 + e−1/
√
ε

− cos2(πx)

)
.

Figure 3.2: Surface plot of the numerical solution of Example 3.4.2 with N =
128, M = 32, and ε = 10−4.

The surface plot in Figure 3.2 displays the numerical solutions of Example 3.4.2 for

ε = 10−4 with N = 128 and M = 32. This clearly shows the existence of boundary

layers near x = 0 and x = 1. We calculate the pointwise errors using the formula

Eε,N,M
i,k = |Y k

i − y(xki , tk)|.

After that the errors Eε,N,M and EN,M , and convergence rates F ε,N,M and FN,M are

computed as described earlier. Table 3.3 displays the numerical results for Exam-

ple 3.4.2, where the last two rows represents the parameter-robust errors and the

parameter-robust rates of convergence. In this table, observe that N and M are



Chapter 3. A robust adaptive numerical method for singularly perturbed parabolic
reaction-diffusion problems with Robin boundary conditions 64

Table 3.3: Errors and convergence rates for Example 3.4.2.

ε N = 32 N = 64 N = 128 N = 256 N = 512
M = 8 M = 16 M = 32 M = 64 M = 128

100 1.5235e-03 3.9133e-04 1.0052e-04 2.5109e-05 6.2779e-06
1.9610 1.9609 2.0012 1.9998

10−1 1.3209e-03 3.3450e-04 8.4770e-05 2.1185e-05 5.2967e-06
1.9814 1.9804 2.0005 1.9999

10−2 2.5805e-03 6.2775e-04 1.5569e-04 3.8792e-05 9.6878e-06
2.0394 2.0115 2.0048 2.0015

10−3 7.8877e-03 2.0397e-03 4.7116e-04 1.1462e-04 2.8424e-05
1.9513 2.1140 2.0394 2.0117

10−4 1.3994e-02 3.2189e-03 7.6427e-04 1.8904e-04 4.8325e-05
2.1202 2.0744 2.0154 1.9678

10−5 1.9291e-02 4.0366e-03 9.7065e-04 2.3620e-04 5.8728e-05
2.2567 2.0561 2.0389 2.0079

10−6 2.3577e-02 4.5430e-03 1.0548e-03 2.5887e-04 6.3981e-05
2.3757 2.1066 2.0267 2.0165

10−7 2.7531e-02 4.8054e-03 1.1034e-03 2.6761e-04 6.6108e-05
2.5183 2.1227 2.0438 2.0172

10−8 2.8902e-02 5.2693e-03 1.1260e-03 2.7197e-04 6.6985e-05
2.4555 2.2264 2.0497 2.0215

EN,M 2.8902e-02 5.2693e-03 1.1260e-03 2.7197e-04 6.6985e-05
FN,M 2.4555 2.2264 2.0497 2.0215

increasing with the same ratio. From this table, we can deduce that the rate of con-

vergence is two. Note that in this case the space discretization errors are dominating

the global errors.

In summary, we observe that the proposed numerical method is parameter-robust

convergent of order two in space and order one in time. Further, the assumption

N−γ ≤ C∆t is not necessary in practice.

At the first time level t1, we have shown the adaptive movement of spatial mesh

points for Examples 3.4.1 and 3.4.2 in Figures 3.3 and 3.4, respectively. These
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Figure 3.3: Mesh trajectory and position of space mesh points taking N =
128, M = 32, and ε = 10−5 for Example 3.4.1.

0 20 40 60 80 100 120 140

Position of mesh points

0

0.2

0.4

0.6

0.8

1
x

Figure 3.4: Mesh trajectory and position of space mesh points taking N =
128, M = 32, and ε = 10−5 for Example 3.4.2.

figures display the condensation of mesh points towards the boundary layers in few

iterations and finally the adaptation of solution behavior by itself. In Figure 3.5, we

have plotted the log-log graphs of the maximum pointwise errors versus the number

of spatial mesh points N for both test examples. The slopes of these plots also

validate the theoretically obtained convergence result in space.
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Figure 3.5: Log-log plots of the maximum pointwise error for Examples 3.4.1
(left) and 3.4.2 (right).

3.5 Conclusions

A parameter-robust adaptive numerical method is introduced for a class of singularly

perturbed parabolic reaction-diffusion problems with RBCs. The adaptive mesh in

spatial direction is generated using the equidistribution principle. The method is

proved to be parameter-robust convergent of order two in space and order one in

time. The theoretical error bound is supported by the numerical results.

***********


