
Chapter 2

A robust adaptive numerical method

for singularly perturbed degenerate

parabolic convection-diffusion

problems

In this chapter, we consider a singularly perturbed degenerate parabolic convection-

diffusion problem with the perturbation parameter ε such that 0 ≤ ε � 1. Let

the domain be Ḡ = G ∪ ∂G, where G := Gx × (0, T ] with Gx = (0, 1). Suppose

∂G = Γb ∪ Γr ∪ Γl with Γb = [0, 1]×{0}, Γl = {0} × (0, T ], and Γr = {1} × (0, T ].

On this domain we define the model problem as follows


Ly(x, t) := (Lε − ∂

∂t
)y(x, t) = f(x, t), (x, t) ∈ G,

y(x, 0) = gb(x), x ∈ Ḡx,

y(0, t) = gl(t), y(1, t) = gr(t), t ∈ (0, T ],

(2.1)

where 

Lεy(x, t) := ε ∂
2y
∂x2

(x, t) + a(x) ∂y
∂x

(x, t)− b(x, t)y(x, t),

a(x) = a0(x)xp, p ≥ 1,

a0(x)
∣∣
Ḡx
≥ a

¯
> 0,

b(x, t)
∣∣
Ḡ
≥ β > 0.

The function f and the coefficients a0 and b are assumed to be sufficiently smooth.

Further, sufficient compatibility conditions at the corners are considered such that
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problem (2.1) possesses a unique solution and it is sufficiently smooth [5]. The

considered problem (2.1) is known as a boundary turning point problem, since at

x = 0, the coefficient of the convection term satisfies a(x) = 0. The point x = 0 is

called a simple turning point for p = 1, and a multiple turning point for p > 1. Such

problems arise in the modelling of heat flow and mass transport near an oceanic

rise [76]. In [110], degenerate PDEs are developed on a non-rectangular domain for

convection-diffusion problems without a turning point. Some multiple turning point

problems are given in [77] that arise in the modelling of thermal boundary layers in

a laminar flow.

It is shown that y = v + w, where v and w satisfy [79, 80]

∥∥∥∥ ∂s+rv∂xs∂tr

∥∥∥∥
Ḡ

≤ C(1 + ε1− s
2 ), 0 ≤ s+ 2r ≤ 3, (2.2)

and ∣∣∣∣ ∂s+rw∂xs∂tr

∣∣∣∣ ≤ Cε−s/2e−
√
βx/
√
ε, (x, t) ∈ Ḡ, 0 ≤ s+ 2r ≤ 3, (2.3)

respectively.

The main objective of this chapter is to construct a parameter-robust adaptive nu-

merical method for problem (2.1). Firstly, the problem is semidiscretized in time

using the implicit Euler method to get the linear stationary differential equations in

space variable. The first order parameter-robust convergence of the time semidis-

cretization is proved. Then, these differential equations are approximated using

the standard upwind scheme on a non-uniform spatial mesh generated through the

equidistribution principle. The monitor function we consider here is a combination

of an appropriate power of second order derivative of the solution and a positive

constant. We provide parameter-robust convergence analysis of the method based

on the truncation error and barrier function approach. The method is shown to be
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first order parameter-robust convergent in both space and time. At the end, the

method is implemented on two test examples to validate the theory.

This chapter is organized as follows: In Section 2.1, we consider the semidiscretiza-

tion of problem (2.1) in time and prove that it is first order parameter-robust con-

vergent. In Section 2.2, the layer-adaptive spatial mesh is generated and the fully

discrete scheme is given on this mesh. Section 2.3 is devoted to parameter-robust

convergence of the fully discrete scheme. In Section 2.4, we present the numeri-

cal algorithm and consider two test examples for validation of the theory. Finally,

conclusions are included in Section 2.5.

2.1 The time semidiscretization

We consider the implicit Euler scheme to discretize problem (2.1) on a uniform mesh

with time step ∆t = T
M

, where M is taken to be the discretization parameter in the

time direction. Thus, we define the temporal mesh {tm = m∆t,m = 0, ...,M}. The

continuous problem (2.1) in semidiscretized form can be written as



y0(x) = gb(x), x ∈ Ḡx,
For m = 0, ...,M − 1,

(∆tLε − I)ym+1(x) = −ym(x) + ∆tf(x, tm+1), x ∈ Gx,

ym+1(0) = gl(tm+1), ym+1(1) = gr(tm+1),

(2.4)

where I is the identity operator. We have the following minimum principle for the

operator (∆tLε − I).

Lemma 2.1.1. [80] Consider the function zm+1 ∈ C2(Ḡx) such that zm+1(0) ≥

0, zm+1(1) ≥ 0, and (∆tLε − I)zm+1(x)|Gx ≤ 0. Then zm+1(x)|Ḡx ≥ 0.
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The local truncation error involved in the time semidiscrete scheme (2.4) is given by

em+1 = y(x, tm+1)− y̌m+1(x), where y̌m+1(x) solves the following problem

 (∆tLε − I)y̌m+1(x) = −y(x, tm) + ∆tf(x, tm+1), x ∈ Gx,

y̌m+1(0) = gl(tm+1), y̌m+1(1) = gr(tm+1).
(2.5)

Lemma 2.1.2. The time derivatives of y satisfy the following bound

∥∥∥∥∂sy∂ts
∥∥∥∥
Ḡ

≤ C, 0 ≤ s ≤ 2.

Thus, the local error em+1 satisfies

‖em+1‖Ḡx ≤ C(∆t)2,

and the global error satisfies

sup
m+1≤T/∆T

‖y(x, tm+1)− ym+1(x)‖Ḡx ≤ C∆t.

Proof. The time derivatives are bounded by using the arguments in [78]. The bounds

on local and global errors follow from the arguments in [111, 112].

The above lemma entails the first order parameter-robust convergence for the time

semidiscretization process.

Lemma 2.1.3. Consider the decomposition of y̌m+1(x) as y̌m+1(x) = v̌m+1(x) +

w̌m+1(x), where y̌m+1, v̌m+1, and w̌m+1 satisfy

∣∣∣∣∂sy̌m+1(x)

∂xs

∣∣∣∣ ≤ C(1 + ε−s/2e−
√
βx/
√
ε),

∣∣∣∣∂sv̌m+1(x)

∂xs

∣∣∣∣ ≤ C(1 + ε1− s
2 ),
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∂xs

∣∣∣∣ ≤ Cε−s/2e−
√
βx/
√
ε, 0 ≤ s ≤ 3, for all x ∈ Ḡx.

Proof. The proof follows using the arguments in [80].

2.2 Spatial mesh generation and discretization

2.2.1 Layer-adaptive equidistribution mesh

Here, we discuss the construction of a layer-adaptive mesh through equidistribu-

tion of a suitably chosen monitor function M(x, y(x, tm+1)) > 0. A spatial mesh,

ḠN,m+1
x := {0 = xm+1

0 , xm+1
1 , ..., xm+1

N = 1} is said to be equidistributed if

� xm+1
i

xm+1
i−1

M(z, y(z, tm+1))dz =
1

N

� 1

0

M(z, y(z, tm+1))dz, 1 ≤ i ≤ N.

In other form, the equidistributed mesh can be seen as a mapping xm+1 = xm+1(ξ),

which relates the computational coordinate ξ ∈ [0, 1] to the physical coordinate

xm+1 ∈ [0, 1], defined by

� xm+1(ξ)

0

M(z, y(z, tm+1))dz = ξ

� 1

0

M(z, y(z, tm+1))dz. (2.6)

Motivated from [55, 56, 58, 59, 113], we choose the monitor function given by

M(x, y(x, tm+1)) = αm+1 +

∣∣∣∣∂2w

∂x2
(x, tm+1)

∣∣∣∣1/2. (2.7)

Here, αm+1 is a positive constant introduced to maintain a reasonable division of

mesh points throughout the spatial domain. The equidistribution of the monitor
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function with αm+1 = 0 results in mesh starvation outside the boundary layer re-

gions. To approximate ∂2w/∂x2, we consider

∂2w

∂x2
(x, tm+1) ≈

(
η

ε

)
e
−
√
βx√
ε ,

where η (independent of ε and x) is a constant. Hence

� 1

0

∣∣∣∣∂2w

∂x2
(x, tm+1)

∣∣∣∣1/2dx ≡ Λ ≈ 2|η|1/2β−1/2

(
1− e−

√
β

2
√
ε

)
. (2.8)

Now the equidistribution of (2.7) using definition (2.6) leads to the mapping

e

(
−
√
β

2
√
ε
xm+1(ξ)

)
− αm+1

Λ
xm+1(ξ) = 1−

(
αm+1

Λ
+ 1− e(−

√
β

2
√
ε
)

)
ξ. (2.9)

A non-uniform mesh in physical coordinates {xm+1
i }Ni=1 corresponds to an equispaced

mesh {ξi = i/N}Ni=0 in computational coordinates. So, the above equation is written

as

e

(
−
√
β

2
√
ε
xm+1
i

)
− αm+1

Λ
xm+1
i = 1−

(
αm+1

Λ
+ 1− e(−

√
β

2
√
ε
)

)
i

N
. (2.10)

Hence, the adaptively generated mesh points are given by the solution of the non-

linear algebraic equation (2.10). Throughout the rest of the paper we take αm+1 = Λ.

Next, the following lemmas provide some important properties of the mesh structure.

Lemma 2.2.1. Suppose that the non-uniform mesh (2.10) is constructed by taking

αm+1 = Λ and

2
√
ε√
β
N lnN < 1. (2.11)

Then

xN/2−1 <
2
√
ε√
β

lnN < xN/2.
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Proof. Putting αm+1 = Λ and xm+1
i = 2

√
ε√
β

lnN into (2.10) and simplifying for i, we

get

i =
N −

(
1− 2

√
ε√
β
N lnN

)
2− e−

√
β

2ε

.

Now the proof immediately follows using the assumption (2.11).

Lemma 2.2.2. For i = 1, ..., N/2− 1, we have

hm+1
i <

6
√
ε√

β(N − 2i)
.

Proof. The proof is based on the lower and upper bounds of xm+1
i denoted by xm+1

i

and xm+1
i , respectively. From (2.10), we have

e

(
−
√
β

2
√
ε
xm+1
i

)
= 1−

(
2− e(−

√
β

2
√
ε
)

)
i

N
.

Hence

xm+1
i < xm+1

i = −2
√
ε√
β

log

(
1− S i

N

)
, (2.12)

where S =

(
2− e(−

√
β

2
√
ε
)

)
. Now we use the obtained upper bound in (2.10) to get

xm+1
i > xm+1

i = −2
√
ε√
β

log

(
1− S i

N
− 2
√
ε√
β

log

(
1− S i

N

))
. (2.13)

Thus, for i = 1, ..., N/2− 1,

hm+1
i < xm+1

i − xm+1
i−1 =

2
√
ε√
β

log

1 +

S + 2
√
ε√
β
N log

(
N

N−S(i−1)

)
N − Si


<

2
√
ε√
β

log

(
1 +

3

N − 2i

)
<

6
√
ε√

β(N − 2i)
.
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Lemma 2.2.3. For the mesh generated using (2.10), mesh-widths hm+1
i , i = 1, ..., N ,

satisfy

hm+1
i ≤ CN−1.

Proof. From (2.7), we have that Λ = αm+1 ≤ M(x, y(x, tm+1)). Now using the

derivative bounds, we get

� 1

0

M(x, y(x, tm+1))dx ≤ C.

Thus, by the equidistribution principle, we get

αm+1hm+1
i ≤

� xm+1
i

xm+1
i−1

M(x, y(x, tm+1))dx =
1

N

� 1

0

M(x, y(x, tm+1))dx ≤ CN−1.

Hence, hm+1
i ≤ CN−1.

2.2.2 The fully discrete scheme

Here, we shall discretize problem (2.4) on a non-uniform spatial mesh ḠN,m
x = {0 =

xm0 < xm1 < ... < xmN = 1}, where m represents the time level and the step sizes are

defined by hmi = xmi −xmi−1, 1 ≤ i ≤ N . On this spatial mesh, for any mesh function

u with u(xi, tm) = umi , we consider the following difference operators

D+
x u

m
i =

umi+1 − umi
hmi+1

, D−x u
m
i =

umi − umi−1

hmi
, δ2

xu
m
i =

D+
x u

m
i −D−x umi

(hmi + hmi+1)/2
.

We shall use the term Y (xm+1
i , tm) in the discretization of (2.4) as it is found by the

linear interpolation of Y (xmi , tm), 0 ≤ i ≤ N . Now the fully discrete scheme is given
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by



Y 0
i = gb(x

1
i ) for 0 ≤ i ≤ N,

For m = 0, ...,M − 1,

(∆tLNε − I)Y m+1
i = −Y (xm+1

i , tm) + ∆tf(xm+1
i , tm+1) for 1 ≤ i ≤ N − 1,

Y m+1
0 = gl(tm+1), Y m+1

N = gr(tm+1),

(2.14)

where the discrete operator LNε is defined by

LNε Y
m+1
i := εδ2

xY
m+1
i + aiD

+
x Y

m+1
i − bm+1

i Y m+1
i .

After rearrangement of the terms we can rewrite the equation (2.14) as

sm+1,−
i Y m+1

i−1 + sm+1,?
i Y m+1

i + sm+1,+
i Y m+1

i+1 = qm+1
i , 1 ≤ i ≤ N − 1,

Y m+1
0 = gl(tm+1), Y m+1

N = gr(tm+1),

(2.15)

where the coefficients sm+1,−
i , sm+1,?

i and sm+1,+
i are given by

sm+1,−
i = 2ε∆t

hm+1
i (hm+1

i +hm+1
i+1 )

, sm+1,+
i = 2ε∆t

hm+1
i+1 (hm+1

i +hm+1
i+1 )

+
∆ta(xm+1

i )

hi+1
,

sm+1,?
i = −1−∆tb(xm+1

i , tm+1)− sm+1,−
i − sm+1,+

i ,

qm+1
i = −Ỹ (xm+1

i , tm) + ∆tf(xm+1
i , tm+1),

and Ỹ denotes the piecewise-linear interpolant of Y . Suppose Ṽ denotes the piecewise-

linear interpolant of V . Then v is approximated as follows

[∆t(aiD
+
x − bm+1

i )− I]V m+1
i = −Ṽ (xm+1

i , tm) + ∆tf(xm+1
i , tm+1), 1 ≤ i ≤ N − 1,

V 0
i = gb(x

1
i ), i = 0, 1, . . . , N, V m+1

N = gr(tm+1).

(2.16)
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2.3 Error analysis

We consider spatial discretization of problem (2.5) for error analysis. So, we consider

the following difference equation


(∆LNε − I)Y̌ m+1

i = sm+1,−
i Y̌ m+1

i−1 + sm+1,?
i Y̌ m+1

i + sm+1,+
i Y̌ m+1

i+1

= q̌m+1
i , 1 ≤ i ≤ N − 1,

Y̌ m+1
0 = gl(tm+1), Y̌ m+1

N = gr(tm+1),

(2.17)

where sm+1,−
i , sm+1,?

i , sm+1,+
i are as defined in (2.15) and q̌m+1

i = −y(xm+1
i , tm) +

∆t f(xm+1
i , tm+1). The operator (∆tLNε − I) satisfies the following discrete compar-

ison principle which can be proved using the standard arguments.

Lemma 2.3.1. (Discrete Comparison Principle) Suppose that the difference operator

(∆tLNε − I) satisfies the following inequality

(∆tLNε − I)Pm+1
i ≤ (∆tLNε − I)Qm+1

i , 1 ≤ i ≤ N − 1,

with Pm+1
0 ≥ Qm+1

0 and Pm+1
N ≥ Qm+1

N , then Pm+1
i ≥ Qm+1

i for 0 ≤ i ≤ N .

We decompose Y̌ as follows

Y̌ m+1
i = V̌ m+1

i + W̌m+1
i ,

where
(∆tLNε − I)V̌ m+1

i = −v(xm+1
i , tm)

+ ∆tf(xm+1
i , tm+1), 1 ≤ i ≤ N − 1, 1 ≤ m ≤M − 1,

V̌ m+1
0 = v(xm+1

0 , tm+1), V̌ m+1
N = v(xm+1

N , tm+1),

(2.18)
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and  (∆tLNε − I)W̌m+1
i = −w(xm+1

i , tm), 1 ≤ i ≤ N − 1, 1 ≤ m ≤M − 1,

W̌m+1
0 = w(xm+1

0 , tm+1), W̌m+1
N = w(xm+1

N , tm+1).

(2.19)

We will bound errors in the smooth and singular components separately and combine

them with the help of a triangle inequality as follows

|Y̌ m+1
i − y̌m+1(xm+1

i )| ≤ |V̌ m+1
i − v̌m+1(xm+1

i )|+ |W̌m+1
i − w̌m+1(xm+1

i )|. (2.20)

Next we consider the discrete Padé approximation of the function e
−
√
βxm+1
i

2
√
ε and

prove some technical results to be used later.

Lemma 2.3.2. Consider a mesh function Tm+1
i such that

Tm+1
0 = 1, Tm+1

i =
i∏
l=1

(
1 +

√
βhm+1

l

2
√
ε

)−1

, i = 1, ..., N.

Then, for i = 1, ..., N − 1, we have

(∆tLNε − I)Tm+1
i ≤ − C∆t

2
√
ε/
√
β + hm+1

i+1

Tm+1
i .

Proof. We have

Tm+1
i − Tm+1

i−1

hi
= −

√
β

2
√
ε
Tm+1
i .

Applying the discrete operator (∆tLNε − I) to Tm+1
i , we get

(∆tLNε − I)Tm+1
i = ∆t

[
εδ2
xT

m+1
i + aiD

+
x T

m+1
i − bm+1

i Tm+1
i

]
− Tm+1

i

= ∆t

{
2ε

hm+1
i + hm+1

i+1

[
−
√
β

2
√
ε
Tm+1
i+1 +

√
β

2
√
ε
Tm+1
i+1

(
1 +

√
βhm+1

i+1

2
√
ε

)]
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+ ai

(
−
√
β

2
√
ε

)
Tm+1
i+1 − bm+1

i Tm+1
i

}
− Tm+1

i

≤ −
√
β∆t

2
√
ε+
√
βhm+1

i+1

[
ai −

√
ε
√
βhm+1

i+1

hm+1
i + hm+1

i+1

+
bm+1
i (2

√
ε+
√
βhm+1

i+1 )
√
β

]
Tm+1
i

≤ − ∆t

2
√
ε/
√
β + hm+1

i+1

[
ai +

√
ε√
β

(2bm+1
i − β) + bm+1

i hm+1
i+1

]
Tm+1
i

≤ − C∆t

2
√
ε/
√
β + hm+1

i+1

Tm+1
i .

Lemma 2.3.3. The mesh function Tm+1
i satisfies

e
−
√
βxm+1
i

2
√
ε ≤ Tm+1

i , i = 1, ..., N. (2.21)

Also,

Tm+1
N/2−1 ≤ CN−1.

Proof. We know that, for any positive real number p, e−p < 1/(1 + p); so working

for each i, we can easily get that

e
−
√
βxm+1
i

2
√
ε =

i∏
l=1

e
−
√
βhm+1
l

2
√
ε ≤

i∏
l=1

(
1 +

√
βhm+1

l

2
√
ε

)−1

= Tm+1
i .

This proves (2.21). Now using the bound on mesh size from Lemma 2.2.2, we have

log

(N/2−1∏
l=1

(
1 +

√
βhm+1

l

2
√
ε

))
=

N/2−1∑
l=1

log

(
1 +

√
βhm+1

l

2
√
ε

)

>

N/2−1∑
l=1

(√
βhm+1

l

2
√
ε
− 1

2

(√
βhm+1

l

2
√
ε

)2)

>

√
βxm+1

N/2−1

2
√
ε

− 9

8

N/2−1∑
l=1

1

l2
>

√
βxm+1

N/2−1

2
√
ε

− 9

4
.
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Thus
N/2−1∏
l=1

(
1 +

√
βhm+1

l

2
√
ε

)−1

< e
9
4
−
√
βxm+1
N/2−1

2
√
ε < Ce

−
√
βxm+1
N/2−1

2
√
ε .

Now from the mapping (2.10), we have

e
−
√
βxm+1
N/2−1

2
√
ε = xm+1

N/2−1 + 1− N − 2

2N
(2− e−

√
β

2
√
ε ) < xm+1

N/2−1 + 2N−1 <
2
√
ε√
β

logN + 2N−1.

So, using assumption (2.11), we obtain

Tm+1
N/2−1 ≤ CN−1.

2.3.1 Error analysis of the regular component

Lemma 2.3.4. For i = 0, ..., N , the error in the regular component V̌ m+1
i satisfies

|V̌ m+1
i − v̌m+1(xm+1

i )| ≤ CN−1.

Proof. The local truncation error at time level m+ 1 is given by

ηm+1
i (V̌ ) = (∆tLNε − I)(V̌ m+1

i − v̌m+1(xm+1
i ))

=
ε∆t

(hm+1
i + hm+1

i+1 )

[
1

hm+1
i+1

� xm+1
i+1

xm+1
i

(z − xm+1
i+1 )2v̌m+1

xxx (z)dz

− 1

hm+1
i

� xm+1
i

xm+1
i−1

(z − xm+1
i−1 )2v̌m+1

xxx (z)dz

]
+

∆t a(xm+1
i )

hm+1
i

� xm+1
i

xm+1
i−1

(z − xm+1
i+1 )v̌m+1

xx (z)dz.
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Thus

|ηm+1
i (V̌ )| ≤ ε∆t

� xm+1
i+1

xm+1
i−1

|v̌m+1
xxx (z)|dz + amax∆t

� xm+1
i

xm+1
i−1

|v̌m+1
xx (z)|dz

where amax is the maximum value of a(x). Now using the derivative bounds (Lemma

2.1.3) and mesh sizes bound (from Lemma 2.2.3), we get

|ηm+1
i (V̌ )| ≤ CN−1. (2.22)

Now applying the operator (∆tLNε − I) to the barrier function, Φ±i = CN−1 ±

(V̌ m+1
i − v̌m+1(xm+1

i )), so that for i = 1, ..., N − 1, we get

(∆tLNε − I)Φ±i = −(∆tbm+1
i + 1)CN−1 ± (∆tLNε − I)(V̌ m+1

i − v̌m+1(xm+1
i )) ≤ 0,

with Φ±0 ≥ 0 and Φ±N ≥ 0. Thus, using the discrete comparison principle, we get

|V̌ m+1
i − v̌m+1(xm+1

i )| ≤ CN−1, i = 0, ..., N.

2.3.2 Error analysis of the singular component

Lemma 2.3.5. For i = N/2− 1, ..., N , it holds

|W̌m+1
i − w̌m+1(xm+1

i )| ≤ CN−1.
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Proof. We use (2.19) and (2.3) to get

|W̌m+1
N | ≤ Ce

−
√
β√
ε ≤ Ce

−
√
β

2
√
ε = C

N∏
l=1

e
−
√
βhm+1
l

2
√
ε .

Then using the arguments of Lemma 2.3.3, we get |W̌m+1
N | ≤ CTm+1

N . Also, from

(2.19), we get |W̌m+1
0 | ≤ C ≤ CTm+1

0 . Now

|(∆tLNε − I)W̌m+1
i | = |w(xm+1

i , tm)| ≤ Ce
−
√
βxm+1
i√
ε ≤ Ce

−
√
βxm+1
i

2
√
ε ≤ CTm+1

i ,

where we have used (2.3) and Lemma 2.3.3. It is easy to verify that (∆tLNε −

I)Tm+1
i ≤ −Tm+1

i . Hence, an application of the discrete comparison principle with

Ψ±i = CTm+1
i ± W̌m+1

i gives

|W̌m+1
i | ≤ CTm+1

i , for i = 0, ..., N. (2.23)

From Lemma 2.3.3, we have that Tm+1
N/2−1 ≤ CN−1. Since, Tm+1

i decreases as i

increases, so for i = N/2− 1, ..., N , we have

Tm+1
i ≤ CN−1. (2.24)

Combining (2.23) and (2.24), we get

|W̌m+1
i | ≤ CN−1. (2.25)

From Lemma 2.1.3, for i = N/2− 1, ..., N ,

|w̌m+1(xm+1
i )| ≤ Ce

−
√
βxm+1
i√
ε ≤ Ce

−
√
βxm+1
i

2
√
ε ≤ Ce

−
√
βxm+1
N/2−1

2
√
ε < CN−1, (2.26)

where we have used the fact from the proof of Lemma 2.3.3.
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Thus, for the region outside the boundary layer, we obtain the desired result using

equations (2.25) and (2.26) in the following triangle inequality

|W̌m+1
i − w̌m+1(xm+1

i )| ≤ |W̌m+1
i |+ |w̌m+1(xm+1

i )|.

Lemma 2.3.6. For i = 1, ..., N/2− 2, we have

|W̌m+1
i − w̌m+1(xm+1

i )| ≤ CN−1.

Proof. Using Taylor expansions and the derivative bounds of w̌m+1 from Lemma

2.1.3, we get

|ηm+1
i (W̌ )| ≤ C∆t

ε

� xm+1
i+1

xm+1
i−1

e
−
√
βz√
ε dz ≤ C∆t

ε

� ξi+1

ξi−1

Λe
−
√
βx(ξ)√
ε

αm+1 + |w̌m+1
xx |1/2

dξ

≤ C∆t√
ε

� ξi+1

ξi−1

e
−
√
βx(ξ)

2
√
ε dξ <

C∆t√
εN

e
−
√
βxm+1
i−1

2
√
ε =

C∆t√
εN

e
−
√
βxm+1
i

2
√
ε e

√
βhm+1
i

2
√
ε .

Also, from Lemma 2.2.2 we have hm+1
i < 2

√
ε√
β

log

(
1 + 3

N−2i

)
. Thus, we get

|ηm+1
i (W̌ )| ≤ C∆t√

εN
e
−
√
βxm+1
i

2
√
ε .

Again, using Lemma 2.3.3, we get

|ηm+1
i (W̌ )| ≤ C∆t√

εN
Tm+1
i .

Now we shall apply the discrete comparison principle to obtain an error bound for

W̌ . Consider ψm+1
i = C

N
(1 + Tm+1

i ), i = 0, ..., N/2 − 1. Then, using Lemmas 2.2.2
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and 2.3.2, for i = 1, ..., N/2− 2, we have

(∆tLNε − I)(W̌m+1
i − w̌m+1(xm+1

i )) = ηm+1
i (W̌ ) ≥ − C∆t√

εN
Tm+1
i

≥ C

N
(∆tLNε − I)Tm+1

i

≥ (∆tLNε − I)ψm+1
i .

Also,

(W̌m+1
0 − w̌m+1(xm+1

0 )) ≤ ψm+1
0 and (W̌m+1

N/2−1 − w̌
m+1(xm+1

N/2−1)) ≤ ψm+1
N/2−1.

Hence, using the discrete comparison principle, we have

(W̌m+1
i − w̌m+1(xm+1

i )) ≤ ψm+1
i , i = 0, ..., N/2− 1,

which implies that

(W̌m+1
i − w̌m+1(xm+1

i )) ≤ CN−1, i = 1, ..., N/2− 2.

Now we repeat the above argument for −(W̌m+1
i − w̌m+1(xm+1

i )). Thus, we have

|W̌m+1
i − w̌m+1(xm+1

i )| ≤ CN−1, i = 1, ..., N/2− 2.

Theorem 2.3.1. Suppose y̌m+1(xm+1
i ) and Y̌ m+1

i , respectively, are the solutions of

(2.4) and (2.17). Then on the equidistributed mesh (2.10), we have

|Y̌ m+1
i − y̌m+1(xm+1

i )| ≤ CN−1, i = 0, ..., N.
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Proof. The result follows by using Lemmas 2.3.4, 2.3.5, and 2.3.6 in inequality (2.20).

Corollary 2.3.1. If for some 0 < σ < 1, N−σ ≤ C∆t, then from the previous theorem

we have

|Y̌ m+1
i − y̌m+1(xm+1

i )| ≤ C∆tN−1+σ, i = 0, ..., N.

The constant σ in the above corollary does not influence numerical results given in

the next section, and is used only for the theory. Such an assumption is common in

the literature (see, e.g. [111, 114]). In the following theorem, we prove parameter-

robust convergence of the fully discrete scheme. The analysis in this theorem is

inspired from the works in [111, 114].

Theorem 2.3.2. Suppose y is the solution of (2.1) and {Y m+1
i } is the solution of

the fully discrete scheme (2.14) at the (m + 1)th time level. If for some 0 < σ <

1, N−σ ≤ C∆t, then on each time level tm+1 we have

‖Y m+1
i − y(xm+1

i , tm+1)‖ḠN,m+1
x

≤ C(N−1+α +M−1), i = 0, ..., N.

Proof. We define the error of the fully discrete scheme at time level tm+1 by Em+1
i =

Y m+1
i − y(xm+1

i , tm+1), 0 ≤ i ≤ N. We can split the global error as follows

‖Em+1
i ‖ḠN,m+1

x
≤ ‖Y m+1

i − Y̌ m+1
i ‖ḠN,m+1

x
+ ‖Y̌ m+1

i − y̌m+1(xm+1
i )‖ḠN,m+1

x

+ ‖y̌m+1(xm+1
i )− y(xm+1

i , tm+1)‖ḠN,m+1
x

.

Using the results from Lemma 2.1.2 and Corollary 2.3.1, we obtain

‖Em+1‖ḠN,m+1
x

≤ ‖Y m+1
i − Y̌ m+1

i ‖ḠN,m+1
x

+ C∆t(∆t+N−1+σ). (2.27)
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Now considering (2.14), (2.17), and the stability of (∆tLNε − I), we get

‖Y m+1
i − Y̌ m+1

i ‖ḠN,m+1
x

≤ ‖Ỹ (xm+1
i , tm)− y(xm+1

i , tm)‖ḠN,m+1
x

.

Then using a triangle inequality we get

‖Ỹ (xm+1
i , tm)− y(xm+1

i , tm)‖ḠN,m+1
x

≤ ‖Ỹ (xm+1
i , tm)− ỹ(xm+1

i , tm)‖ḠN,m+1
x

+‖ỹ(xm+1
i , tm)− y(xm+1

i , tm)‖ḠN,m+1
x

. (2.28)

The second term on right hand side of (2.28) is the interpolation error. Using

standard arguments we get ‖ỹ(xm+1
i , tm)− y(xm+1

i , tm)‖ḠN,m+1
x

≤ CN−1, and hence

‖ỹ(xm+1
i , tm)− y(xm+1

i , tm)‖ḠN,m+1
x

≤ C∆tN−1+σ,

for some 0 < σ < 1 such that N−σ ≤ C∆t.

The first term on right hand side of (2.28) is bounded using the stability of the

interpolation operator. So, we get

‖Ỹ (xm+1
i , tm)− ỹ(xm+1

i , tm)‖ḠN,m+1
x

≤ ‖Y m
i − y(xmi , tm)‖ḠN,mx

.

Thus

‖Em+1‖ḠN,m+1
x

≤ ‖Em‖ḠN,mx
+ C∆t(∆t+N−1+σ).

Hence, using a recursive argument, we obtain

‖Em+1‖ḠN,m+1
x

≤ C(∆t+N−1+σ).
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2.4 Numerical experiments

We present numerical results for two test examples to validate the theory. To gen-

erate adaptive meshes we consider a moving mesh algorithm originally due to de

Boor [47]. Starting with a uniform mesh the algorithm aims to construct a mesh

that solves the following discrete equidistribution principle

hmi Mm
i =

1

N

N∑
j=1

hmj Mm
j , 1 ≤ i ≤ N, (2.29)

whereMm
i is the discretized monitor function corresponding to (2.7). Kopteva and

Stynes [71] remarked that the discrete equidistribution principle does not have to

been enforced strictly, but it suffices to have

hmi Mm
i ≤

%

N

N∑
j=1

hmj Mm
j , 1 ≤ i ≤ N, (2.30)

with a user-chosen constant % > 1.

We note that the moving mesh algorithm considered here has been utilized for several

classes of singularly perturbed problems in the literature (see [54, 58, 59, 71, 113, 115]

and the references therein). However, there are only a few attempts to analyse its

convergence. The algorithm is analysed in [72] for a stationary semilinear reaction-

diffusion problem, in [71] for a stationary quasilinear convection-diffusion problem,

and in [116] for regular boundary value problems. Algorithm 1 is used to generate

the adaptive mesh and the solution at each time level.

Throughout the section we take T = 1, M = N and the stopping constant % = 1.05

for all numerical experiments.
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Algorithm 1: Algorithm for the adaptive mesh and adaptive solution

Input: N, M ∈ N, 0 < ε ≤ 1 and % > 1.
Output: Adaptive mesh {xki } and adaptive solution Y m

i at each time level tm.

1. Choose a stopping constant % > 1. Initialize the mesh iteration {xm,(k)
i } with

k = 0 as the uniform mesh for m = 1, otherwise xm−1
i for mth time level.

2. Solve the discrete problem (2.14) for Y
m,(k)
i and (2.16) for smooth component

V
m,(k)
i on the spatial mesh {xm,(k)

i }.

3. Compute the singular component as W
m,(k)
i = Y

m,(k)
i − V m,(k)

i .

4. Construct the discretized monitor function by

Mm,(k)
i = αm,(k) + |δ2

xW
m,(k)
i |1/2, for i = 1, ..., N − 1,

where αm,(k) is defined by

αm,(k) = h
m,(k)
1 |δ2

xW
m,(k)
1 |1/2 +

N−1∑
i=2

h
m,(k)
i

{
|δ2
xW

m,(k)
i−1 |1/2 + |δ2

xW
m,(k)
i |1/2

2

}
+ h

m,(k)
N |δ2

xW
m,(k)
N−1 |

1/2.

5. Set H
m,(k)
i = h

m,(k)
i

(
Mm,(k)

i−1 +Mm,(k)
i

2

)
for i = 1, ..., N , take Mm,(k)

0 =Mm,(k)
1

and Mm,(k)
N =Mm,(k)

N−1 . Then define L
m,(k)
i by L

m,(k)
i =

∑i
j=1 H

m,(k)
j for

i = 1, ..., N and L
m,(k)
0 = 0.

6. Stopping criteria: Define %(k) by %(k) = N

L
m,(k)
N

max
i=1,...,N

H
m,(k)
i . If %(k) ≤ %

then go to Step 8, else continue with Step 7.

7. Set Z
m,(k)
i = i

L
m,(k)
N

N
for i = 0, 1, ..., N . Interpolate the points (L

m,(k)
i , x

m,(k)
i ).

Generate a new mesh {xm,(k+1)
i } by evaluating this interpolant at Z

m,(k)
i for

i = 0, 1, ..., N , then return to Step 2, setting k = k + 1.

8. Take {xm,(k)
i } as the final layer-adaptive mesh, {xmi } for mth level and Y

m,(k)
i

as the required adaptive solution, Y m
i at the mth time level.

9. Go to Step 1 with m = m+ 1, repeat the same process for the adaptive mesh
and solution at (m+ 1)th time level.
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The first test example is the following degenerate convection-diffusion singular per-

turbation problem [79].

Example 2.4.1.


ε ∂

2y
∂x2

(x, t) + xp ∂y
∂x

(x, t)− y(x, t)− ∂y
∂t

(x, t) = f(x, t), (x, t) ∈ G,

y(x, t) = g(x, t), (x, t) ∈ ∂G.

The functions f and g can be calculated from the exact solution

y(x, t) = e−t
(

1− x+ xe−1/
√
ε − e−x/

√
ε

)
.

1
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(b) ε = 10−8

Figure 2.1: Surface plots of the numerical solution of Example 2.4.1 with N =
64, p = 2, ε = 10−4, and ε = 10−8.

Fig. 2.1 displays the surface plots for ε = 10−4 and ε = 10−8 with N = 64 and p = 2.

From this figure one can clearly observe a boundary layer near Γl. For different values

of M, N, and ε, we calculate the pointwise errors using the formula

Eε,N,M
i,m = |Y m

i − y(xmi , tm)|.
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We then calculate the maximum pointwise errors and the numerical rates of conver-

gence by

Eε,N,M = max
i,m

Eε,N,M
i,m , F ε,N,M = log2

(
Eε,N,M

Eε,2N,2M

)
.

Finally, the parameter-robust errors and the parameter-robust rates of convergence

are computed by

EN,M = max
ε
Eε,N,M , FN,M = log2

(
EN,M

E2N,2M

)
.

In Table 2.1, we display the errors Eε,N,M and EN,M , and convergence rates F ε,N,M

Table 2.1: Maximum pointwise errors Eε,N,M , parameter-robust errors EN,M ,
rates of convergence F ε,N,M and parameter-robust convergence FN,M using

scheme (2.14) for Example 2.4.1 with p = 2.

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
10−1 1.1134e-03 5.9091e-04 3.0455e-04 1.5456e-04 7.7859e-05 3.9075e-05

0.9140 0.9563 0.9785 0.9892 0.9946

10−2 1.6582e-03 7.9905e-04 3.9089e-04 1.9331e-04 9.6134e-05 4.7937e-05
1.0532 1.0325 1.0167 1.0088 1.0049

10−3 3.8783e-03 1.9834e-03 1.0077e-03 5.0730e-04 2.5449e-04 1.2724e-04
0.9674 0.9769 0.9902 0.9952 1.0000

10−4 4.8593e-03 2.4942e-03 1.2707e-03 6.4184e-04 3.2171e-04 1.6086e-04
0.9622 0.9730 0.9854 0.9965 0.9999

10−5 5.2579e-03 2.6824e-03 1.3657e-03 6.8888e-04 3.4636e-04 1.7313e-04
0.9709 0.9739 0.9873 0.9919 1.0001

10−6 5.4821e-03 2.7604e-03 1.4010e-03 7.0610e-04 3.5560e-04 1.7758e-04
0.9899 0.9784 0.9885 0.9896 1.0011

10−7 5.5818e-03 2.7898e-03 1.4162e-03 7.1248e-04 3.5910e-04 1.7918e-04
0.9946 0.9781 0.9912 0.9885 1.0031

10−8 5.5840e-03 2.7974e-03 1.4199e-03 7.1554e-04 3.6051e-04 1.7975e-04
0.9946 0.9782 0.9887 0.9889 1.0031

EN,M 5.5840e-03 2.7974e-03 1.4199e-03 7.1554e-04 3.6051e-04 1.7975e-04

FN,M 0.9946 0.9782 0.9887 0.9889 1.0031

and FN,M . Here, we see that the error is decreasing as the number of mesh points are
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increasing. From this table one can conclude that the proposed method is parameter-

robust and the numerical results are completely in accordance with the theoretical

result.

x
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(b) Position of space mesh points

Figure 2.2: Mesh trajectory and position of space mesh points taking ε =
10−8, N = 64, and p = 2 at t = 1 for Example 2.4.1.

In Figure 2.2, we plot the movement of mesh points towards the boundary layer in

each iteration of the mesh generation process and the final position of mesh points

condensed in the layer region. This figure confirms the adaptive behavior of the

mesh obtained through the equidistribution of our chosen monitor function.

The second test example is the following degenerate convection-diffusion singular

perturbation problem [110].

Example 2.4.2.


ε ∂

2y
∂x2

(x, t) + xp ∂y
∂x

(x, t)− y(x, t)− ∂y
∂t

(x, t) = x2 − 1, (x, t) ∈ G,

y(x, 0) = (1− x)2, x ∈ Ḡx,

y(0, t) = 1 + t2, y(1, t) = 0, t ∈ (0, T ].

Fig. 2.3 displays the surface plot for ε = 10−2 and ε = 10−5 with N = 64 and p = 2,

from which a boundary layer can be clearly observed near Γl. The exact solution of
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Figure 2.3: Surface plots of the numerical solution of Example 2.4.2 with N =
64, p = 2, ε = 10−2 and ε = 10−5.

Example 2.4.2 is not known, so to estimate numerical errors and rates of convergence

we shall use the double mesh principle [6]. For this we bisect the spatial mesh and

the time mesh, and then calculate the pointwise errors using the formula

Eε,N,M
i,m = |Y m,2N,2M

i − Y m,N,M
i |.

Then the maximum pointwise errors and the rates of convergence are calculated by

Eε,N,M = max
i,m

Eε,N,M
i,m , F ε,N,M = log2

(
Eε,N,M

Eε,2N,2M

)
.

Finally, the parameter-robust errors and parameter-robust rates of convergence are

obtained by

EN,M = max
ε
Eε,N,M , FN,M = log2

(
EN,M

E2N,2M

)
.

In Table 2.2, we present the results for Example 2.4.2. This table displays the

errors Eε,N,M and EN,M , and the convergence rates F ε,N,M and FN,M . From these

numerical results, again we observe that the method is first order parameter-robust

for the addressed problem (2.1).
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Table 2.2: Maximum pointwise errors Eε,N,M , parameter-robust errors EN,M ,
rates of convergence F ε,N,M and parameter-robust convergence FN,M using

scheme (2.14) for Example 2.4.2 with p = 1.

ε N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024
10−1 6.0678e-03 3.1060e-03 1.5716e-03 7.9055e-04 3.9646e-04 1.9852e-04

0.9661 0.9828 0.9913 0.9957 0.99786

10−2 9.1940e-03 4.8423e-03 2.4863e-03 1.2594e-03 6.3381e-04 3.1793e-04
0.92501 0.9617 0.9812 0.9906 0.9953

10−3 1.1452e-02 6.2810e-03 3.2832e-03 1.6747e-03 8.4525e-04 4.2453e-04
0.9669 0.9356 0.9711 0.98650 0.9935

10−4 1.4429e-02 7.8765e-03 4.1433e-03 2.1086e-03 1.0578e-03 5.2844e-04
0.8734 0.9268 0.9745 0.9951 1.0013

10−5 1.8039e-02 9.3421e-03 4.9472e-03 2.5223e-03 1.2580e-03 6.2199e-04
0.9493 0.9172 0.9718 1.0035 1.0161

10−6 2.2009e-02 1.0476e-02 5.5412e-03 2.8546e-03 1.4341e-03 7.0988e-04
1.0710 0.9188 0.9569 0.9931 1.0145

10−7 2.5967e-02 1.1221e-02 5.8996e-03 3.0621e-03 1.5543e-03 7.7683e-04
1.2104 0.9275 0.9461 0.9783 1.0001

10−8 2.9611e-02 1.1848e-02 6.1079e-03 3.1723e-03 1.6194e-03 8.1577e-04
1.3215 0.9359 0.9451 0.9701 0.98923

EN,M 2.9611e-02 1.1848e-02 6.1079e-03 3.1723e-03 1.6194e-03 8.1577e-04

FN,M 1.3215 0.9359 0.9451 0.9701 0.98923

In Figure 2.4, we provide log-log plots between the maximum pointwise errors and

the number of spatial mesh points N, for both the test examples. From the slopes of

these plots we can also validate first order convergence of the method. In Table 2.3,

we present the results for different values of % for Example 2.4.1 taking ε = 10−7.

This table displays the maximum pointwise errors Eε,N,M , convergence rates F ε,N,M ,

and the maximum number of iterations K required (over all time levels) before the

stopping criterion in Step 6 of the algorithm is satisfied. From this table, we observe

that values of % close to 1 give slightly more accurate solutions but require more

number of iterations. Further, we observe that the algorithm requires few iterations

to converge.
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(a) Log-log plot for Example 2.4.1
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(a) Log-log plot for Example 2.4.2

Figure 2.4: Log-log plots of the maximum pointwise errors at time t = 1 for
Examples 2.4.1 and 2.4.2.

Table 2.3: Maximum pointwise errors Eε,N,M , rates of convergence F ε,N,M , and
the maximum number of iterations (over all time levels) K using different values

of % for Example 2.4.1 with p = 2 and ε = 10−7.

% N = 32 N = 64 N = 128 N = 256 N = 512 N = 1024

Eε,N,M 5.5818e-03 2.7898e-03 1.4162e-03 7.1248e-04 3.5910e-04 1.7918e-04

% = 1.05 F ε,N,M 1.0005 0.9781 0.9912 0.9885 1.0029

K 12 7 7 6 5 4

Eε,N,M 6.1339e-03 2.9877e-03 1.4609e-03 7.2179e-04 3.5916e-04 1.7919e-04

% = 1.15 F ε,N,M 1.0378 1.0322 1.0172 1.0070 1.0031

K 10 6 5 5 4 3

Eε,N,M 6.2798e-03 3.0429e-03 1.4616e-03 7.2169e-04 3.5900e-04 1.7919e-04

% = 1.5 F ε,N,M 1.0453 1.0579 1.0181 1.0074 1.0025

K 6 5 4 4 3 3

Eε,N,M 6.3449e-03 3.0370e-03 1.4616e-03 7.2079e-04 3.5900e-04 1.7919e-04

% = 2.0 F ε,N,M 1.0629 1.0551 1.0199 1.0056 1.0025

K 4 4 4 3 3 3

Eε,N,M 6.3449e-03 3.0370e-03 1.4616e-03 7.2079e-04 3.5900e-04 1.7919e-04

% = 3.0 F ε,N,M 1.0629 1.0551 1.0199 1.0056 1.0025

K 4 4 4 3 3 3

2.5 Conclusions

We have proposed a numerical method comprising of the implicit Euler scheme on a

uniform mesh in time direction and the upwind finite difference scheme on a layer-

adaptive non-uniform mesh in spatial direction, for solving degenerate singularly
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perturbed convection-diffusion problem. The layer-adaptive non-uniform mesh in

spatial direction is generated through the equidistribution of the monitor function

which is a combination of an appropriate power of second order derivative of the

solution and a positive constant. It is shown through the truncation error and

barrier function approach that the proposed method is parameter-robust with first

order in both time and space. Numerical results are given for two test examples

which validates the theoretical findings.

***********


